永磁操动机构专利技术综述
永磁机构原理与设计方案简介

智能真空电器
2010-09-03
永磁机构的早期资料 ---- ABB
真空断路器
真空接触器
智能真空电器
2010-09-03
智能真空电器
2010-09-03
永磁机构的控制
永磁机构的控制系统是用来接受电信号,并通过逻辑判断最终给出指令控制操动机构 动作的装置。由于永磁机构和以往机构有很大的不同,所以控制部分也有较大的差异 。首先,它的电源一般由电容组成,因此,和—般断路器相比较,永磁机构的控制部 分还应多一个电容充电控制环节,用以稳定电容的电压值,保证整个系统性能的稳定 。其次,永磁机构无脱扣装置,断路器的分合闸完全靠给分合闸线圈的通电来完成。 电容器组作为永磁机构内分合闸线圈的电源,其充放电过程由逻辑部分来控制。互感 器部分主要由电压互感器、电流互感器组成。逻辑分析判断部分是实现断路器控制的 关键,它是通过对输入电压、电流量的比较分析来识别线路短路、欠电压、过电流等 故障情况,当故障发生时,它发出的控制指令由永磁机构的执行机构来完成。
智能真空电器
2010-09-03
永磁机构的控制方式
1. 永磁机构的特点之—是采用电子控制,以实现断路器的 所有功能,同时还可具有智能化功能,其中包括在线检 测、同步关合技术的实现等,最大限度地体现永磁机构 的优越性。但是,作为永磁机构真空断路器,其设计结 构和原理决定了它可以采用多种控制技术,下面介绍几 种控制方式的特点。
2. 目前,根据逻辑部分的元件的不同,永磁机构真空断路 器机构控制的方式可分为如下3种:
3. 接触器控制方式;电子控制方式;
智能真空电器
2010-09-03
永磁真空断路器的构成
1. 真空灭弧室 (固封极柱)
2. 永磁操动系统 3. 开关本体
永磁机构原理介绍

永磁机构原理与性能随着电力系统的技术发展及智能化进程,用户对开关提出了更高的要求,作为开关心脏的真空灭弧室、作为开关动力来源脉的操作机构、作为智能化开关大脑的控制器的长足进步,必将使开关面临一场令人激动的革命,以智能化的永磁真空断路器为代表、将这三者有机的整合,使开关设备的性能达到了前所末有的高度永磁机构结构图:我们的单稳态永磁机构主要由动铁心、定铁心、钕铁硼稀土永久磁铁、工作线圈、驱动轴五部分组成配用单稳态永磁机构断路器的总体配置方案示意图双稳永磁机构态结构示意图主要由动铁心、定铁心、钕铁硼稀土永久磁铁、合闸线圈、分闸线圈、驱动轴6部分组成驱动轴合闸线永久磁铁动铁芯定铁芯分闸线配用双稳态永磁机构断路器的总体配置方案示意图单稳态永磁机构断路器的工作原理:合闸:•磁场产生的驱动力F磁= B2S/2μ•合闸阻力:分闸簧F分簧=F分簧,在主回路闭合后+F超程簧(=k2X)•合闸运动条件:F 磁>F 分簧•运动方程 F 磁-F 分簧 -(F 超程簧) =ma •机构闭合后F 磁= B 2S/2μ >F 分簧 +F 超程簧控制器控制外部电路向线圈提供驱动电流,线圈电流产生的磁场与永久磁铁产生的磁场方向一致,相互叠加,随着线圈驱动电流的不断增大,磁场产生的驱动力F=0221 S B 逐渐变大。
当驱动力大于断路器提供的分闸保持力时,动铁心按照牛顿定律: F=ma 向合闸方向运动,并且驱动力随着磁隙的减小而急剧增大,该特点与断路器的机械特性完全吻合,最终将动铁心推到合闸位置。
此时切断线圈电源。
由于铁磁回路已经闭合,磁阻非常小,永磁驱动的磁场力已足以克服断路器的合闸保持力,无须线圈电流的磁场而完成合闸的锁扣过程。
永磁机构之前的操作机构依靠机械闭锁,半轴处的材料与扣接量对性能影响很大,目前尚无满意的解决方案。
