土工织物补强软基的整体稳定性计算

合集下载

第四章路基稳定性分析计算(路基工程)

第四章路基稳定性分析计算(路基工程)

第四章路基稳定性分析计算(路基工程)路基工程第四章路基稳定性分析计算4.1边坡稳定性分析原理4.2直线滑动面的边坡稳定性分析4.3曲线滑动面的边坡稳定性分析4.4软土地基的路基稳定性分析4.5浸水路堤的稳定性分析4.6路基边坡抗震稳定性分析一、边坡稳定原理:力学计算基本方法是分析失稳滑动体沿滑动面上的下滑力T与抗滑力R,按静力平衡原理,取两者之比值为稳定系数K,即K=R T1、假设空间问题—>平面问题(1)通常按平面问题来处理(2)松散的砂性土和砾(石)土在边坡稳定分析时可采用直线破裂法。

(3)粘性土在边坡稳定分析时可采用圆弧破裂面法。

一、边坡稳定原理:一般情况下,对于边坡不高的路基(不超过8.0的土质边坡,不超过12.0m的石质边坡),可按一般路基设计,采用规定的边坡值,不做稳定性分析;地质与水文条件复杂,高填深挖或特殊需要的路基,应进行边坡稳定性分析计算,据此选定合理的边坡及相应的工程技术。

一、边坡稳定原理:边坡稳定分析时,大多采用近似的方法,并假设:(1)不考虑滑动土体本身内应力的分布。

(2)认为平衡状态只在滑动面上达到,滑动土体整体下滑。

(3)极限滑动面位置需要通过试算来确定。

二、边坡稳定性分析的计算参数:(一)土的计算参数:1、对于路堑或天然边坡取:原状土的容重γ,内摩擦角和粘聚力2、对于路堤边坡,应取与现场压实度一致的压实土的试验数据3、边坡由多层土体所构成时(取平均值)c = i=1n c i ?ii=1n ?itanφ= i=1n ?i tgφii=1n ?iγ= i=1n γi ?ii=1n ?i第一节边坡稳定性分析原理二、边坡稳定性分析的计算参数:(二)边坡稳定性分析边坡的取值:对于折线形、阶梯形边坡:取平均值。

(三)汽车荷载当量换算:边坡稳定分析时,需要将车辆按最不利情况排列,并将车辆的设计荷载换算成当量土柱高,以?0表示:0=NQγBL式中:N—横向分布的车辆数(为车道数);Q—每辆重车的重力,kN (标准车辆荷载为550kN);L—汽车前后轴的总距;B—横向分布车辆轮胎最外缘之间的距离;B=Nb+(N-1)m+d式中:b—后轮轮距,取1.8m;m—相邻两辆车后轮的中心间距,取1.3m;d—轮胎着地宽度,取0.6m;三、边坡稳定性分析方法:一般情况,土质边坡的设计,先按力学分析法进行验算,再以工程地质法予以校核,岩石或碎石土类边坡则主要采用工程地质法,有条件时可以力学分析进行校核。

浅谈软基路堤填筑稳定性分析与评价方法

浅谈软基路堤填筑稳定性分析与评价方法

浅谈软基路堤填筑稳定性分析与评价方法发表时间:2018-06-04T15:35:53.613Z 来源:《基层建设》2018年第9期作者:李建文[导读] 摘要:从软土地基路堤填筑的实际出发,提出有效应力路径法、有效固结应力验算法、侧向位移法等三种路堤填筑稳定性评价方法,对于保证软基路堤填筑既安全又经济的施工具有重要的指导作用。

潮州市交通运输工程质量监督站广东潮州 521000摘要:从软土地基路堤填筑的实际出发,提出有效应力路径法、有效固结应力验算法、侧向位移法等三种路堤填筑稳定性评价方法,对于保证软基路堤填筑既安全又经济的施工具有重要的指导作用。

