化学平衡移动原理总结

合集下载

化学平衡的移动外界条件对反应平衡的影响

化学平衡的移动外界条件对反应平衡的影响

化学平衡的移动外界条件对反应平衡的影响化学平衡是指在封闭系统中,当化学反应达到一种稳定状态时,各种反应物和生成物的浓度保持不变。

在这个平衡状态下,反应的前进速率与反应的逆向速率相等。

然而,外界条件的变化会对反应平衡产生影响,从而改变化学平衡的位置和方向。

一、温度的影响改变温度是移动平衡的外界条件之一,温度的升高或降低会导致反应平衡的位置发生变化。

以放热反应为例,当温度升高时,平衡会向右移动(即生成物增多)以吸收多余的热量;而温度降低时,平衡会向左移动(即反应物增多)以释放多余的热量。

反之,吸热反应的情况则相反。

二、压力的影响对于气相反应而言,改变压力也会对平衡位置产生影响。

根据Le Chatelier原理,增加压力会使平衡向反应物的较少摩尔数方向移动,以减少压力;减少压力则使平衡向反应物的较多摩尔数方向移动,以增加压力。

三、浓度的影响通过改变反应物或生成物的浓度,可以移动反应平衡的位置。

增加反应物浓度会使平衡向生成物方向移动,以消耗多余的反应物;而增加生成物浓度则会使平衡向反应物方向移动,以消耗多余的生成物。

四、催化剂的影响催化剂对平衡的位置没有直接的影响,但它可以加速达到平衡的速率。

催化剂通过提供新的反应途径,降低活化能,从而加快反应速率。

虽然催化剂不改变反应的平衡常数,但它可以使达到平衡的速率更快。

除了上述条件外,光照、溶液pH值的改变等也会对化学反应平衡产生影响。

这些外界条件的改变都可以通过Le Chatelier原理进行解释,即系统会对外界条件的变化做出平衡的调整,以维持平衡状态。

总结起来,化学平衡的移动外界条件对反应平衡具有重要影响。

通过改变温度、压力、浓度等条件,可以迫使反应向有利于外界条件改变的方向进行平衡的移动,从而实现对反应的控制和调节。

这对于化学工业的生产以及实验室中的反应设计和操作具有重要意义。

高中化学“四大平衡”考点总结

高中化学“四大平衡”考点总结

高中化学“四大平衡”考点总结化学平衡是这一平衡理论体系的核心。

系统掌握反应速率与化学平衡的概念、理论及应用对于深入认识其他平衡,重要的酸、碱、盐的性质和用途,化工生产中适宜条件的选择等,具有承上启下的作用;对于深入掌握元素化合物的知识,具有理论指导意义。

正因为它的重要性,所以,在历年高考中,这一部分向来是考试的热点、难点。

1.高中化学常见四大平衡2.常见四大平衡研究对象模型一、化学平衡研究对象:可逆反应。

如:加热不利于氨的生成,增大压强有利于氨的生成。

模型二、电离平衡:研究对象:弱电解质。

如:加热促进电离,稀释电离度增大。

模型三、水解平衡研究对象:弱酸盐或弱碱盐或弱酸弱碱盐。

如:配制溶液应加入少量酸防止水解。

不断加热溶液,蒸干灼烧可得到固体。

模型四、溶解平衡研究对象:气体或固体溶于水形成的饱和溶液中形成的平衡体系。

(1)气体的溶解平衡如:当加入等时平衡会发生移动。

当收集等气体时往往分别通过饱和的等溶液以除去可能有的酸性气体,且抑制气体的溶解。

(2)固体的溶解平衡如:如:加热促进溶解;加热溶解度降低;反应的进行是由于存在溶解平衡;;由于能水解,加热时的水解程度增大,促进了的溶解,最终转化成。

知识结构归纳总结四大平衡无论是理论学习还是解题方法,都有许多的共通之处。

归纳总结四大平衡的共同点是一种有效的复习方法。

1. 所有的平衡都建立在“可逆反应”的基础上2.平衡特征相同3.都可借助v-t图学习平衡的建立及平衡的移动4. 都能用勒夏特列原理解释平衡的移动勒夏特列原理:如果改变影响平衡的一个条件(如温度、浓度、压强等),平衡就向减弱这个改变的方向移动.平衡的实质是两个变化方向的速率相等,所以影响平衡的因素首先是影响速率的因素:(1)温度:升温促进吸热过程进行(2)浓度:增大某物质浓度,平衡向消耗该物质的方向移动(3)减压或稀释5. 都存在平衡常数K高考分析1.化学平衡2.电离平衡3.水解平衡4.溶解平衡。

化学反应平衡与温度变化的关系和应用

化学反应平衡与温度变化的关系和应用

化学反应平衡与温度变化的关系和应用化学反应平衡是指在封闭系统中,正反两个化学反应的速率相等,各种物质的浓度保持不变的状态。

化学反应平衡与温度变化的关系和应用是化学反应速率和化学平衡移动的知识在实际生活和生产中的应用。

一、化学反应速率与温度的关系:1.温度对化学反应速率的影响:温度越高,化学反应速率越快;温度越低,化学反应速率越慢。

2.温度对化学反应速率的影响原因:温度升高,分子运动速度加快,分子之间的碰撞频率增加,有效碰撞增多,从而使化学反应速率加快。

二、化学平衡与温度的关系:1.化学平衡移动的原理:改变影响化学平衡的一个条件(如浓度、压强或温度等),化学平衡会向能够减弱这种改变的方向移动。

2.温度对化学平衡的影响:对于放热反应,升高温度,化学平衡向左移动(即反应物一侧),降低温度,化学平衡向右移动(即产物一侧);对于吸热反应,升高温度,化学平衡向右移动,降低温度,化学平衡向左移动。

三、化学反应平衡与温度变化的应用:1.工业生产中的应用:掌握化学反应平衡与温度变化的关系,可以优化工业生产过程,提高产品质量和产量。

例如,在合成氨的生产过程中,控制反应温度,可以使化学平衡向产物一侧移动,提高氨的产量。

2.生活中的应用:了解化学反应平衡与温度变化的关系,可以更好地理解和处理日常生活中的化学现象。

例如,了解烧碱溶液吸收二氧化碳的原理,可以解释为什么烧碱溶液在室内空气中吸收二氧化碳,从而起到净化空气的作用。

综上所述,化学反应平衡与温度变化的关系和应用是化学反应速率和化学平衡移动的知识在实际生活和生产中的应用。

掌握这一知识点,有助于我们更好地理解和处理化学现象,提高实际生产和生活中的化学应用能力。

习题及方法:1.习题:某放热反应,在温度为T1时达到平衡,若升高温度到T2(T2 > T1),则平衡会向哪个方向移动?解题思路:根据化学平衡与温度的关系,放热反应在升高温度时,平衡会向吸热的方向移动,即向左移动。