材质硬;耐磨、易碎,材质软;不易碎、不耐磨,两方面的缺陷部分,都会造成扣接失败,尤其在35KV 的断路器,因为驱动力大、速度高,及操作频繁的场合,机构的可靠性已经使得用户苦不堪言。
永磁操作机构

一、概述随着电力法的贯彻实施,更要求供电部门提供安全、经济、可靠和高质量的电力。
对于中压电力系统的保护核心--真空断路器而言,除真空灭弧室开断的高可靠性外,更需要操作机构的高可靠性。
而现在普遍使用的弹簧机构,由于零件较多,在实际应用中,每合分一千次或是运行较短时间就得检修,很难达到免维护,且有70.3%的故障来自它,大大的影响了供电可靠性。
这就有必要发展新的操作机构,永磁机构就应运而生了。
永磁机构的性能能与真空断路器很好配合,而且其零部件少、结构简单、可靠性高、寿命长(机械寿命长达10万次)、免维护、可用电子软件控制,因而其前景非常广阔。
永磁机构按照在分闸操作时的不同,可分为单稳态永磁机构和双稳态永磁机构;按线圈的使用数目的不同,分为双线圈永磁机构和单线圈永磁机构;按外形结构的不同,可分为方形永磁机构、圆形永磁机构和半方半圆形永磁机构。
二、永磁机构的参数三、永磁机构的结构与工作原理:1.永磁机构的结构一般来讲,永磁机构主要由以下零件组成:图1所示为双稳态永磁机构,图2为单稳态永磁机构。
图1:双稳态永磁机构图2:单稳态永磁机构1-静铁心2-动铁心3-合闸线圈1-静铁心2-动铁心3-操作线圈4-分闸线圈5、6-永磁体7-驱动杆4-永磁体5-驱动杆2.双稳态永磁机构原理如图1所示,当永磁机构处于合闸位置时,在分闸线圈中通以直流电流,该电流所产生的磁场使动铁心所受的吸力减小,当此电流增大到一定值时,动铁心所受的吸力之和小于动铁心上的机械负载,此时动铁心向下运动。
动铁心向下运动过程中,上端的磁阻增大,下端的磁阻减小。
静铁心的上磁极对动铁心的吸力减小,下磁极对动铁心的吸力增大。
动铁心向下的合力增大,使动铁心加速向下运动。
这一过程一直持续到分闸动作结束为止。
此时,永磁机构在永磁体磁力的作用下,一直保持在分闸位置。
合闸过程与分闸过程正好相反:在合闸线圈中通电,线圈电流在下部间隙中产生反磁场,动铁心上受到的总吸力减小,当吸力小于动铁心上的机械负荷时动铁心向上运动,最后达到合闸位置,合闸过程结束。
永磁机构原理介绍

永磁机构原理与性能随着电力系统的技术发展及智能化进程,用户对开关提出了更高的要求,作为开关心脏的真空灭弧室、作为开关动力来源脉的操作机构、作为智能化开关大脑的控制器的长足进步,必将使开关面临一场令人激动的革命,以智能化的永磁真空断路器为代表、将这三者有机的整合,使开关设备的性能达到了前所末有的高度永磁机构结构图:我们的单稳态永磁机构主要由动铁心、定铁心、钕铁硼稀土永久磁铁、工作线圈、驱动轴五部分组成双稳永磁机构态结构示意图主要由动铁心、定铁心、钕铁硼稀土永久磁铁、合闸线圈、分闸线圈、驱动轴6部分组成驱动轴合闸线永久磁铁动铁芯定铁芯分闸线单稳态永磁机构断路器的工作原理:合闸:•磁场产生的驱动力F磁= B2S/2μ•合闸阻力:分闸簧F分簧=F分簧,在主回路闭合后+F超程簧(=k2X)•合闸运动条件:F磁>F分簧•运动方程 F 磁-F 分簧 -(F 超程簧) =ma •机构闭合后F 磁= B 2S/2μ >F 分簧 +F 超程簧控制器控制外部电路向线圈提供驱动电流,线圈电流产生的磁场与永久磁铁产生的磁场方向一致,相互叠加,随着线圈驱动电流的不断增大,磁场产生的驱动力F=0221 S B 逐渐变大。
当驱动力大于断路器提供的分闸保持力时,动铁心按照牛顿定律: F=ma 向合闸方向运动,并且驱动力随着磁隙的减小而急剧增大,该特点与断路器的机械特性完全吻合,最终将动铁心推到合闸位置。
此时切断线圈电源。