关键词:软土地基;路堤填筑;稳定性分析与评价方法目前评价软基路堤稳定性的方法很多,理论上多采用极限平衡法,用稳定系数作为评价标准。

但是,实际的高等级道路工程中,由于滑动面的位置及其强度参数难以准确确定,使计算结果与实际情况存在较大的差别。

为了保证软基路堤既安全又经济地顺利进行施工,常采用现场观测和试验资料对软土地基的稳定性进行综合分析评价,以使结果更符合实际。

主要有以下几种:1、有效应力路径法把有效应力增长轨迹线与极限状态时的应力路线相比较,就可以判断地基中某点的稳定性。

具体步骤如下:1.1求自重应力和附加应力作用下的有效应力路径在自重应力作用下,土中某点有效应力路径坐标(p ’、q’)为:p,=(б,1+б,3)/2 (1)q,=(б,1-б,3)/2 (2)在软土地基路堤工程中,由于路堤填筑的面积相对于压缩层的厚度要大得多,故可以认为бz =б1,бx =бy =б3,于是有:(б1,+б3,)=(1+K)2бc (3)(б1,-б3,)=(1-K)2бc (4)在路堤填土荷载作用下,有效应力增量△б1,和△б3,有:△б1’=(1+k)(2бz -u) (5)△б3’=(1-k)2бz (6)地基土在自重应力和路堤填土荷载作用下,则有效应力路径方程为:p,=(1+k)(2бc +2бz-u) (7)q,=2(1-k)(бc+бz) (8)式中:k -侧压力系数,k =1-sinφ';φ'-三轴固结不排水剪的内摩擦角;бc-地基土有效自重应力;бz -路堤填土的附加应力;u-土体中超孔隙水压力。

挡土墙工程土压力计算、边坡整体稳定性计算方法

挡土墙工程土压力计算、边坡整体稳定性计算方法

附录A 土压力计算A.0.1侧向岩土压力可采用库伦土压力或郎肯土压力公式计算,侧向岩土压力分布应根据支护类型确定。

A.0.2当墙后土体倾斜时,墙后主动土压力合力用公式(A.0.2-1)计算,侧向土压力分布形式为三角形,合力作用点位置距墙底1/3H 处,计算简图见图A.0.2。

2ak a12E H K γ=(A.0.2-1){[22sin()sin()sin()sin sin ()a q K K αβαβαδααβϕδ+=+-+--]sin()sin()2sin cos cos()ϕδϕβηαϕαβϕδ++-++---(A.0.2-2)2sin cos 1sin()q q K H αβγαβ=++(A.0.2-3)2c Hηγ=(A.0.2-4)式中:ak E —主动土压力合力标准值(kN/m );a K —主动土压力系数;H —挡土墙高度(m );γ—土体重度(kN/m 3)。

;c —土的黏聚力(kPa );ϕ—土的内摩擦角(°);q —地表均布荷载标准值(kN/m 2);δ—土对挡土墙墙背的摩擦角(°),可按表A.0.2取值;β—填土表面与水平面的夹角(°);α—挡土墙墙背的倾角(°);θ—滑裂面与水平面的夹角(°)。

图A.0.2库伦土压力计算表A.0.2土对挡土墙墙背的摩擦角δ挡土墙情况摩擦角δ墙背平滑,排水不良(0~0.33)ϕ墙背粗糙,排水良好(0.33~0.50)ϕ墙背很粗糙,排水良好(0.50~0.67)ϕ墙背与填土间不可能滑动(0.67~1.00)ϕA.0.3当墙后土体水平,墙后主动土压力标准值可按公式(A.0.3)计算。

aikj j ai 12i j e h q K c γ=⎛⎫=+- ⎪⎝⎭∑(A.0.3)式中:aik e —计算点处的主动土压力标准值(kN/m 2),当aik e <0时取aik e =0;ai K —计算点处的主动土压力系数,取2o aii tan (452)K ϕ=-;i c —计算点处土的黏聚力(kN/m 2);i ϕ—计算点处土的内摩擦角(°)。

ch3 基坑土体稳定性分析

ch3 基坑土体稳定性分析

1、基坑抗流土、管涌稳定性分析
流砂、流土发生条件:
j ;
j-动水压力(渗流力);
-土的有效重度.
验算公式:


KLS j (w h hw ) /(h hw 2hd )


(h hw 2hd
(w h hw )
)

