煅烧,焙烧和烧结的区别
炭素工艺学——第三章原料的煅烧资料.

石油焦 Ⅰ 0.11 0.35 1.61 2.09 0.9 0.97 3.63 5.13 0.51 0.58 2.23 0.95 13.0 511
石油焦 Ⅱ 0.15 0.41 1.46 2.09 0.82 0.99 3.00 4.08 0.40 0.57 3.23 1.97 14.6 493
石油焦 石油焦
石油焦和沥青焦煅烧时的收缩 1—沥青焦;2—石油焦
煅烧后焦炭导电性提高。焦炭导电性的变化与其结构变化相关,它取决于 共轭π键的形成程度。煤和焦炭的导电性是碳原子网格中共轭π键体系的离域电 子的传导性的反映,它随六角网格层面的增大而增大。
无烟煤 Ⅱ 5.06 9.11
1.85 1.35 1.59 13.00 3.19 0.41 0.73 6.31 0.33 23.9 1022
热裂石油焦性质随煅烧温度的变化 1—挥发分排出量;2—电阻率;3—相对收缩;4—真密度
煅烧后焦炭氢含量发生变化,其中在1000℃~1300℃温度范围内,焦炭的 氢含量几乎减少了90%。对 大 部 分 炭 素 原 料 来 说 , 氢 含 量 降 低 到 0 . 0 5 % 的 温 度为最佳煅烧温度。
热裂焦的真密度、氢含量与煅烧温度的关系
煅烧温度,℃ 真密度,g/cm3 含氢量,% 煅烧温度,℃ 真密度,g/cm3 含氢量,%
1000
1.956
0.332
1200
2.096
0.085
1100
2.037
0.188
1300
2.136
0.031
煅烧后焦炭含硫量降低。由于高温可促进焦炭结构重排,使C—S的化学键 断裂,因此,高温煅烧是焦炭实现脱硫的最现实而有效的方法。
石油焦含硫量与煅烧温度的关系 1—鞑靼原油残渣有焦炭; 2—鞑靼石油裂化焦炭; 3—高尔基厂焦油热解焦炭; 4—戈洛茨涅斯基原油裂化焦炭
焙烧试验2

(四)投笼
投笼要分批进行,每批可相隔2小时左右,一般笼子在炉内留时间约 6~9小时,投笼后5小时就要做好收笼准备。投笼地点在炉顶装料口处。
(五)收笼
收笼地点在炉下两侧搬出机上,投笼5小时后,派专人在搬出机处值 班,每班需2~3人。值班人员对于收笼要特别注意,以避免丢失,已经 破裂的笼子亦需拣出,核对投笼和收笼数量。冬季搬出周围水汽弥漫, 观察矿笼不便,可用管引煤气点燃,以驱散水汽。 (六)试验记录 出炉的每个笼子均需贴上标签,注明出炉时间,以便检查不同焙烧 时间的焙烧矿质量。
也就是说理论上焙烧矿还原度为42.8%时 质量最佳。如R值大于42.8%,说明矿石过还 原,小于42.8%则欠还原。无论是过还原还是 欠还原,矿石的磁性均降低。 据实践得知,不同类型和不同粒度的矿 石,其最佳还原度并不一致。如对于鞍山赤 铁石英岩的焙烧,当矿石粒度为75%~10毫米 时,还原度达52%左右时选别效果较好。
在焙烧试验时,尚需注意以下事项:
1、焙烧矿样必须放在炉内高温带; 2、热电偶插放位置要恰当,不能太深,也不 能太浅; 3、经常检查瓷管,如坏了漏气,必须马上更 换; 4、如矿样含结晶水高,应先预热,去掉水份, 并使物料较疏松有利于还原。
四、实验室还原焙烧试验结果应用于工业生 产的有关问 题
1、试验室焙烧试验结果,可以说明这种铁矿石磁化焙 烧的可能性及指标,所得到的适宜焙烧条件,可供工业焙 烧炉设计参考。 2、影响磁化焙烧的因素很多,只能抓住温度和时间、 矿石粒度、热工制度等,小型试验与大型试验就有很大差 距,在试验室条件下,只能抓住温度和时间、还原剂种类 和用量这几个主要矛盾进行试验。试验室焙烧试验结束后, 必须进行扩大试验,将来生产上用什么样炉型结构,扩大试验 就在什么样炉型结构上进行。
铅锌硫化精矿的焙烧与烧结