化学反应速率和平衡移动知识点讲解及例题

化学反应速率和平衡移动知识点讲解及例题

1. 化学反应速率:⑴. 化学反应速率的概念及表示方法:通过计算式:v =Δc /Δt来理解其概念:①化学反应速率与反应消耗的时间Δt和反应物浓度的变化Δc有关;②在同一反应中,用不同的物质来表示反应速率时,数值可以相同,也可以是不同的;但这些数值所表示的都是同一个反应速率;因此,表示反应速率时,必须说明用哪种物质作为标准;用不同物质来表示的反应速率时,其比值一定等于化学反应方程式中的化学计量数之比;如:化学反应mAg + nBg pCg + qDg 的:vA∶vB∶vC∶vD = m∶n∶p∶q③一般来说,化学反应速率随反应进行而逐渐减慢;因此某一段时间内的化学反应速率,实际是这段时间内的平均速率,而不是瞬时速率;⑵. 影响化学反应速率的因素:I. 决定因素内因:反应物本身的性质;Ⅱ. 条件因素外因也是我们研究的对象:①. 浓度:其他条件不变时,增大反应物的浓度,可以增大活化分子总数,从而加快化学反应速率;值得注意的是,固态物质和纯液态物质的浓度可视为常数;②. 压强:对于气体而言,压缩气体体积,可以增大浓度,从而使化学反应速率加快;值得注意的是,如果增大气体压强时,不能改变反应气体的浓度,则不影响化学反应速率;③. 温度:其他条件不变时,升高温度,能提高反应分子的能量,增加活化分子百分数,从而加快化学反应速率;④. 催化剂:使用催化剂能等同地改变可逆反应的正、逆化学反应速率;⑤. 其他因素;如固体反应物的表面积颗粒大小、光、不同溶剂、超声波等;2. 化学平衡:⑴. 化学平衡研究的对象:可逆反应;⑵. 化学平衡的概念略;⑶. 化学平衡的特征:动:动态平衡;平衡时v正==v逆≠0等:v正=v逆定:条件一定,平衡混合物中各组分的百分含量一定不是相等;变:条件改变,原平衡被破坏,发生移动,在新的条件下建立新的化学平衡;⑷. 化学平衡的标志:处于化学平衡时:①、速率标志:v正=v逆≠0;②、反应混合物中各组分的体积分数、物质的量分数、质量分数不再发生变化;③、反应物的转化率、生成物的产率不再发生变化;④、反应物反应时破坏的化学键与逆反应得到的反应物形成的化学键种类和数量相同;⑤、对于气体体积数不同的可逆反应,达到化学平衡时,体积和压强也不再发生变化;⑸. 化学平衡状态的判断:举例反应mAg +nBg pCg +qDg①各物质的物质的量或各物质的物质的量分数一定平衡②各物质的质量或各物质的质量分数一定平衡③各气体的体积或体积分数一定平衡④总压强、总体积、总物质的量一定不一定平衡正、逆反应速率的关系①在单位时间内消耗了m molA同时生成m molA,即v正=v逆平衡②在单位时间内消耗了n molB同时生成p molC,均指v正不一定平衡③vA:vB:vC:vD=m:n:p:q,v正不一定等于v逆不一定平衡④在单位时间内生成了n molB,同时消耗q molD,因均指v逆不一定平衡压强①m+n≠p+q时,总压力一定其他条件一定平衡②m+n=p+q时,总压力一定其他条件一定不一定平衡混合气体的平均分子量①一定时,只有当m+n≠p+q时,平衡②一定,但m+n=p+q时不一定平衡温度任何化学反应都伴随着能量变化,在其他条件不变的条件下,体系温度一定时平衡体系的密度密度一定不一定平衡3.化学平衡移动:⑴、勒沙持列原理:如果改变影响平衡的一个条件如浓度、压强和温度等,平衡就向着能够减弱这种改变的方向移动;其中包含:①影响平衡的因素:浓度、压强、温度三种;②原理的适用范围:只适用于一项条件发生变化的情况即温度或压强或一种物质的浓度,当多项条件同时发生变化时,情况比较复杂;③平衡移动的结果:只能减弱不可能抵消外界条件的变化;⑵、平衡移动:是一个“平衡状态→不平衡状态→新的平衡状态”的过程;一定条件下的平衡体系,条件改变后,可能发生平衡移动;即总结如下:—34—⑶、平衡移动与转化率的关系:不要把平衡向正反应方向移动与反应物转化率的增大等同起来;具体分析可参考下表:反应实例条件变化与平衡移动方向达新平衡后转化率变化2SO2 +O22SO3气+热增大O2浓度,平衡正移SO2 的转化率增大,O2的转化率减小增大SO3浓度,平衡逆移从逆反应角度看,SO3的转化率减小升高温度,平衡逆移SO2 、O2的转化率都减小增大压强,平衡正移SO2 、O2的转化率都增大2NO2气N2O4体积不变时,无论是加入NO2或者加入N2O4 NO2的转化率都增大即新平衡中N2O4的含量都会增大2HI H2+I2气增大H2的浓度,平衡逆移H2的转化率减小,I2的转化率增大增大HI的浓度,平衡正移HI的转化率不变增大压强,平衡不移动转化率不变⑷、影响化学平衡移动的条件:化学平衡移动:强调一个“变”字①浓度、温度的改变,都能引起化学平衡移动;而改变压强则不一定能引起化学平衡移动;强调:气体体积数发生变化的可逆反应,改变压强则能引起化学平衡移动;气体体积数不变的可逆反应,改变压强则不会引起化学平衡移动;催化剂不影响化学平衡;②速率与平衡移动的关系:I. v正== v逆,平衡不移动;Ⅱ. v正> v逆,平衡向正反应方向移动;Ⅲ. v正< v逆,平衡向逆反应方向移动;③平衡移动原理:勒沙特列原理:如果改变影响平衡的一个条件浓度、温度或压强,平衡就向能够减弱这种改变的方向移动;④分析化学平衡移动的一般思路:速率不变:如容积不变时充入惰性气体强调:加快化学反应速率可以缩短到达化学平衡的时间,但不一定能使平衡发生移动;⑸、反应物用量的改变对化学平衡影响的一般规律:Ⅰ、若反应物只有一种:aAg bBg + cCg,在不改变其他条件时,增加A的量平衡向正反应方向移动,但是A的转化率与气体物质的计量数有关:可用等效平衡的方法分析;①若a = b + c :A的转化率不变;②若a > b + c :A的转化率增大;③若a < b + c A的转化率减小;Ⅱ、若反应物不只一种:aAg + bBg cCg + dDg,①在不改变其他条件时,只增加A的量,平衡向正反应方向移动,但是A的转化率减小,而—35—B的转化率增大;②若按原比例同倍数地增加A和B,平衡向正反应方向移动,但是反应物的转化率与气体物质的计量数有关:如a+b = c + d,A、B的转化率都不变;如a+ b>c+ d,A、B的转化率都增大;如a + b < c + d,A、B的转化率都减小;4、等效平衡问题的解题思路:⑴、概念:同一反应,在一定条件下所建立的两个或多个平衡中,混合物中各成分的含量相同,这样的平衡称为等效平衡;⑵分类:①等温等容条件下的等效平衡:在温度和容器体积不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量相同,则两平衡等效,这种等效平衡可以称为等同平衡;②等温等压条件下的等效平衡:在温度和压强不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为等比例平衡;③等温且△n=0条件下的等效平衡:在温度和容器体积不变的条件下,对于反应前后气体总分子数不变的可逆反应,只要可以通过可逆反应的化学计量数比换算成左右两边任意一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为不移动的平衡;例32003年全国12某温度下,在一容积可变的容器中,反应2Ag+Bg 2Cg达到平衡时,A、B和C的物质的量分别为4mol、2mol和4mol;保持温度和压强不变,对平衡混合物中三者的物质的量作如下调整,可使平衡右移的是 CA.均减半B.均加倍C.均增加1mol D.均减少1mol5、速率和平衡图像分析:⑴、分析反应速度图像:①看起点:分清反应物和生成物,浓度减小的是反应物,浓度增大的是生成物,生成物多数以原点为起点;②看变化趋势:分清正反应和逆反应,分清放热反应和吸热反应;升高温度时,△V吸热>△V放热;③看终点:分清消耗浓度和增生浓度;反应物的消耗浓度与生成物的增生浓度之比等于反应方程式中各物质的计量数之比;④对于时间——速度图像,看清曲线是连续的,还是跳跃的;分清“渐变”和“突变”、“大变”和“小变”;增大反应物浓度V正突变,V逆渐变;升高温度,V吸热大增,V放热小增;⑵化学平衡图像问题的解答方法:①三步分析法:一看反应速率是增大还是减小;二看△V正、△V逆的相对大小;三看化学平衡移动的方向;②四要素分析法:看曲线的起点;看曲线的变化趋势;看曲线的转折点;看曲线的终点;③先拐先平:对于可逆反应mAg + nBg pCg + qDg ,在转化率——时间曲线中,先出现拐点的曲线先达到平衡;它所代表的温度高、压强大;这时如果转化率也较高,则反应中m+n>p+q;若转化率降低,则表示m+n<p+q;④定一议二:图像中有三个量时,先确定一个量不变,再讨论另外两个量的关系; 化学反应速率化学反应进行的快慢程度,用单位时间反应物浓度的减少或生成物浓度的增加来表示; 通常用单位时间内反应物浓度的减小或生成物浓度的减小或生成物浓度的增加来表示; 表达式:△vA=△cA/△t单位:mol/L·s或mol/L·min影响化学反应速率的因素:温度,浓度,压强,催化剂;另外,x射线,γ射线,固体物质的表面积也会影响化学反应速率化学反应的计算公式:对于下列反应:mA+nB=pC+qD有vA:vB:vC:vD=m:n:p:q对于没有达到化学平衡状态的可逆反应:v正≠v逆影响化学反应速率的因素:压强:温度:催化剂:浓度:知识点拨其它条件不变时,增大有气体参与的反应体系的压强,可以加快反应速率,反之,减小反应体系的压强则可以减慢反应速率;这里需注意:①压强改变针对气体而言,固体或液体,压强对其没有影响;②针对可逆反应,压强对v正、v逆影响相同,但影响程度不一定相同;③压强的改变,本质上是改变气体的浓度,因此,压强改变,关键看气体浓度有没有改变,v才可能改变;知识点拨其它条件相同时,反应所处的温度越高,反应的速率越快;这里需注意:①一般认为温度的改变对化学反应速率的影响较大;②实验测得,温度每升高10℃,反应速率通常增大到原来的2~4倍;③温度对反应速率的影响与反应物状态无多大关系;④某反应为可逆反应,正逆反应速度受温度改变而引起的变化倾向相同,但程度不同;知识点拨使用催化剂可以改变反应速率;但需注意:①这里的“改变”包括加快或减慢;通常把能加快反应速率的催化剂称为正催化剂,减慢反应速率的催化剂称为负催化剂;②催化剂具有选择性,即不同的反应一般有不同的催化剂;③催化剂不能改变化学反应;④如果反应是可逆反应,则催化剂可同等程度地改变正逆反应的速率;知识点拨其它条件不变时,增大反应物浓度可以加快反应速率,反之,减小反应物浓度则可以减慢反应速率;这里需注意:①浓度的一般讨论对象为气体或溶液,对于纯液体或固体一般情况下其浓度是定值;②若反应为可逆反应,浓度改变的物质既可以是反应物也可以是生成物,甚至可以两者同时知识点拨一定条件下可逆反应中正反应与逆反应的速率相等,反应混和物中各组分的浓度保持不变的状态叫化学平衡状态;化学反应达到平衡后,反应混和物的百分组成一定可引伸为物质的物质的量浓度、质量分数、体积物质的量分数一定、反应物的转化率利用率一定;化学平衡的特征:⑴化学平衡是一种动态平衡,即v正=v逆≠0;动⑵外界条件如浓度、温度和压强等不改变时,化学平衡状态不变;定说明:化学平衡状态与反应从正反应开始还是从逆反应无关;⑶当外界条件发生改变时,化学平衡发生移动,直至达到新的化学平衡;变知识点拨等价转化是一种数学思想,借用到化学平衡中,可以简化分析过程;它指的是:化学平衡状态的建立与反应途径无关,即不论可逆反应是从正方向开始,还是从逆方向开始,抑或从中间状态开始,只要起始所投入的物质的物质的量相当,则可达到等效平衡状态;这里所说的“相当”即是“等价转化”的意思;知识点拨影响化学平衡移动的外界因素之一:浓度;在其它条件不变的情况下,增大反应物的浓度或减小生成物浓度可使化学平衡向正反应方向移动;若增大生成物的浓度或减小反应物浓度则化学平衡向逆反应方向移动;注意:①浓度对气体或溶液才有意义,所以改变固体的量时化学平衡不发生移动;②只要增大浓度反应物或生成物无论平衡移动方向如何,新平衡状态的速率值一定大于原平,升高反应体系;知识点拨催化剂不能使化学平衡发生移动,只能改变达到化学平衡所需的时间;这里需注意:这里的改变包括“增大”和“缩短”,应视催化剂的种类;一般为“缩短”;原因:因催化剂能同等程度地改变正反应速率和逆反应速率,所以不能使平衡移动;知识点拨勒沙特列原理:已达平衡的可逆反应,如果改变影响平衡的一个条件如浓度、压强或温度等,平衡就向能够减弱这种改变的方向移动;注意:①此原理只适用于已达平衡的体系;②正确理解“减弱”的含义;。