由于铁磁回路已经闭合,磁阻非常小,永磁驱动的磁场力已足以克服断路器的合闸保持力,无须线圈电流的磁场而完成合闸的锁扣过程。
永磁机构之前的操作机构依靠机械闭锁,半轴处的材料与扣接量对性能影响很大,目前尚无满意的解决方案。
材质硬;耐磨、易碎,材质软;不易碎、不耐磨,两方面的缺陷部分,都会造成扣接失败,尤其在35KV 的断路器,因为驱动力大、速度高,及操作频繁的场合,机构的可靠性已经使得用户苦不堪言。
由永磁机构原理图显而易见,永磁机构通过平面磁力吸合,从原理上彻底消除了该类问题,大幅度提高了机构的寿命。
轴向永磁电机及其研究发展综述

轴向永磁电机及其研究发展综述一、本文概述随着科技的不断进步和工业的快速发展,电机作为转换电能为机械能的装置,其性能与效率的提升一直是工业界和学术界关注的焦点。
轴向永磁电机(Axial Flux Permanent Magnet Machines,AFPM)作为一种新型的电机结构,其独特的设计和优异的性能使其在众多应用领域展现出广阔的前景。
本文旨在对轴向永磁电机及其研究发展进行综述,以期为相关领域的研究人员和实践者提供有益的参考和启示。
本文将简要介绍轴向永磁电机的基本结构和工作原理,帮助读者理解其独特的设计特点和优势。
本文将重点回顾轴向永磁电机的发展历程,分析其在不同阶段的技术进步和创新点。
接着,本文将探讨轴向永磁电机在不同应用领域中的实际应用情况,包括但不限于电动汽车、风力发电、工业自动化等领域。
本文还将对轴向永磁电机的性能评估与优化方法进行讨论,分析现有研究在提高效率、降低损耗、增强可靠性等方面的主要成果和挑战。
本文将展望轴向永磁电机未来的研究和发展趋势,探讨其在新材料、新工艺、新控制策略等方面的创新潜力,以期推动轴向永磁电机技术的不断进步和应用拓展。
通过本文的综述,希望能为轴向永磁电机的进一步研究和发展提供有益的借鉴和指导。
二、轴向永磁电机的基本原理与结构轴向永磁电机(Axial Flux Permanent Magnet Synchronous Motor, AFPMSM)是一种新型的电机设计,其特点在于磁通路径沿轴向分布,与传统径向磁通电机相比,具有更高的功率密度和效率。
其基本原理和结构如下所述。
轴向永磁电机的基本原理基于电磁感应和永磁体的磁化效应。
电机中的永磁体产生恒定的磁场,当电机通电时,电流在电机绕组中流动,产生电磁场。
这个电磁场与永磁体产生的磁场相互作用,产生转矩,从而驱动电机的旋转。
在轴向永磁电机中,磁场的方向沿轴向,因此电机的转矩也是沿轴向的。
(1)轴向磁路设计:电机采用轴向磁路设计,即磁通从电机的一端穿过电机内部到达另一端。
永磁同步电机文献综述

永磁同步电机文献综述永磁同步电机失磁故障诊断综述1.引言永磁同步电机由于其结构简单、运行可靠、损耗少、功率密度高、电机的形状和尺寸可以灵活多样等显著优点,应用范围极为广泛,遍及航空航天、国防、工农业和产和日常生活的各个领域。
目前,永磁电机的应用领域仍在不断的拓展,风力发电、电动汽车等新能源领域也在大量使用永磁电机。
因此,为了确保像电动汽车这样的应用系统以及其它对可靠性要求更高的应用领域的安全性,必须重视永磁同步电动机运行的可靠性和稳定性。
嵌入电机内的永磁体是永磁同步电机重要的结构部件,它的磁性能直接影响永磁同步电机的效率、性能和可靠性。
在温度、电枢反应及机械振动等因素影响下,嵌入电机内的永磁体可能会产生不可逆失磁,使电机性能急剧下降,甚至有可能导致电机停转,对于像电动汽车这样的应用系统,永磁电机的突然失磁是非常危险的。
因此,分析永磁同步电机的永磁体磁性能及失磁故障,对电机安全高效运行具有十分重要的意义[1][2]。