3铅锌硫化精矿的焙烧与烧结现在世界上的铅锌冶炼厂所处理的矿物原料,90%以上是铅锌硫化精矿,其化学成分参见表1.23与1.24,处理这些精矿的目的是提取铅、锌、硫与其它有价元素。
由于这种硫化精矿中的铅与锌主要是以硫化物的形态存在,即为方铅矿(PbS)与闪锌矿(ZnS),因此要把PbS与ZnS还原得到金属,在目前的生产技术条件下很难找到一种能满足技术与经济要求的还原剂;当采用湿法炼锌时,也很难找到一种在常规浸出条件下能很好溶解ZnS并进一步顺利地从溶液中提取金属锌的溶剂。
因此,世界上大多数铅锌冶炼厂所采用的冶炼方法,是将这种硫化精矿首先进行焙烧或烧结焙烧,以转变精矿中PbS与ZnS以便下一步处理,这就是焙烧或烧结焙烧的主要目的。
在金属硫化物的氧化过程中,精矿中的硫会氧化为SO2,随烟气带走并与氧化后的金属氧化物分离。
这种含SO2的烟气可以送去生产硫酸,所以铅锌冶炼厂也是生产硫酸的化工厂。
铅锌硫化精矿在氧化焙烧过程中得到的铅锌氧化物,目前在火法冶金中都是选用炭质还原剂在高温下使PbS与ZnS还原为金属。
实现这一过程可以在各种冶金炉中进行,并且大多数铅锌冶炼厂都是采用鼓风炉进行还原熔炼。
而鼓风炉还原熔炼过程中只能处理块状物料,因此细小的硫化精矿在焙烧时应利用硫化物氧化放出的热量来升高温度,使粉状的氧化物料在高温下熔结成块;这就是在硫化物氧化过程中同时进行的烧结过程,即所谓的烧结焙烧。
因此,烧结是一个冶金过程,达到了硫化物氧化与粉状物料熔结成块两个目的。
铅锌冶炼厂为了实现硫化精矿的焙烧或烧结焙烧的目的,可以在不同的技术条件(如温度、气氛等)下与各种冶金设备(如流态化焙烧炉、烧结机等)中进行;在同等条件下及同样的设备中进行时,还可以采取不同的技术措施(如富氧鼓风、吸风与鼓风烧结等)来强化生产过程,提高产品质量,改善劳动条件与环境保护,从而获得更好的经济效益与社会效益。
3.1铅锌硫化精矿焙烧与烧结理论基础硫化铅精矿中的主要金属硫化物是方铅矿PbS,另外ZnS、FeS2、FeAsS、Sb2S3、CdS、CuFeS2、Bi2S3等。
无机非金属材料工艺学煅烧、烧成及熔化

1.4.2 无机非金属材料的热加工方法
(1)传统热加工方法 具有以下特点: ❖ 升温速度慢 ❖ 热能消耗高 ❖ 设备庞大 ❖ 环境污染严重
(2)近代热加工方法与设备 (自学)
1.4.3 硅酸盐水泥熟料的煅烧
新型干法水泥生产
以悬浮预热和窑外分解技术为核心,把现代科学技术 和工业生产成果,广泛用于水泥生产全过程,使水泥生产 具有高效、优质、低耗、符合环保要求和大型化、自动化 为特征的现代水泥生产方法,并具有现代化的水泥生产新 技术和与之相适应的现代管理方法。
1. 坯体的水分蒸发(室温-300℃)
坯体在烧成窑的预热段前部,300℃以下, 主要是排除在干燥过程中所没有除掉的残余水分 (主要是吸附水)。
入窑水分过高,易使制品开裂;另一个弊病 是使坯体表面产生“白霜”缺陷。
白霜——坯体中的水分与窑内烟气中的SO2发生 化学反应,使坯体内的钙盐在其表面生成硫酸盐。
3. 成瓷期(950℃~烧成温度)
瓷坯在氧化分解期的氧化实际是不完全的。如果在进 入还原焰操作之前,以及在釉层封闭坯体之前烧不尽碳素, 这些碳素将推迟到烧成的末期或冷却的初期进行,这就有 可能引起发泡和烟熏。为此
对于烧成温度为1300℃左右的坯体,在 950-1020℃采取氧化保温措施来补救。
氧化保温 氧化保温的温度范围 保温时间
C2S吸收CaO形成C3S。
熟
反应式: C2S+ CaO→ C3S 随着温度的升高和时间延长,液相量增加,液相粘
料 烧 结
度
降低, C2S、CaO不断溶解、扩散, C3S晶核不断形成, 并
逐渐发育、长大,形成几十微米大小、发育良好的阿利特