1.5~2.0
抗流土稳定性验算:(2012新规范) K f 1.4;1.5;1.6
最危险滑动面圆心的确定(费伦纽斯近似法)
O β2 A R
圆心位置由β1, β2 (查表得到)
确定
β1
=0
β
B
O β2 A
对于均质土坡, 其最危险滑动面
通过坡脚
β1 β
H 2H
B
>0
需多次试算
4.5H
E
基坑的整体稳定性验算
破坏形式:坑壁土体及围护结构整体滑移,围护结构上部向坑外 倾倒,底部向坑内移动,坑底土体隆起,坑外地面下陷。
股清幽的香味,好的树木枝叶繁茂,形成浓郁的绿荫。天高气爽,霜色洁白,泉水浅了,石底露出水面,这是山中四季的景色。意译法:太阳升起,山林里雾气开始消散,烟云聚拢,山谷又开始显得昏暗,清晨自暗而明,薄暮又自明而暗,如此暗明变化的,就是山中的朝暮。春天野花绽开并散发出阵阵幽香,夏日佳树繁茂并形成一片浓荫,秋天风高气爽,霜色洁白,冬 日水枯而石底上露,如此,就是山中的四季。【教学提示】翻译有直译与意译两种方式,直译锻炼学生用语的准确性,但可能会降低译文的美感;意译可加强译文的美感,培养学生的翻译兴趣,但可能会降低译文的准确性。因此,需两种翻译方式都做必要引导。全文直译内容见《我的积累本》。目标导学四:解读文段,把握文本内容1.赏析第一段,说说本文是如何引

软土路基上路堤的稳定性分析

软土路基上路堤的稳定性分析

软土路基上路堤的稳定性分析
路堤建设工程属于非常重要的大型土木建筑工程,其安全与稳定性十分重要。

针对软土路基上路堤的稳定性分析,这里根据路堤建设这一关键领域总结出来的几种实践措施,以期达到克服路堤因软土路基床而可能引发的突发性塌陷,保证整体工程的稳定性。

首先,大型路堤建设应注重对软土路基土的厚度和变形性的分析。

检查软土路基土质量,可使用软土路基土基础抗压及塑性参数,以保证路堤建设中软土路基保持稳定。

其次,建设浅基础,特别是在软土淤积的环境下,应注意对支撑路堤的浅基础进行稳定性分析,防止混凝土支撑结构落入软土路基。

此外,不同路堤尺寸及坡度设计应合理,这在一定程度上能抵抗坝面将因软土路基容许的位移量而发生的剪切变形破坏。

同时,在支撑弹塑性层和重力式坝面结构之间,以及坝面结构与路基土之间,应加装胶结材料,防止土仓和路基土之间的分离破坏。

最后,为了更好地保证路堤建设稳定性,可以利用抗剪措施,增加抗剪强度,采用锚杆或其他抗剪结构,使路堤具有足够的抗剪能力,以此防止裂缝及破坏。

总之,对软土路基上路堤的稳定性分析是大型路堤建设工程中不可或缺的一部分,应加强分析,科学审查,采取当地适用的有效措施,提升整体工程的稳定性。

4路基稳定性分析计算

4路基稳定性分析计算

7
第一节 概 述


根本原因: 边坡中土体内部某个面上的剪应 力达到了它的抗剪强度。 具体原因:(1)滑面上的剪应力增加; (2)滑面上的抗剪强度减小。
8
第一节 概 述
对于边坡不高的路基,例如不超过8.0m的土质边 坡,不超过12.0m的石质边坡,按一般路基设计, 采用规定的坡度值,不作稳定性分析计算。 对边坡高度超过20m的路堤,边坡形式宜用阶梯 型,边坡坡率由稳定性分析计算确定。 地质与水文条件复杂、高填深挖或特殊需要的路 基,应进行边坡稳定性的分析计算,据此选定合 理的边坡坡度及相应的工程技术措施。 合理选定岩石计算参数,如粘结力、内摩擦角 及单位体积重力。
5
第一节 概 述
(3)边坡外形:突肚形的斜坡由于重力作用,比上 陡下缓的凹形坡易于下滑;由于粘性土有粘聚力, 当土坡不高时尚可直立,但随时间和气候的变化, 也会逐渐塌落。