2.国内外研究现状近年来,国内外对永磁材料的失磁机理和永磁同步电机的失磁故障进行了广泛的研究。
文献[3]对稀土永磁材料的交流失磁现象进行研究,总结出稀土永磁材料表面磁感应强度在不同频率的交变磁场作用下随时间的变化规律。
文献[4]针对稀土永磁同步电机在运行一段时间后性能下降这一现象,分析了引起电机失磁的原因,提出了在检修和运行中避免失磁的一些有效方法。
文献[5]提出了一种基于卡尔曼滤波器的永磁同步电机永磁体磁场状况在线监测方法。
文献[6][7]中通过建立参数模型或有限元模型来研究电机的失磁故障,提出了一些对永磁同步电机失磁故障的监测方法。
文献[10]对失磁故障原因进行了全面的分析,提出了离线和在线检测方法。
基于永磁体磁场状况的动态监测,可防止永磁电机失磁状况的恶化,降低不可逆失磁程度。
文献[13]提出一种改进的反电势法,可用于永磁体磁链估计。
3.永磁同步电机失磁的发生任何磁性材料都存在材料自身的磁性能稳定问题。
断路器永磁机构特点及原理

断路器永磁机构特点及原理(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除断路器永磁机构特点及原理摘要:断路器,作为电力系统中重要的控制、保护设备。
需要借助操动机构来可靠地完成断路器的分合闸操作。
近年来出现了一种新型的操作机构—永磁机构。
它采用了一种全新的工作原理和结构,相对传统的操动机构来说,具有更高的可靠性,因此备受关注。
关键词:断路器;永磁机构引言为了保证电力系统的安全运行,作为控制、保护元件的断路器必须能切断额定电流,开断关合短路电流,开合各种空载和负荷电路。
为了完成这些任务,断路器必须能及时可靠地分合动静触头,这要借助于操作机构来完成。
因此,操作机构的工作性能和质量优劣,直接决定了断路器的工作性能和可靠性。
近年来,伴随着电力电子技术的发展,出现了一种新型的操作机构—永磁机构。
它采用了一种全新的工作原理和结构,工作时主要运动部件只有一个,具有较高的可靠性,因此备受关注。
1 永磁机构的构成传统的操作机构有电磁操作机构和弹簧操作机构。
电磁操作机构结构较简单,但结构笨重,合闸线圈消耗功率很大。
弹簧操作机构由弹簧储能、合闸、保持合闸和分闸几个部分组成。
优点是不需要大功率的电源,缺点是结构复杂,制造工艺复杂,成本高,可靠性较难保证。
在借鉴了以上两种操作机构的优缺点的基础上,永磁机构进行了改进设计。
设计中使真空断路器分合闸位置的保持通过永久磁铁实现,取代了传统的机械锁扣装置。
这种磁力机构主要由永久磁铁和分闸、合闸控制线圈组成,当合闸控制线圈通电后,它使动铁心向下运动,并由永久磁铁保持在合闸位置;当分闸控制线圈通电,动铁心向反方向运动,同样由永久磁铁将它保待在另一个工作位置即分闸位置上,也就是说,该机构在控制线圈不通电流时它的动铁心有两个稳定工作状态,(合闸和分闸)。
也称双稳态电磁机构[1]。
永磁操动机构作为替代传统操动机构的一种新型机构,构成单元非常简单。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永磁操动机构专利技术综述
【摘要】永磁操动机构因为零部件数量少、高可靠性、出力特性与真空断路器反力特性配合良好等优点,受到了世界各国的普遍关注。
本文主要从专利文献的视角对永磁操动机构技术的发展进行简要分析。
【关键词】永磁操动机构稳态线圈发展路线
一、前言
永磁操作机构工作时运动部件少,无需机械脱扣、锁扣装置,故障源少,具有较高可靠性。
本文即从专利文献角度对国内外永磁操动机构的发展进行了简要介绍。
二、永磁操动机构概况