影响熟料烧结
C3S形成条件:
过程的因素
焙烧

对矿物原料进行预处理的目的就是要消除或减少上述因素的 影响,使目的组分能经济的、对环境友好的进行化学浸出。
矿物预处理方法主要有焙烧法、化学预处理法和生物预处理法等
焙烧法是有色金属选冶中的传统工艺,其目的是使某些矿物发生分解或转化成 其它易浸出的化合物,以便为下一步的浸出提供良好的动力学条件。化学预处 理是通过加压、加温和添加化学试剂对矿石中的有关矿物进行氧化和处理是目 的矿物暴露,以便下一步浸出操作。生物预处理是借助于微生物的代谢来氧化 某些矿物(如黄铁矿、砷黄铁矿)使包裹在其中的矿物或有价元素暴露出来供 16:29 下一步浸出。
1
2. Roasting: Basics
• Definition: 焙烧是物料在适宜的气氛和熔点以下加热,使原料中的目的 组分发生物理和化学变化的过程,它的目的在于改变物料的化学组成和物 理性质,以便于下一步处理。Namely, 使原料中的某些难溶目的矿物转变 为易于溶出的化合物;除出有机质或某些含杂质的组分的矿物转变为难于 浸出的形态;改善被浸物料的结构、构造,etc.. • 焙砂: 焙烧后的产品。 • 焙烧:为多相化学反应, 由气体的扩散和吸附-反应两个步骤来控制。 • 影响因素有:气体成分和浓度、气体的运动特性、温度以及物料的物理及 化学性质(如粒度、孔隙度、矿物组成和化学组成等)。 • 焙烧过程一般能耗高、不易控制、劳动条件差、环境污染、投资经费高。
• 研究化学动力学的目的是为了控制生产过程,为此必须研 究各种外界条件对于反应进度的影响,查明化学反应的历 程,定量地研究反应的各个步骤及总反应,从而找出提高 反应速度的有效途径。 • 由于影响反应速度的因素很复杂,除温度、压力、浓度等 条件之外,催化、杂质甚至容器的材质与形状也会显著地 改变反应的速度,加之在同一体系中常常有几种反应同时 发生而使过程的分析更为困难。 。
氧化铝生产工艺及设备选型

氧化铝生产工艺及设备选型氧化铝的生产工艺一般包括氧化铝矿石选矿、粉碎、磨矿、酸浸、沉淀、焙烧等步骤。
其中,焙烧是生产工艺中最关键的步骤之一,对产品的纯度和颗粒度有重要影响。
焙烧工艺一般有两种方法,一种是氧化铝烧结法,另一种是氢氧化铝煅烧法,它们的设备选型和工艺流程略有不同。
在氧化铝生产设备选型方面,需要考虑产品质量、生产能力和能耗等因素。
对于焙烧工艺,需要选择适合的焙烧炉和干燥设备。
常见的焙烧炉有回转窑、流化床和热风炉等,不同的焙烧炉适用于不同的生产规模和产品要求。
此外,还需要配备氧化铝成型设备,如压片机和干燥机等,以及粉碎设备和分级设备等。
在选择氧化铝生产设备时,还需要充分考虑设备的稳定性、安全性和维护便捷性。
此外,还需要根据生产规模和产品需求确定设备的型号和数量,确保生产线的平稳运行。
总之,氧化铝的生产工艺及设备选型对产品质量和生产效率有重要影响,需要综合考虑原材料、工艺流程和设备选择等因素,确保生产线的稳定运行和产品的优质生产。
很好。
让我们继续讨论氧化铝生产工艺及设备选型的相关内容。
在氧化铝的生产过程中,原料的选取对产品质量和生产成本有着重要的影响。
氧化铝矿石具有不同的性质和矿物组成,而且在不同的地区可能有所不同。
因此,在生产工艺中需要对原料进行严格的选择和矿石的选矿处理。
氧化铝的煅烧工艺也是至关重要的一步。
在氧化铝生产中,通常会采用氧化铝的煅烧工艺。
这个过程中,矿石进行高温处理,将氧化铝的水和结晶水脱除,使其达到所需的纯度和颗粒度。
煅烧工艺的主要设备是煅烧炉,根据不同工艺和要求,煅烧炉的选择和使用也有所不同。
回转窑是常用的煅烧设备之一。
它采用逆流热交换的原理,将原料由一端送入,经过旋转和高温烘烤后,从另一端排出。