土坡失稳原因分析-外部原因
(1)降水或地下水的作用:持续的降雨或地下水渗 入土层中,使土中含水量增高,土中易溶盐溶解, 土质变软,强度降低;还可使土的重度增加,以 及孔隙水压力的产生,使土体作用有动、静水压 力,促使土体失稳,故设计斜坡应针对这些原因, 采用相应的排水措施。
例4-1:对于纯净的粗中砂或干燥纯净的细砂,当填料 φ=40°时,如果采用1:1.5的路基边坡,是否稳定? 解:当填料φ=40°时, 根据 tgω=0.8tgφ=0.6713得ω=35°52´。 对于1:1.5的路基边坡。 相应的边坡角θ=33°41´ 由于θ<ω,该边坡稳定。 由此类推,如φ<40°,路基边坡应相应放缓。
第四章 路基稳定性分析计算
第一节 概述 第二节 直线滑动面的边坡稳定性分析 第三节 曲线滑动面的边坡稳定性分析 第四节 软土地基的路基稳定性分析 第五节 浸水路堤的稳定性分析 第六节 路基边坡抗震稳定性分析

基坑抗隆起稳定性计算

基坑抗隆起稳定性计算

基坑抗隆起稳定性计算基坑抗隆起稳定性计算1、本问题产生的原因(1)对苏州的地质条件的认识,认为是软土。

抗隆起计算采用最下一道支撑圆弧滑动计算公式,一级、二级、三级基坑,系数按2.2、1.9、1.7采用。

(2)现有商业计算软件都根据新的规范进行了更新,采用既有的商业软件内含计算方法,计算不满足要求。

(3)苏州地质较上海地质要好,如果上海满足要求,苏州也应该可以满足要求。

2、苏州的地质1)软土的定义:软土,在我国的几种规范里面都有很相似的定义:《岩土工程名词术语标准》(GB/T50279-98):软粘土,天然含水量高,呈软塑到流塑状态,具有压缩性高、强度低等特点的粘土。

《建筑岩土工程勘察基本术语标准》(JGJ84):软土,天然含水量大、压缩性高、承载力低、软塑到流塑状态的粘性土。

《岩土工程勘察规范》(GB50021-2009):天然孔隙比大于或等于1.0,且天然含水量大于液限的细粒土应判定为软土,包括淤泥、淤泥质土、泥炭、泥炭质土等。

2)苏州的地质根据定义,目前除了2-y层属于软土以外,其他均属于一般地层。

《建筑基坑支护技术规程》中规定:4.2.5 锚拉式支挡结构和支撑式支挡结构,当坑底以下为软土时,其嵌固深度应符合下列以最下层支点为轴心的圆弧滑动稳定性要求:因此,只有当坑底以下为软土时,才采用国标规范标准计算,目前2-y 层一般在浅层,主要影响的是个别附属浅基坑。