永磁操动机构将电磁线圈和永久磁铁合理的结合在一起,由永久磁铁实现机构终端位置的保持,由电磁线圈提供操动能量,与永久磁铁一起实现断路器的分合闸操作,从而实现了传统断路器操动机构的全部功能。
1、永磁操动机构从结构上大体可分为三种:双线圈式永磁机构,单线圈式永磁机构和分离磁路式永磁机构。
双线圈式永磁机构是采用永久磁铁使真空断路器分别保持在分闸和合闸的极限位置上,使用一个激励线圈将机构的铁芯从分闸位_置推动到合闸位置,使用另一激励线圈将机构的铁芯从合闸位置推动到分闸位置。
单线圈式永磁机构也是采用永久磁铁使真空断路器分别保持在分闸和合闸极限位置上,但分合闸共用一个激励线圈。
2、永磁机构按原理分为单稳态和双稳态两种。
双线圈式永磁机构优点:一为在进行合闸时,不需给分闸提供能量;二为在合闸位置时,永久磁铁只需提供克服触头弹簧的力,而不包括分闸弹簧的力。
单线圈式永磁机构优点:一为分闸时靠分闸弹簧和触头弹簧释放的能量动作;
二为分合闸共用一个操作线圈,结构较简单,体积较小,更适合户外封闭式箱体内安装。
分离磁路式永磁机构的优点:一为两个激磁线圈和永磁体有各白的磁路,有利于分别对各个磁路进行结构优化;二为能用较少的永磁材料提供较大的合闸保持力。
三、国内外永磁操动机构发展概况
3.1 永磁操动机构国外发展线路
永磁操动技术在国外真正的兴起于上世纪90年代,它采用新的工作原理,工作时的运动部件只有一个,与弹簧机构比较,零件大幅度减少,是操动机构上的一次革命。
1976年MITSUBISHI FJIECTRIC CORP公司申请了第一个通过永磁铁、线圈和弹簧来控制真空断路器的分合闸状态的专利(申请号为JP昭5l-1026A)申请,其提出一种简化的真空断路器操作机构,通过将绝缘杆连接于弹簧,经过连杆机构连接于电磁控制机构,其中通过一个激励线圈将机构的铁芯从合闸位置推动到分闸位置以控制真空断路器的分闸操作,通过另一激励线圈将机构的铁芯从分闸位置推动到合闸位置以控制真空断路器的合闸操作,并通过弹簧提供断路器在分闸位置的保持力,该操作机构应该是永磁操动机构的雏形。
事实上,国外永磁操作机构的研究开始于20世纪80年代末,1992年前后,永磁机构技术开始在英国工业应用。
1995年Whipp&Bourne公司进一步改进了结构,并于1995年11月提交发明专利申请(申请号为GB9523440),该篇申请其提出了通过永久磁铁组产生的力克服弹簧力以移动柱塞实现合闸操作,而且分合闸共用一个线圈,并通过弹簧力保持,
3.2 永磁操动机构国内发展线路
据统汁最早的是沈阳工业大学于2001年申请了关于永磁操动机构的第一个专利申请(申请号为CN01250948),提出了一种永磁加弹簧的新型结构的操作机构,可实现合闸时永磁保持,不需机械锁扣,分闸时采用弹簧驱动,具有较高初始加速度的特点,并且可实现选相分闸操作。
西安交通大学于2003年提出了关于非对称式双线圈永磁式探动机构的专利申请
(专利申请号为CN200310105896),解决了真空断路器的永磁机构在分闸、合闸位置的保持力不能与实际要求相匹配的问题。
沈阳工业大学于2010年申请了关于三稳态永磁操动机构的专利申请(专利申请号为CN201010566455),属技术的革新。
其结构主要由驱动杆、永久磁铁、主电源合闸线圈、备用电源合闸线圈、主电源辅助分闸线圈、备用电源辅助分闸线圈、动铁心、三稳维持弹簧和导磁块组成。
四、结语
本文分析了国内外永磁操动机构的概况,国外该技术领域的技术成熟度要高于国内,就国内发展来说,要绕开国外公司的专利壁垒,开辟新的途径是比较困难的。
虽然国内一些企业和科研院校已将永磁操动机构作为研制和开发的重点,但要取得突出的进展还需投入更多精力。
感谢您的阅读!。