这种煅烧工艺能够有效地控制物料的温度和热能利用率,适用于大批量生产和对产品质量要求较高的情况。
另一种常见的煅烧设备是流化床。
流化床煅烧工艺能够提供均匀的气固两相接触和传热传质,对于细颗粒材料有较好的热平衡和均匀性,适合一些特殊的氧化铝生产工艺需求。
4-高温固相
图 氧化物的Ellingham图
由于处于下方的氧化物稳定性较大,因此当温 度低于1000 K时,△Gθ(CO2)<△Gθ (CO),C 氧化时,趋向于生成CO2,反应的熵变虽然 是正值(3.3×10-3 kJ·K-1·mol-1), 但很小, 熵效 应项与反应焓变的-393.5 kJ·mol-1相比是微不 足道的, 故△Gθ(CO2)随温度的改变甚微, 仅 略向下倾斜, 几乎成一水平线。当温度高于 1000 K 时 , C 倾 向 于 生 成 CO 。 因 为 此 时 △Gθ(CO)<△Gθ(CO2), 且反应熵变为较大的 正值(179×10-3 kJ·K-1·mol-1), 斜率随温度升高 而急剧向下倾斜。即温度升高, C氧化生成 CO的反应的△Gθ减少得愈多,以致C在高温 下还原大多数金属氧化物成了可能。
高温固相合成
• 一般固相反应是将两种或多种原料混合并以固态 形式直接反应;但是在室温或较低温度下它们并 不相互反应,为了加快反应,必须将它们加热到 高温。
• 高温固相合成是指在高温(600~1500 ℃)下,固 体界面间经过接触,反应,成核,晶体生长反应 而生成一大批复合氧化物,含氧酸盐类、二元或 多元陶瓷化合物等。
图 氧化物的Ellingham图
可以排列出常见还原剂如在 1073 K时的相对强弱次序:
Ca>Mg>A1>Ti>Si>Zn>Fe……(左图)
同理, 常见氧化剂在1073 K的强弱次序:
Ag2O>CuO> FeO> ZnO>SiO2>TiO2…… (左图)
图 氧化物的Ellingham图
④ 对大多数金属氧化物的生成来说 ,如2M(s)+O2(g) 2MO (s),由于 消耗氧气的反应是熵减少的反应, 因而直线有正的斜率,但对反应 2C(s)+O2(g) 2CO(g)来说, 气体分 子数增加, 是熵增的反应,故 C→CO 线 有 负 的 斜 率 。 这 样 , C→CO线将与许多金属-金属氧化 物线会在某一温度时相交。
焙烧名词解释
焙烧名词解释嘿,朋友们!今天咱来唠唠“焙烧”这个词儿。
你说啥是焙烧呢?咱就打个比方哈,就好比你烤面包。
把面团放进烤箱里,用合适的温度让它发生变化,变得香喷喷、金灿灿的。
这焙烧啊,其实也差不多是这么个事儿,只不过不是烤面包,而是对各种材料进行处理呢。
想象一下,那些矿石啊、化学物质啥的,被放在特定的环境里,就像面包在烤箱中一样。
经过一番“烤验”,它们就会发生奇妙的变化。
有的可能会去掉一些不需要的杂质,变得更纯净;有的呢,可能会产生新的性质,就像人经过磨练变得更厉害一样。
焙烧可不是随随便便就能搞好的哟!就跟烤面包要掌握好火候一样,温度高了可能就烤糊了,温度低了又达不到效果。
在焙烧的时候,那条件可得把握得死死的。
时间啦、温度啦、气氛啦,都得恰到好处,不然可就出不了好结果。
咱再想想,要是焙烧没弄好,那会咋样?那不就跟烤面包烤砸了一样嘛!该去掉的杂质没去掉,或者把好好的材料给弄坏了,这可不行呀!所以说啊,搞焙烧的人可得有真本事,要像个经验丰富的大厨一样,能精准地掌控一切。
你说这焙烧在生活中重要不?那当然重要啦!没有它,咱好多东西都弄不出来呢。
那些漂亮的金属制品、好用的化学材料,好多都是经过焙烧这一关才诞生的呀。
它就像一个幕后英雄,虽然咱平时不太注意到它,但它的作用可大着呢!咱平时看到的好多东西,说不定都和焙烧有着千丝万缕的联系呢。
你看那亮闪闪的金属饰品,也许就是经过了精心的焙烧处理才变得那么耀眼。