3、抗隆起计算公式一般来说抗倾覆和抗隆起计算控制了围护结构的插入比。

然而对于多道支撑,抗倾覆多能满足要求,不作为控制因数,因此,抗隆起稳定性计算就十分关键的设计内容,控制着围护结构的插入深度。

抗隆起计算有两类,一类墙底地基极限承载力模式,此项计算一般均能满足,不作为控制因数。

另一类是墙底圆弧滑动模式。

具体计算又分绕坑底垫层圆弧滑动和绕最下一道支撑点圆弧滑动。

针对苏州的工程实践情况,可以选用以最下一道支撑为支点的圆弧滑动公式,理由如下:(1)滑动面一般发生于围护墙底面。

土坡稳定性分析计算

土坡稳定性分析计算

确定最危险滑动面圆心的方法
费伦纽斯法 泰勒分析法
费伦纽斯法
当土的内摩擦角φ=0时,土坡的最危险圆弧滑动面通过坡 脚,然后由坡角β或坡度1:n查下表可得出角β1以及β2 。过 坡脚B和坡顶C分别作与坡面和水平面夹角为β1、β2的线BD和 CD,得交点D即为最危险滑动圆弧圆心(见后图)。
土坡边坡比 1:0.58 1:1 1:1.5 1:2 1:3 1:4 1:5
费伦纽斯法
泰勒分析法
泰勒经过大量计算分析后提出:
? 当φ>3°时,滑动面为坡脚圆,其最危险 滑动面圆心的位置,可根据φ及β角值, 从后图的曲线查得θ和α值,作图求得。
? 当φ=0°,且β>53°时,滑动面也是坡脚
圆,其最危险滑动面圆心位置,同样可以
从后图的θ和α值,作图求得。
泰勒分析法
泰勒分析法
圆弧滑动面分析方法
? 整体稳定分析法:主要适用于均质简单土 坡,即土坡上下两个面是水平且坡面为平 面。
? 条分法:适用于非均质土坡、土坡外形复 杂、土坡部分在水下等情况。
瑞典条分法基本原理
条分法就是将圆弧滑 动体分成若干竖直的土条 , 计算各土条对圆弧圆心 O 的抗滑力矩与滑动力矩, 由抗滑力矩与滑动力矩之 比(稳定安全系数 )来判别 土坡的稳定性。这时需要 选择多个滑动圆心,分别 计算相应的安全系数,其 中最小的安全系数对应的 滑动面为最危险的滑动圆。
φ值越大,圆心越向外移。 计算时从 D点 向外延伸取几个试算圆心 O1,O2…,分别求得 其相应的滑动稳定安全系数 K1,K2…,绘出 K值 曲线可得到最小安全系数值 Kmin,其相应圆心 Om即为最危险滑动面的圆心。
费伦纽斯法
费伦纽斯法
实际上土坡的最危险滑动面圆心位 置有时并不一定在ED的延长线上,而可 能在其左右附近,因此圆心Om可能并不 是最危险滑动面的圆心,这时可以通过 Om点作DE线的垂线FG,在FG上取几个试 算滑动面的圆心O1′,O2′…,求得其相应 的滑动稳定安全系数K1′,K2′…,绘得K′ 值曲线,相应于K′min值的圆心O才是最危 险滑动面的圆心。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第27卷第4期 辽宁工程技术大学学报(自然科学版) 2008年8月 Vol.27 No.4 Journal of Liaoning Technical University(Natural Science) Aug. 2008

收稿日期:2007-01-02 基金项目:大连理工大学青年教师培养基金(2007)、大连理工大学海岸与近海工程国家重点实验室开放基金项目资助(2008); 香港研究资助局基金资助(HKU7171/06E) 作者简介:唐洪祥(1973-),湖北 天门人,博士,讲师,主要从事岩土力学与工程的教学科研工作,本文编校:于永江

文章编号:1008-0562(2008)04-0544-04 土工织物补强软基的整体稳定性计算 唐洪祥1,王海清1,王大国2 (1.大连理工大学 海岸与近海工程国家重点实验室, 辽宁 大连 116024; 2.大连大学 材料破坏力学数值实验研究中心, 辽宁 大连 116622) 摘 要:针对现有的应用于有加筋垫层路堤的整体稳定性计算的分条圆弧法,未能反映筋材所起的全部作用,偏于保守难以全面反映加筋效果。为了从加筋机理和计算分析两方面更合理地阐述加筋垫层的加筋效果,利用现场足尺破坏试验数据,结合边坡稳定分析的圆弧滑动条分法,分析了加筋垫层路堤的失稳破坏机制。在此基础上,指出深层滑动潜在滑弧要通过路堤的沉降中心点, 并为加筋垫层路堤的稳定性分析提出了一种合理考虑加筋垫层阻滑作用的简化实用分析方法。该方法可推广应用于工程实践。 关键词:现场足尺破坏试验;圆弧滑动条分法;加筋垫层;阻滑作用 中图分类号: 文献标识码:A Whole stability analysis method for reinforced soft foundation of

embankment with geofabric TANG Hongxiang1,WANG Haiqing1,WANG Daguo2 (1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China; 2. Research Center for Numerical Test on Material Failure, Dalian University, Dalian 116622, China) Abstract: At present, the safety coefficients are improved little with circular failure analysis method stated in the criterion for preventing deep sliding of reinforced underlying layer of embankment with geofabric, which doesn’t agree with the actual circs and doesn’t reflect the whole effects of reinforced geofabric. In order to illustrate the effects of reinforced geofabric reasonablely by the ways of reinforced mechanism and numerical analysis. Making use of the data of the full scale test, the instability and failure mechanism of the embankment with reinforced underlying layers is revealed based on the circular arc method. With this understanding, the circular sliding surface passing the maximal vertical settlement point, which is the center point of the interface between embankment and geofabric, is pointed out. Besides, an applied simplified circular failure analysis method for computing the safety factor of the embankment with reinforced underlying layers was put forward. The simplified circular failure analysis method can take the contribution of geofabric into account reasonably and be extended and applied in the engineering practice. Key words: full scale test; circular arc method; reinforced underlying layer; sliding resistance role

0 引 言 将用于土坡深层滑动的分条圆弧法,应用到有加筋垫层路堤的整体稳定性计算基本上是可以的,但它偏于保守难以全面反映加筋效果,不能反映筋材所起的全部作用[1]。这除了方法本身缺陷外,还