化学反应速率与化学平衡知识点归纳

化学反应速率与化学平衡知识点归纳

1. 化学反应速率:⑴. 化学反应速率的概念及表示方法:通过计算式:v =Δc /Δt来理解其概念:①化学反应速率与反应消耗的时间Δt和反应物浓度的变化Δc有关;②在同一反应中,用不同的物质来表示反应速率时,数值可以相同,也可以是不同的;但这些数值所表示的都是同一个反应速率;因此,表示反应速率时,必须说明用哪种物质作为标准;用不同物质来表示的反应速率时,其比值一定等于化学反应方程式中的化学计量数之比;如:化学反应mAg + nBg pCg + qDg 的:vA∶vB∶vC∶vD = m∶n∶p∶q③一般来说,化学反应速率随反应进行而逐渐减慢;因此某一段时间内的化学反应速率,实际是这段时间内的平均速率,而不是瞬时速率;⑵. 影响化学反应速率的因素:I. 决定因素内因:反应物本身的性质;Ⅱ.条件因素外因也是我们研究的对象:①. 浓度:其他条件不变时,增大反应物的浓度,可以增大活化分子总数,从而加快化学反应速率;值得注意的是,固态物质和纯液态物质的浓度可视为常数;②. 压强:对于气体而言,压缩气体体积,可以增大浓度,从而使化学反应速率加快;值得注意的是,如果增大气体压强时,不能改变反应气体的浓度,则不影响化学反应速率;③. 温度:其他条件不变时,升高温度,能提高反应分子的能量,增加活化分子百分数,从而加快化学反应速率;④. 催化剂:使用催化剂能等同地改变可逆反应的正、逆化学反应速率;⑤. 其他因素;如固体反应物的表面积颗粒大小、光、不同溶剂、超声波等;2. 化学平衡:⑴. 化学平衡研究的对象:可逆反应;⑵. 化学平衡的概念略;⑶. 化学平衡的特征:动:动态平衡;平衡时v正==v逆≠0等:v正=v逆定:条件一定,平衡混合物中各组分的百分含量一定不是相等;变:条件改变,原平衡被破坏,发生移动,在新的条件下建立新的化学平衡;⑷. 化学平衡的标志:处于化学平衡时:①、速率标志:v正=v逆≠0;②、反应混合物中各组分的体积分数、物质的量分数、质量分数不再发生变化;③、反应物的转化率、生成物的产率不再发生变化;④、反应物反应时破坏的化学键与逆反应得到的反应物形成的化学键种类和数量相同;⑤、对于气体体积数不同的可逆反应,达到化学平衡时,体积和压强也不再发生变化;例1在一定温度下,反应A2g + B2g 2ABg达到平衡的标志是 CA. 单位时间生成n mol的A2同时生成n mol的ABB. 容器内的压强不随时间变化C. 单位时间生成2n mol的AB同时生成n mol的B2D. 单位时间生成n mol的A2同时生成n mol的B2⑸. 化学平衡状态的判断:举例反应 mAg + nBg pCg + qDg混合物体系中各成分的含量①各物质的物质的量或各物质的物质的量分数一定平衡②各物质的质量或各物质的质量分数一定平衡③各气体的体积或体积分数一定平衡④总压强、总体积、总物质的量一定不一定平衡正、逆反应速率的关系①在单位时间内消耗了m molA同时生成m molA,即v正=v逆平衡②在单位时间内消耗了n molB同时生成p molC,均指v正不一定平衡③vA:vB:vC:vD=m:n:p:q,v正不一定等于v逆不一定平衡④在单位时间内生成了n molB,同时消耗q molD,因均指v逆不一定平衡压强①m+n≠p+q时,总压力一定其他条件一定平衡②m+n=p+q时,总压力一定其他条件一定不一定平衡混合气体的平均分子量①一定时,只有当m+n≠p+q时,平衡②一定,但m+n=p+q时,不一定平衡温度任何化学反应都伴随着能量变化,在其他条件不变的条件下,体系温度一定时平衡体系的密度密度一定不一定平衡3.化学平衡移动:⑴勒沙持列原理:如果改变影响平衡的一个条件如浓度、压强和温度等,平衡就向着能够减弱这种改变的方向移动;其中包含:①影响平衡的因素:浓度、压强、温度三种;②原理的适用范围:只适用于一项条件发生变化的情况即温度或压强或一种物质的浓度,当多项条件同时发生变化时,情况比较复杂;③平衡移动的结果:只能减弱不可能抵消外界条件的变化;⑵、平衡移动:是一个“平衡状态→不平衡状态→新的平衡状态”的过程;一定条件下的平衡体系,条件改变后,可能发生平衡移动;即总结如下:⑶、平衡移动与转化率的关系:不要把平衡向正反应方向移动与反应物转化率的增大等同起来;⑷、影响化学平衡移动的条件:化学平衡移动:强调一个“变”字①浓度、温度的改变,都能引起化学平衡移动;而改变压强则不一定能引起化学平衡移动;强调:气体体积数发生变化的可逆反应,改变压强则能引起化学平衡移动;气体体积数不变的可逆反应,改变压强则不会引起化学平衡移动;催化剂不影响化学平衡;②速率与平衡移动的关系:I. v正== v逆,平衡不移动;Ⅱ. v正 > v逆,平衡向正反应方向移动;Ⅲ. v正 < v逆,平衡向逆反应方向移动;③平衡移动原理:勒沙特列原理:④分析化学平衡移动的一般思路:速率不变:如容积不变时充入惰性气体强调:加快化学反应速率可以缩短到达化学平衡的时间,但不一定能使平衡发生移动;⑸、反应物用量的改变对化学平衡影响的一般规律:Ⅰ、若反应物只有一种:aAg=bBg + cCg,在不改变其他条件时,增加A的量平衡向正反应方向移动,但是A的转化率与气体物质的计量数有关:可用等效平衡的方法分析;①若a = b + c :A的转化率不变;②若a > b + c : A的转化率增大;③若a < b + c A的转化率减小;Ⅱ、若反应物不只一种:aAg + bBg=cCg + dDg,①在不改变其他条件时,只增加A的量,平衡向正反应方向移动,但是A的转化率减小,而B的转化率增大;②若按原比例同倍数地增加A和B,平衡向正反应方向移动,但是反应物的转化率与气体物质的计量数有关:如a+b = c + d,A、B的转化率都不变;如a+ b>c+ d,A、B的转化率都增大;如a + b < c + d,A、B的转化率都减小;4、等效平衡问题的解题思路:⑴、概念:同一反应,在一定条件下所建立的两个或多个平衡中,混合物中各成分的含量相同,这样的平衡称为等效平衡;⑵分类:①等温等容条件下的等效平衡:在温度和容器体积不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量相同,则两平衡等效,这种等效平衡可以称为等同平衡;②等温等压条件下的等效平衡:在温度和压强不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为等比例平衡;③等温且△n=0条件下的等效平衡:在温度和容器体积不变的条件下,对于反应前后气体总分子数不变的可逆反应,只要可以通过可逆反应的化学计量数比换算成左右两边任意一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为不移动的平衡;5、速率和平衡图像分析:⑴分析反应速度图像:①看起点:分清反应物和生成物,浓度减小的是反应物,浓度增大的是生成物,生成物多数以原点为起点;②看变化趋势:分清正反应和逆反应,分清放热反应和吸热反应;升高温度时,△V 