还有那些在工业生产中起关键作用的材料,也是焙烧的成果呀。
总之呢,焙烧可不是个简单的事儿,它需要技术、经验和耐心。
就像我们做任何事情一样,都得认真对待,才能有好的结果。
所以啊,可别小瞧了这焙烧,它可是有着大能量的呢!。
第一篇 冶金工程概论部分 第1章,第2章 4h
8
1.2 金属的分类
2.有色金属
3)贵金属 : Au Ag 铂及铂族元素
4)稀有金属 稀有轻金属:Li Be Rb Cs 稀有难熔金属:W Mo Nb Ta Zr Hf V 稀散金属: In Ge Ga Tl Se Te Re 稀土金属: Sc Y 及 La系元素 稀有放射金属:Th Pa U Ra 锕及锕系元素
28
2、提取冶金方法的分类 注 意
任何一种金属的提取都不是一步完成的,需要分为若干个 阶段进行; 一种金属的提取往往是多步冶金过程联合作用的结果; 金属的提取方法取决于金属的性质、原料的情况、最终产 品的要求等。 钢铁冶金主要采用火法,有色金属的提取往往是多种冶金 方法联合而制备的。
29
第1章 绪论
3、工艺流程图
金属的冶金过程是由若干个阶段或步骤完成的,各个阶段 的冶炼方法和使用的设备不尽相同。 各阶段过程间的联系及其所获得的产物间流动线路图称为 工艺流程图。可分为设备连接图,原则流程图和数质量流 程图。 设备连接图是表示冶炼厂主要设备之间联系的图; 原则流程图是表示各阶段作业间联系为主的图;
如石灰石煅烧为石灰;氢氧化铝煅烧成氧化铝,作 电解铝原料。
16
第1章 绪论
2、提取冶金方法的分类 主要火法冶金单元过程:
烧结和球团:将粉矿或精矿经加热焙烧,固结成多孔状 或球状的物料,以适应下一工序熔炼的要求。 如鼓风炉熔炼,高炉炼铁,氧气底吹炼铅的物料准备。 熔炼:是指将处理好的矿石、精矿或其他原料,在高温 下通过氧化还原反应,使矿物原料中有色金属组分与脉 石和杂质分离为两个液相层即金属(或金属锍)液和熔 渣的过程,也叫冶炼。 分为:还原熔炼、造锍熔炼、氧化吹炼
Ti
1668 4.51VΒιβλιοθήκη 1900 6.1Cr
有色金属冶金常用方法总结
有色金属冶金常用方法总结有色金属冶金常用方法总结00制取有色金属的方法有火法冶金、湿法冶金、电冶金。
一、火法冶金火法冶金就是在利用燃料燃烧或电能产生的热或某些化学反应所放出的热的高温条件下,将矿石或精矿经受一系列的物理化学变化过程,使其中的金属与脉石或其他杂质分离,而得到金属的冶金方法。
简言之,所有在高温下进行的冶金过程都属于火法冶金。
它包括矿石准备、冶炼、精炼三个步骤。
(一)矿石准备矿石准备一般包括选矿、烧结或焙烧。
选矿是对采出的矿石采用物理或化学方法将矿物原料中的有用矿物和无用矿物或有害矿物分开,或将多种有用矿物分离开的工艺过程。
选出的精矿作为加工或冶炼的原料。
选矿方法又有重选、浮选、磁选、电选、拣选、化学选等。
烧结是将粉矿同燃料或熔剂均匀混合,经过布料器铺到带式烧结机的台车或盘式烧结机的烧结盘上,然后在1250~1300℃的温度下进行点火烧成块矿。
生产烧结矿的烧结方法主要分抽风烧结和鼓风烧结两种。
焙烧是将矿石、精矿或金属化合物在空气中不加或配加一定的物料(如炭粉、氯化剂等),加热到低于炉料的熔点,发生氧化、还原或其他化学变化的过程。
焙烧方法有氧化焙烧、硫酸化焙烧、挥发焙烧、氯化焙烧、氯化离析焙烧、还原焙烧、氧化钠化焙烧、煅烧。
上述各种焙烧以所用设备的不同又有流态化焙烧、固定床焙烧、移动床焙烧和旋风焙烧等。
(二)冶炼冶炼实际上是采用熔炼、还原和蒸馏等方法进行金属提取或富集的过程。
火法冶炼过程中一般形成两种熔体:一种是由脉石、熔剂及燃料灰分融合而成的炉渣;另一种是熔锍或含有少量杂质的金属液。