与土和筋材的性状及二者协调状况尚未认识清楚有关。因此,发展和完善土工织物补强软基的整体

稳定性计算方法具有重要的现实意义。 文献[2]分析了土工布提高加筋土强度的力学机理,文献[3]采用非线性有限元方法研究了土工织物加固堤防问题。有限元分析方法在一定程度上考虑了土工织物与土之间的协调作用机理,但不直观且没有统一的破坏标准,要应用于工程实际仍有很长的路要走。既进行机理分析同时又采用简单明了的极限平衡条分法,文献[4]根据现场加筋垫层路堤第4期 唐洪祥,等:土工织物补强软基的整体稳定性计算 545的实验破坏结果,在分析土工织物补强软基作用机理的基础上,提出了采用通过沉降最大值的堤基中心点的新滑弧可使路堤的稳定性分析计算更接近实际。 本文以胜利油田路堤现场足尺破坏试验为依据,在文献[4]注重滑动破坏机理分析的基础上,进一步考虑土工织物的实际效果与补强软基的实际破坏过程,将分析简化,提出了一种实用的适用于土工织物加筋软基稳定性分析的一般计算方法。

1 加筋垫层路堤破坏试验简介 胜利油田于上世纪80年代在黄河入海口海滩潮间带修筑了大量拦海路堤,但后来某些路堤因失稳坍陷筑不到挡潮高程而被迫停工。原因在于路堤地基除表层(1.0~2.0 m厚)有一定承载能力外,其下则是厚度不等(2.6~9.3 m)的软土层(淤泥质亚粘土)。路堤的失稳破坏主要与软基承载能力满足不了要求有关。为了取得必要数据检验筑堤方案具体效果,映证室内有关试验和数值计算结果,进行了现场路堤足尺破坏试验[5]。试验路堤填筑材料为

轻亚粘土,每次填土厚度为0.3 m,碾压后的干容重要达到1.55 g/cm3。同时在路堤与路基中埋设了

观测仪器,有边桩、表层沉降板、土工织物位移计、磁性分层沉降仪、孔隙水压传感器等。另外在现场进行了地质钻探及静力触探和十字板剪切试验,在室内又进行了相关试验:对土工织物沿经向与纬向取宽度为5 cm的条带进行了拉伸试验,所得拉伸力与应变的关系如图1;整个试验路堤共分四段,现仅对其中在堤底加一层土工织物的堤段进行分析。 当堤身填土修筑到3.86 m高程时,观测仪器中位于地基表层的边桩水平位移值、沉降板垂直升降值及织造土工织物应变值都已开始有了比较大的

变化。在填土修筑到4.0 m高程后,上面的那些观测仪器的测值变化均已进入急剧增长阶段,而当地基表层的水平位移和垂直升降有的已高达每日数十到上百毫米时,可以认为堤坝已进入极限平衡状态。当堤顶高程达到4.78 m时,堤坝整体发生大部分堤身连同部分地基一起向南侧滑移的整体稳定性破坏。此时地基表层的水平位移和垂直升降及织造土工织物的拉应变变化曲线也急剧上升到某个最大值后停止或开始下降。最后的沉降变形如图2。

表1 计算所用材料的抗剪强度参数 Tab.1 shear resistance parameters used in the analysis 材料类型 材料抗剪强度参数 堤身填土 D32=ϕ,

kPac0.2=

填土与土工织物界面 D30=ϕ,kPac0.5=

地基第一层轻亚粘土 D36=ϕkPac35=

地基第二层亚粘土 D0

3=ϕkPac5.123=

0510152025300123456LongitudeLatitude

图1 土工织物拉伸力与应变关系 Fig.1 relationship between tensile force and tensile strain of geofabric

图2 有一层土工织物加筋下的堤坝沉降轮廓线 Fig.2 settlement contour line of the embankment with one reinforced underlying layer of geofabric

拉伸应变 (%) 拉伸力/(104N·m-1) 1 观测仪器的位置 沉降轮廓线 计划建造的轮廓线 4.78m

2.16m 北

0.52m 0.17m

-0.68m-0.82m-0.65m

0.00m 0.18m 0.45m

5.25m 5.25m 5.25m 5.25m 5.25m 5.25m

1 2 3 4 5

6 7

相关文档
最新文档