吸热>△V放热;③看终点:分清消耗浓度和增生浓度;反应物的消耗浓度与生成物的增生浓度之比等于反应方程式中各物质的计量数之比;④对于时间——速度图像,看清曲线是连续的,还是跳跃的;分清“渐变”和“突变”、“大变”和“小变”;增大反应物浓度V正突变,V逆渐变;升高温度,V吸热大增,V放热小增;⑵化学平衡图像问题的解答方法:①三步分析法:一看反应速率是增大还是减小;二看△V正、△V逆的相对大小;三看化学平衡移动的方向;②四要素分析法:看曲线的起点;看曲线的变化趋势;看曲线的转折点;看曲线的终点;③先拐先平:对于可逆反应mAg + nBg pCg + qDg ,在转化率-时间曲线中,先出现拐点的曲线先达到平衡;它所代表的温度高、压强大;这时如果转化率也较高,则反应中m+n>p+q;若转化率降低,则表示m+n<p+q;④定一议二:图像中有三个量时,先确定一个量不变,再讨论另外两个量的关系; 化学反应速率化学反应进行的快慢程度,用单位时间反应物浓度的减少或生成物浓度的增加来表示;通常用单位时间内反应物浓度的减小或生成物浓度的减小或生成物浓度的增加来表示;表达式:△vA=△cA/△t单位:mol/L·s或mol/L·min影响化学反应速率的因素:温度,浓度,压强,催化剂;另外,x射线,γ射线,固体物质的表面积也会影响化学反应速率化学反应的计算公式:例对于下列反应:mA+nB=pC+qD有vA:vB:vC:vD=m:n:p:q对于没有达到化学平衡状态的可逆反应:v正≠v逆影响化学反应速率的因素:压强:对于有气体参与的化学反应,其他条件不变时除体积,增大压强,即体积减小,反应物浓度增大,单位体积内活化分子数增多,单位时间内有效碰撞次数增多,反应速率加快;反之则减小;若体积不变,加压加入不参加此化学反应的气体反应速率就不变;因为浓度不变,单位体积内活化分子数就不变;但在体积不变的情况下,加入反应物,同样是加压,增加反应物浓度,速率也会增加;温度:只要升高温度,反应物分子获得能量,使一部分原来能量较低分子变成活化分子,增加了活化分子的百分数,使得有效碰撞次数增多,故反应速率加大主要原因;当然,由于温度升高,使分子运动速率加快,单位时间内反应物分子碰撞次数增多反应也会相应加快次要原因催化剂:使用正催化剂能够降低反应所需的能量,使更多的反应物分子成为活化分子,大大提高了单位体积内反应物分子的百分数,从而成千上万倍地增大了反应物速率.负催化剂则反之;浓度:当其它条件一致下,增加反应物浓度就增加了单位体积的活化分子的数目,从而增加有效碰撞,反应速率增加,但活化分子百分数是不变的 ;其他因素:增大一定量固体的表面积如粉碎,可增大反应速率,光照一般也可增大某些反应的速率;此外,超声波、电磁波、溶剂等对反应速率也有影响;溶剂对反应速度的影响在均相反应中,溶液的反应远比气相反应多得多有人粗略估计有90%以上均相反应是在溶液中进行的;但研究溶液中反应的动力学要考虑溶剂分子所起的物理的或化学的影响,另外在溶液中有离子参加的反应常常是瞬间完成的,这也造成了观测动力学数据的困难;最简单的情况是溶剂仅引起介质作用的情况;在溶液中起反应的分子要通过扩散穿周围的溶剂分子之后,才能彼此接触,反应后生成物分子也要穿国周围的溶剂分子通过扩散而离开;扩散——就是对周围溶剂分子的反复挤撞,从微观角度,可以把周围溶剂分子看成是形成了一个笼,而反应分子则处于笼中;分子在笼中持续时间比气体分子互相碰撞的持续时间大10-100倍,这相当于它在笼中可以经历反复的多次碰撞;笼效应——就是指反应分子在溶剂分子形成的笼中进行多次的碰撞或振动;这种连续反复碰撞则称为一次偶遇,所以溶剂分子的存在虽然限制了反应分子作远距离的移动,减少了与远距离分子的碰撞机会,但却增加了近距离分子的重复碰撞;总的碰撞频率并未减低;据粗略估计,在水溶液中,对于一对无相互作用的分子,在依次偶遇中它们在笼中的时间约为10-12-10-11s,在这段时间内大约要进行100-1000次的碰撞;然后偶尔有机会跃出这个笼子,扩散到别处,又进入另一个笼中;可见溶液中分子的碰撞与气体中分子的碰撞不同,后者的碰撞是连续进行的,而前者则是分批进行的,一次偶遇相当于一批碰撞,它包含着多次的碰撞;而就单位时间内的总碰撞次数而论,大致相同,不会有商量级上的变化;所以溶剂的存在不会使活化分子减少;A和B发生反应必须通过扩散进入同一笼中,反应物分子通过溶剂分子所构成的笼所需要的活化能一般不会超过20kJ·mol-1,而分子碰撞进行反应的活化能一般子40 -400kJ·mol-1之间;由于扩散作用的活化能小得多,所以扩散作用一般不会影响反应的速率;但也有不少反应它的活化能很小,例如自由基的复合反应,水溶液中的离子反应等;则反应速率取决于分子的扩散速度,即与它在笼中时间成正比;从以上的讨论可以看出,如果溶剂分子与反应分子没有显着的作用,则一般说来碰撞理论对溶液中的反应也是适用的,并且对于同一反应无论在气相中或在溶液中进行,其概率因素P和活化能都大体具有同样的数量级,因而反应速率也大体相同;但是也有一些反应,溶剂对反应有显着的影响;例如某些平行反应,常可借助溶剂的选择使得其中一种反应的速率变得较快,使某种产品的数量增多;溶剂对反应速率的影响是一个极其复杂的问题,一般说来:1溶剂的介电常数对于有离子参加的反应有影响;因为溶剂的介电常数越大,离子间的引力越弱,所以介电常数比较大的溶剂常不利与离子间的化合反应;2溶剂的极性对反应速率的影响;如果生成物的极性比反应物大,则在极性溶剂中反应速率比较大;反之,如反应物的极性比生成物大,则在极性溶剂中的反应速率必变小;3溶剂化的影响,一般说来;作用物与生成物在溶液中都能或多或少的形成溶剂化物;这些溶剂化物若与任一种反应分子生成不稳定的中间化合物而使活化能降低,则可以使反应速率加快;如果溶剂分子与作用物生成比较稳定的化合物,则一般常能使活化能增高,而减慢反应速率;如果活化络合物溶剂化后的能量降低,因而降低了活化能,就会使反应速率加快;4离子强度的影响也称为原盐效应;在稀溶液中如果作用物都是电介质,则反应的速率与溶液的离子强度有关;也就是说第三种电解质的存在对于反应速率有影响.。