冶炼一般分为还原冶炼、造锍冶炼、氧化吹炼。
还原冶炼是在高温熔炼炉内的还原气氛下进行。
加入此炉料有富矿或烧结块或球团矿,造渣用的熔剂石灰石或石英石,发热剂焦炭产生高温,也作还原剂,还原氧化铜为粗铜,或还原氧化铅为粗铅。
造锍冶炼是主要用于处理硫化铜或硫化镍矿,一般在反射炉、矿热电炉或鼓风炉内进行。
加人酸性石英石熔剂与氧生成的氧化亚铁和脉石造渣,熔渣之下形成一层含主金属的熔锍,使被制取的金属在熔锍中得到富集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焙烧焙烧与煅烧是两种常用的化工单元工艺。
焙烧是将矿石、精矿在空气、氯气、氢气、甲烷和氧化碳等气流中不加或配加一定的物料,加热至低于炉料的熔点,发生氧化、还原或其他化学变化的单元过程,常用于无机盐工业的原料处理中,其目的是改变物料的化学组成与物理性质,便于下一步处理或制取原料气。
煅烧是在低于熔点的适当温度下,加热物料,使其分解,并除去所含结晶水、二氧化碳或三氧化硫等挥发性物质的过程。
两者的共同点是都在低于炉料熔点的高温下进行,不同点前者是原料与空气、氯气等气体以及添加剂发生化学反应,后者是物料发生分解反应,失去结晶水或挥发组分。
烧结也是一种化工单元工艺。
烧结与焙烧不同,焙烧在低于固相炉料的熔点下进行反应,而烧结需在高于炉内物料的熔点下进行反应。
烧结也与煅烧不同,煅烧是固相物料在高温下的分解过程,而烧结是物料配加还原剂、助熔剂的化学转化过程。
烧结、焙烧、煅烧虽然都是高温反应过程,但烧结是在物料熔融状态下的化学转化,这是它与焙烧、煅烧的不同之处。
焙烧1. 焙烧的分类与工业应用矿石、精矿在低于熔点的高温下,与空气、氯气、氢气等气体或添加剂起反应,改变其化学组成与物理性质的过程称为焙烧。
在无机盐工业中它是矿石处理或产品加工的一种重要方法。
焙烧过程根据反应性质可分为以下六类,每类都有许多实际工业应用。
(1) 氧化焙烧硫化精矿在低于其熔点的温度下氧化,使矿石中部分或全部的金属硫化物变为氧化物,同时除去易于挥发的砷、锑、硒、碲等杂质。
硫酸生产中硫铁矿的焙烧是最典型的应用实例。
硫化铜、硫化锌矿的火法冶炼也用氧化焙烧。
硫铁矿(FeS2)焙烧的反应式为:4FeS2+11O2=2Fe2O3+8SO2↑3FeS2+8O2=Fe3O4+6SO2↑生成的SO2就是硫酸生产的原料,而矿渣中Fe2O3与Fe3O4都存在,到底那一个比例大,要视焙烧时空气过剩量和炉温等因素而定。
一般工厂,空气过剩系数大,含Fe2O3较多;若温度高,空气过剩系数较小,渣成黑色,且残硫高,渣中Fe3O4多。
焙烧过程中,矿中所含铝、镁、钙、钡的硫酸盐不分解,而砷、硒等杂质转入气相。
硫化铜(CuS)精矿的焙烧分半氧化焙烧和全氧化焙烧两种,分别除去精矿中部分或全部硫,同时除去部分砷、锑等易挥发杂质。
过程为放热反应,通常无需另加燃料。
半氧化焙烧用以提高铜的品位,保持形成冰铜所需硫量;全氧化焙烧用于还原熔炼,得到氧化铜。
焙烧多用流态化沸腾焙烧炉。
锌精矿中的硫化锌(ZnS)转变为可溶于稀硫酸的氧化锌也用氧化焙烧,温度850~900℃,空气过剩系数1.1~1.2,焙烧后产物中90%以上为可溶于稀硫酸的氧化锌,只有极少量不溶于稀酸的铁酸锌(ZnO·Fe2O3)和硫化锌。
氧化焙烧是钼矿化学加工的主要方法,辉钼矿(MoS2)含钼量大于45%,被粉碎至60~80目,在焙烧炉中于500~550℃下氧化焙烧,生成三氧化钼。
三氧化钼是中间产品,可生成多种钼化合物与钼酸盐。
有时,氧化焙烧过程中除加空气外,还加添加剂,矿物与氧气、添加剂共同作用。
如铬铁矿化学加工的第一步是纯碱氧化焙烧,工业上广泛采用。