【人教版】2020年高考化学一轮复习专题7.3化学平衡移动(讲)

【人教版】2020年高考化学一轮复习专题7.3化学平衡移动(讲)

专题7.3 化学平衡移动1、理解影响化学平衡的因素(浓度、温度、压强、催化剂等),认识其一般规律。

2、理解化学平衡常数的定义并能进行简单计算。

3、能正确分析化学平衡图像。

一、化学平衡移动1、概念可逆反应达到平衡状态以后,若反应条件(如温度、压强、浓度等)发生了变化,平衡混合物中各组分的浓度也会随之改变,从而在一段时间后达到新的平衡状态。

这种由原平衡状态向新平衡状态的变化过程,叫做化学平衡的移动。

2、过程3、平衡移动方向与反应速率的关系(1)v正> v逆,平衡向正反应方向移动。

(2)v正= v逆,平衡不移动。

(3)v正< v逆,平衡向逆反应方向移动。

4、平衡移动会伴随着哪些变化(1)反应速率的变化(引起平衡移动的本质,但速率变化也可能平衡不移动),主要看v正与v逆是否相等,如果v正≠v逆,则平衡必然要发生移动,如v正、v逆同时改变相同倍数,则平衡不移动。

(2)浓度的变化,平衡移动会使浓度变化,但是浓度的变化不一定使平衡移动。

(3)各组分百分含量的变化。

(4)平均相对分子质量的变化。

(5)颜色的变化(颜色变化,平衡不一定发生移动)。

(6)混合气体密度的变化。

(7)转化率的变化。

(8)温度变化5、影响因素若其他条件不变,改变下列条件对化学平衡的影响如下:【特别提醒】浓度、压强和温度对平衡移动影响的特殊情况(1)改变固体或纯液体的量,对平衡无影响。