原料铬铁矿(要求含Cr2O335%以上),在1000~1150℃下氧化焙烧为六价铬:2Cr2O3+4Na2CO3+3O2=4Na2Cr2O4+4CO2↑(2) 硫酸化焙烧使某些金属硫化物氧化成为易溶于水的硫酸盐的焙烧过程,主要反应有2MeS+3O2→2MeO+2SO22MeO+ SO2+O2→MeO·MeSO4MeO·MeSO4+ SO2+O2→2MeSO4式中Me为金属。
例如一定组成下的铜的硫化物,在600℃下焙烧时,生成硫酸铜;在800℃下焙烧时,生成氧化铜。
所以控制较高的SO2气氛及较低的焙烧温度,有利于生成硫酸盐;反之,则易变为氧化物,成为氧化焙烧。
对锌的硫化矿及其精矿,用火法冶炼时,用氧化焙烧;用湿法处理时,采用硫酸化焙烧。
(3) 挥发焙烧将硫化物在空气中加热,使提取对象变为挥发性氧化物,呈气态分离出来,例如,火法炼锑中将锑矿石(含Sb2S3)在空气中加热,氧化为易挥发的Sb2O3:2Sb2S3+9O2→2Sb2O3↑+6SO2↑此反应从290℃开始,至400℃可除去全部硫。
(4) 氯化焙烧借助于氯化剂(如Cl2、HCl、NaCl、CaCl2等)的作用,使物料中某些组分转变为气态或凝聚态的氯化物,从而与其他组分分离。
金属的硫化物、氧化物或其他化合物在一定条件下大都能与化学活性很强的氯反应,生成金属氯化物。
金属氯化物与该金属的其他化合物相比,具有熔点低、挥发性高、较易被还原,常温下易溶于水及其他溶剂等特点。
并且各种金属氯化物生成的难易和性质上存在明显区别。
化工生产中,常利用上述特性,借助氯化焙烧有效实现金属的分离、富集、提取与精炼的目的。
视原料性质及下一步处理方法的不同,可分为中温氯化焙烧与高温氯化焙烧,前者是使被提取的金属氯化物在不挥发条件下进行,所产生的氯化物用水或其他溶剂浸取而与脉石分离;后者是被提取的金属氯化物在能挥发的温度下进行,所形成的氯化物呈蒸气状态挥发,与脉石分离,然后冷凝回收。
此法用于菱镁矿(MgCO3)与金红石(TiO2)的氯化,以生产镁和钛,也用于处理黄铁矿烧渣,综合回收铜、铅、锌、金、银等。
氯化离析焙烧是氯化焙烧的一种特例,在矿石中加入适量的碳质还原剂(如煤或焦炭)和氯化剂,在弱还原气氛中加热,使矿石中难选的金属成氯化物挥发,再在炭粒表面还原为金属,并附着在炭粒上,随后用选矿方法富集,制成精矿。
此法可用于某些难选或低品位的氧化矿(如氧化铜矿)。
氯化焙烧用于火法冶金具有以下优点:①对原料适应性强,可处理各种不同类型的原料;②作业温度比其他火法反应过程低;③分离效率高,综合利用好。
在高品位矿石资源日趋枯竭的情况下,对储量很大的低品位、成分复杂难选的贫矿来说,氯化焙烧将发挥更大作用。
但是氯化焙烧要解决以下两个问题:①提高氯的利用率与氯化剂的再生回收是关键问题;②设备的防腐蚀问题与环境保护问题。
在无机盐生产中,新建的钛白粉(TiO2)装置多采用氯化法。
金红石矿或钛铁矿渣与适量的石油焦混合后,加入流态化炉中,通入氯气在800~1000℃下进行氯化,其反应式为:TiO2+(1+β)C+2Cl2→TiCl4+2βCO+(1-β)CO2式中β为排出炉气中CO/(CO+ CO2)的比值。
纯TiCl4是无色透明液体,但此过程所得粗TiCl4含有杂质,将杂质分离后,可制金属Ti或TiO2。
(5) 还原焙烧将氧化矿预热至一定温度,然后用还原气体(含CO、H2、CH4等)使其中某些氧化物部分或全部还原,以利于下一步处理。
例如贫氧化镍矿预热到780~800℃,用混合煤气还原,使铁的高价化合物大部分还原为Fe3O4,少量还原为FeO及金属铁,镍与钴的氧化物还原成易溶于NH3-CO2-H2O溶液的金属镍和钴。
磁化焙烧也属于还原焙烧,其目的是将弱磁性的赤铁矿(Fe2O3)还原为强磁性的磁铁矿(Fe3O4),以便于磁选,使之与脉石分离。
无机盐生产中,重晶石(主要含BaSO4)的化学加工主要采用还原焙烧法,是生产各种钡化合物最经典、最重要、使用最广的方法。
还原焙烧所用重晶石矿的品位要高,一般含BaSO4>98%,SiO2<2%,否则将影响产品质量。
重晶石与煤粉在转炉中,于1000~1200℃的高温下,还原焙烧成硫化钡(俗称黑灰),反应式为:BaSO4+2C→BaS+2CO2经浸取分离所得的硫化钡溶液,可进而制成其他钡化合物。
亦可用氢气、甲烷、天然气代替煤粉进行还原焙烧,在悬浮炉中还原重晶石,该法可强化还原过程。
(6) 氧化钠化焙烧向矿石中加适量钠化剂(如Na2CO3、NaCl、Na2SO4等),焙烧后生成易溶于水的钠盐,例如,湿法提钒过程中,细磨钒渣,经磁选除去铁后,加钠化剂并在回转炉中焙烧,渣中的三价钒氧化成五价的偏钒酸钠:Na2CO3+V2O3+O2→2NaVO3+CO2Na2SO4+ V2O3+O2→2NaVO3+SO3NaCl + V2O3+3/2O2→2NaVO3+Cl22. 焙烧过程的物理化学基础(1) 焙烧过程热力学焙烧过程中有气体产物产生,一般为不可逆反应。
研究焙烧过程热力学主要是根据相图确定反应产物的相区。
焙烧过程中发生许多反应。
以方铅矿焙烧为例,总反应式为:2PbS+3O2→2Pb O+2SO2此为全脱硫焙烧,或完全程度的氧化焙烧。
对锌、铜、铁也能写出类似的完全焙烧反应式。
若焙烧温度较低,则形成硫酸盐:2PbS+3O2→2PbSO42PbO+2SO2→2PbSO4温度较高时,氧化物可被硫化物还原得到金属:2PbO+PbS→3Pb+ SO2可以采用控制温度和氧势(即压力)以得到所需的氧化态。
以锌精矿而言,因最后要用碳还原,故需要氧化焙烧尽可能将硫除净。
而对浸出之矿石,目的是形成尽可能的水溶性硫酸盐。
研究焙烧热力学时,还要注意气相中会生成三氧化硫:SO2+1/2O2=SO3MeSO3=MeO+SO2(Me为金属离子)在一定反应条件下,反应的产物到底是氧化物还是硫酸盐要由的优势图来判断,由相图来确定产物组成。
温度为1000K的Ni-O-S优势区域图见图4-1-01。
在总压为0.1MPa(1大气压)下,若气体组成为O23~10%,SO23~10%,则所得区域见小方形A,此时稳定的固相是NiSO4。
若气体组成为O21%,SO21%,则为B点,此时NiO是稳定的。
对于图中的点C,相应的,要求压力如此之小,在工业生产中是不可能形成的。
温度为950K时焙烧铜、钴的硫化矿能产出97%的可溶性铜与93.5%的可溶性钴。
焙烧炉气体分析为SO28%,O24%,将950℃的铜与钴优势区域图重迭于图4-1-02。
表示在工业焙烧铜钴矿石的作业点(点A)恰好在CoSO4、CuSO4区域中。
如果需要在浸取时,将铜与钴分离,焙烧条件可控制在点B,则会生成不溶于水的氧化铜与可溶的氧化钴,此分离操作也已在工业中应用。
也可用温度对平衡的影响以移动优势区域位置以便产生出所需之最终产品。
(2) 焙烧过程动力学与影响焙烧速率的因素焙烧过程是气-固相非催化过程,由于颗粒之间无微团混合,所以反应速率的考察对象是颗粒本身。
宏观反应过程包括气膜扩散(外扩散)、固膜扩散(又称产物层扩散或灰层扩散,内扩散)及在未反应芯表面上的化学反应。
目前研究宏观反应速率最常用的是收缩未反应芯(又称缩芯)模型,当颗粒大小不变或颗粒大小改变时,当反应控制、或内扩散控制或外扩散控制时,可以推导出不同的反应速率式,详见化学反应工程专著。
这类宏观反应速率式还不能得心应手地用于设计,设计工作多仍停留在经验或半经验的状态。
焙烧炉生产能力的大小,取决于焙烧反应速率,反应速率越快,在一定的残硫指标下,单位时间内焙烧的固体矿物就越完全,矿渣残硫就低。