(2)当反应混合物中不存在气态物质时,压强的改变对平衡无影响。

(3)对于反应前后气体体积无变化的反应,如H2(g)+I2(g)2HI(g),压强的改变对平衡无影响。

但增大(或减小)压强会使各物质的浓度增大(或减小),混合气体的颜色变深(或浅)。

(4)“惰性气体”对化学平衡的影响①恒温、恒容条件原平衡体系体系总压强增大―→体系中各组分的浓度不变―→平衡不移动。

②恒温、恒压条件(5)恒容时,同等程度地改变反应混合物中各物质的浓度时,应视为压强的影响,增大(减小)浓度相当于增大(减小)压强。

化学平衡常数反应的平衡与移动

化学平衡常数反应的平衡与移动化学平衡常数是指在一定温度下,化学反应达到平衡时,反应物浓度与生成物浓度比值的稳定值。

在平衡状态下,反应物与生成物的浓度虽然不再发生改变,但是反应仍然在进行。

这种情况下,我们可以通过改变反应条件来移动平衡位置,使得反应向有利于某一方向的方向进行。

在化学平衡中,平衡常数K(化学平衡常数)的大小决定了反应物与生成物的浓度。

平衡常数的数值决定了反应的方向以及反应物与生成物的比例。

当平衡常数较大时,生成物浓度大于反应物浓度,反应主要向生成物的方向进行;当平衡常数较小时,反应物浓度大于生成物浓度,反应主要向反应物的方向进行。

平衡常数是与温度有关的,不同温度下反应的平衡常数也不同。

在化学反应平衡中,当我们改变反应条件时,平衡常数K的数值会发生变化,从而导致反应向某一方向移动。

以下是几种常见的移动平衡位置的方法:1. 改变浓度:根据Le Chatelier原理,增加反应物的浓度或减少生成物的浓度,可以使反应向生成物的方向移动。

相反,增加生成物的浓度或减少反应物的浓度,可以使反应向反应物的方向移动。

2. 改变压力:对于气相反应,改变压力可以改变反应物与生成物的浓度。

增加压力会使反应向浓度较小的一方移动,而减少压力则会使反应向浓度较大的一方移动。

3. 改变温度:改变反应温度会改变平衡常数K的数值。

增加温度会使平衡常数K变大,反应向生成物的方向移动;降低温度会使平衡常数K变小,反应向反应物的方向移动。

4.使用催化剂:催化剂可以加速反应速率,但不参与反应。

催化剂的存在可以降低反应的活化能,促使反应更快达到平衡状态。

使用催化剂可以增加反应物或生成物的浓度,从而移动平衡位置。

需要注意的是,虽然可以通过改变反应条件来移动平衡位置,但并不意味着移动后反应一定会完全达到平衡。

移动平衡位置只是改变反应物与生成物的比例,达到新的平衡状态。

总结起来,化学平衡常数反应的平衡与移动是通过改变反应条件来调整反应物与生成物浓度的比例,以使反应向有利于某一方向进行的方向移动。

反应条件对化学平衡影响


15 2.0 9.2
10 30 60
100
16.4 35.5 53.6 69.4
分析:
条件改变
平衡移动方向
压强增大 向气体体积缩小的方向移动
压强减小 向气体体积增大的方向移动
12
3、压强对化学平衡的影响
结论: (在其它条件不变的情况下)
(对于反应前后气体体积改变的反应)
A:增大压强,会使化学平衡向着气体体积缩小的 方向移动。
反应条件 对化学平衡的影响
1
回顾:化学平衡状态和平衡的移动
12354.化 什学么平 是衡 化研 学 的移究 平 标动的 衡 志对?是标原象什志因是么什?么?
如:增大反应物的
V正
一定条件 下
V浓正,度
V’正=V逆’
在t2时,改变 条件,V正、 V逆将如何变 化?是否还
处于平衡状
态?
0
V逆
化学平衡的移动
V正= V逆
平衡状 态
V逆,
新平衡状态
t1
t2
t3
t4
t
一定条件下的
条件改变
新条件下的平
平衡状态
( V正≠V逆)
衡状态
( V正=V逆)
( V’正=V逆’)
2
化学平衡移动的方向: ⑴占优若势外,界化条学件平改衡变向,引_正_起_反V应正〉方V向逆(,右此)时移_正_动_反。应
⑵占优若势外,界化条学件改平变衡向,引_逆_起_反V应正〉方V向逆(,左此)时移_逆_动_反。应
到颜色不再发生变化为止,观察并记录实验现象。
操作 条件改变 现象
平衡移动方向
放入
热水
T
颜色变深
向吸热方向移动

化学平衡的移动


〔注意〕压强对平衡的影响,是因为压强的改变 引起了浓度的变化;否则平衡不会受到影响。
2.恒温下, 反应aX(g) bY(g) +cZ(g)达到平衡 后, 把容器体积压缩到原来的一半且达到新 平衡时, X的物质的量浓度由0.1mol/L增大到 A 0.19mol/L, 下列判断正确的是: A. a>b+c B. a<b+c C. a=b+c D. a=b=c

[练习] 1.在1L密闭容器中,进行下列反应: X(g)+3Y(g) 2Z(g), 达到平衡后,其他条件不变,只增加X的
CD 量,下列叙述中正确的是( )
A、正反应速率增大.逆反应速率减小 B、X的转化率变大
C、Y的转化率变大
D、正、逆反应的速率都将增大
2、在一定条件下,发生CO(g)+NO2(g) CO2(g)+NO(g)(正反应放 热)的反应,达到平衡后,保持体积不变, 降低温度,混合气体的颜色( ) A.变深 B.变浅 C.不变 D.无法判断
要引起化学平衡的移动,必须是由于外 界条件的改变而引起V正≠ V逆。
平衡移动的本质
平衡移动原理(勒夏特列原理):
改变影响化学平衡的一个条件(如浓度、 压强、或温度),平衡就向能减弱这种改变 的方向移动。
[注意]
①平衡移动的结果是“减弱”这种改变, 而不是“消除”这种改变。 ②原理适用条件:任何动态平衡体系、只 改变一个条件。 ③人为改变平衡,人为是主要的,平衡的 移动起一定抑制作用但不能扭转人为的改 变。
2)意义:增大成本较低的反应物的浓度,提高
成本较高的原料的转化率。
注意
(1)增加固体或纯液体的量,由于浓度 不变,所以化学平衡不移动。 (2)在溶液中进行的反应,如果是稀释 溶液,反应物浓度减小,生成物浓度减小, V(正) 、V(逆)都减小,但减小的程度不同, 总的结果是化学平衡向反应方程式中化学 计量数之和大的方向移动。

高中化学-化学平衡移动(温度、压强、催化剂)9




V正



V正= V逆
V'正 = V'逆
催化剂的使用同等程度 地改变正、逆化学反应 速率,不影响化学平衡 的移动。
V逆
0
t1
t2
t(s)
影响化学平衡移动的因素
结论:催化剂不能使化学平衡发生移动;
不能改变反应混合物的百分含量;
但可以改变达到平衡的时间。
v
v’正= v’逆
含量
总结感第悟14 页
v正= v逆
总结: mA(g) + nB(g)
pC(g) + qD(g) 恒T、V
瞬间速率变化
平衡移动方向 正向移动
CA ↑
V’正 > V正
新旧平衡比较 CA 、 CB↓ 、 CC↑ 、 CD↑
A的转化率 B的转化率 ↑
若 ①CA ↓ ②Cc ↑ ③Cc ↓呢
总结: mA(g) + nB(g)
pC(g) + qD(g) (正反应是放热反应)
总结: mA(g) + nB(g)
pC(g) + qD(g)
若 m+n > p+q P↑ 平衡正向移动 CA 、 CB 、 CC 、 CD A的转化率↑ B的转化率↑
新旧平衡比较:
A% ↓ 、B% ↓ 、C%↑ 、D %↑
讨论2: 起始 改变2
N2 + 3H2 1 mol 3 mol 增加 1 mol 3 mol
影响化学平衡移动的因素
当堂巩第固11 页
1、压强的变化不会使下列反应的平衡发生移动的是( A E ) A、H2(g)+I2(g) 2HI(g) B、 N2(g)+3H2(g) 2NH3(g) C、2SO2(g) + O2(g) 2SO3(g) D、 C(s) +CO2(g) 2CO(g) E 、 Fe3++ n SCN- [Fe(SCN)n] 3-n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勒夏特列原理 影响平衡移动的因素有浓度、压强和温度三种。 1.浓度对化学平衡的影响 在其他条件不变时,增大反应物浓度或减小生成物浓度, 平衡向正反应方向移动;减小反应物浓度或增大生成物浓度, 平衡向逆反应方向移动。

2.压强对化学平衡的影响 在有气体参加、有气体生成而且反应前后气体分子数变化的反应中,在其他条件不变时,增大压强(指压缩气体体积使压强增大),平衡向气体体积减小方向移动;减小压强(指增大气体体积使压强减小),平衡向气体体积增大的方向移动。 例如:在反应N2O4(g)---2NO2(g)中,假定开始时N2O4的浓度为1mol/L,NO2的浓度为2mol/L,化学平衡常数K=2^2/1=4;体积减半(压强变为原来的2倍)后,N2O4的浓度变为2mol/L,NO2的浓度变为4mol/L,化学平衡常数K变为4^2/2=8,化学平衡常数K增大了,所以就要向减少反应产物(NO2)的方向反应,即有更多的NO2反应为N2O4,减少了气体体积,压强渐渐与初始状态接近. 注意:恒容时,充入不反应的气体如稀有气体导致的压强增大不能影响平衡.

3.温度对化学平衡的影响 在其他条件不变时,升高温度平衡向吸热反应方向移动。 以上三种因素综合起来就得到了勒夏特列原理(Le Chatelier's principle)即平衡移动原理: 如果改变影响平衡的一个条件(如浓度、压强、温度),平衡就向能够减弱这种改变的方向移动。

说明: 催化剂只能缩短达到平衡所需时间,而不能改变平衡状态(即百分组成) 可用勒夏特列原理定性地说明浓度对化学平衡的影响——增加反应物浓度或减小生成物浓度,平衡向生成物方向移动,增加生成物浓度或减小反应物浓度,平衡向反应物方向移动。 利用化学平衡的概念,对比化学平衡常数K和J大小,可以判断系统中的反应混合物是否达到平衡,以及平衡将向哪个方向移动。即:J 〉K,平衡向左移动;J〈 K,平衡向右移动;J = K,达到平衡状态。这一关系式被称为化学平衡的质量判据,是与上面的能量判据相对应的。为便于记忆,可缩写为: J K 自然,我们作此判断时假设反应不存在动力学的障碍。若系统的动力学性质不明,以上判断仅为反应方向的预测。

化学平衡系列问题 化学平衡移动影响条件 (一)在反应速率(v)-时间(t)图象中,在保持平衡的某时刻t1改变某一条件前后, V正、V逆的变化有两种: V正、V逆同时突变——温度、压强、催化剂的影响 V正、V逆之一渐变——一种成分浓度的改变

对于可逆反应:mA(g) + nB(g) pc(g) + qD(g) + (正反应放热)

【总结】增大反应物浓度或减小生成物浓度,化学平衡向正反应方向移动;减小反应物浓度或增大生成物浓度,化学平衡向逆反应方向移动。

反应条件 条件改变 v正 v逆 v正与v逆关系 平衡移 动方向 图示 选项 浓 度 增大反应物浓度 减小反应物浓度 增大生成物浓度 减小生成物浓度 加快 减慢 不变 不变 不变 不变 加快 减慢 v正>v逆 v正<v逆 v正<v逆 v正>v逆 正反应方向 逆反应方向 逆反应方向 正反应方向 B C B C 压 强 m+n>p+q m+n<p+q m+n=p+q 加压 加快 加快 加快 加快 加快 加快 v正>v逆 v正<v逆 v正=v逆 正反应方向 逆反应方向 不移动 A A E m+n>p+q m+n<p+q m+n=p+q 减压 减慢 减慢 减慢 减慢 减慢 减慢 v正<v逆 v正>v逆 v正=v逆 逆反应方向 正反应方向 不移动

D D F

温 度 升 温 降 温 加快 减慢 加快 减慢 v正<v逆 v正>v逆 逆反应方向 正反应方向 A D 催化剂 加快 加快 加快 v正=v逆 不移动 E 增大压强,化学平衡向系数减小的方向移动;减小压强,平衡会向系数增大的方向移动。 升高温度,平衡向着吸热反应的方向移动;降低温度,平衡向放热反应的方向移动。 催化剂不改变平衡移动 (二)勒夏特列原理(平衡移动原理) 如果改变影响平衡的一个条件,平衡就会向着减弱这种改变的方向移动。 具体地说就是:增大浓度,平衡就会向着浓度减小的方向移动;减小浓度,平衡就会向着浓度增大的方向移动。 增大压强,平衡就会向着压强减小的方向移动;减小压强,平衡就会向着压强增大的方向移动。 升高温度,平衡就会向着吸热反应的方向移动;降低温度,平衡就会向着放热反应的方向移动。 平衡移动原理对所有的动态平衡都适用,如对后面将要学习的电离平衡,水解平衡也适用。 (讲述:“减弱”“改变”不是“消除”,更不能使之“逆转”。例如,当原平衡体系中气体压强为P时,若其它条件不变,将体系压强增大到2P,当达到新的平衡时,体系压强不会减弱至P甚至小于P,而将介于P~2P之间。)

化学平衡小结——等效平衡问题 一、概念 在一定条件(恒温恒容或恒温恒压)下,同一可逆反应体系,不管是从正反应开始,还是从逆反应开始,在达到化学平衡状态时,任何相同组分的百分含量....(体积分数、物质的量分数等)均相同,这样的化学平衡互称等效平衡(包括“全等等效和相似等效”)。 概念的理解:(1)只要是等效平衡,平衡时同一物质的百分含量....(体积分数、物质的量分数等)一定相同 (2)外界条件相同:通常可以是①恒温、恒容,②恒温、恒压。 (3)平衡状态只与始态有关,而与途径无关,(如:①无论反应从正反应方向开始,还是从逆反应方向开始②投料是一次还是分成几次③反应容器经过扩大—缩小或缩小—扩大的过程,)比较时都运用“一边倒”.....倒回到起始的状态........进行比较。

二、等效平衡的分类 在等效平衡中比较常见并且重要的类型主要有以下二种: I类:全等等效——不管是恒温恒容....还是恒温恒压.....。只要“一边倒”倒后各反应物起始用量是一致的........就是全等等效

“全等等效”平衡除了满足等效平衡特征[转化率相同,平衡时百分含量(体积分数、物质的量分数)一定相等]外还有如下特征“.一边倒...”.后同物质的起始物质的量相等,平衡物质的量也一定相等。..........................

拓展与延伸:在解题时如果要求起始“物质的量相等”或“平衡物质的量相等”字眼的肯定是等效平衡这此我们只要想办法让起始用量相等就行

例1.将6molX和3molY的混合气体置于密闭容器中,发生如下反应:2X (g)+Y(g) 2Z (g),反应达到平衡状态A时,测得X、Y、Z气体的物质的量分别为1.2mol、0.6mol和4.8mol。若X、Y、Z的起始物质的量分别可用a、b、c表示,请回答下列问题: (1)若保持恒温恒容,且起始时a=3.2mol,且达到平衡后各气体的体积分数与平衡状态A相同,则起始时b、c的取值分别为 , 。 (2)若保持恒温恒压,并要使反应开始时向逆反应方向进行,且达到平衡后各气体的物质的量与平衡A 相同,则起始时c的取值范围是 。 答案:(1)b=1.6mol c=2.8mol (2)4.8mol分析:(1)通过题意我们可以看出问题该反应是反应前后气体系数不等的反应,题中给出保持恒温恒容,且达到平衡后各气体的体积分数与平衡状态A相同可以看出该平衡应与原平衡形成全等等效....,故一定要使一边倒后的X的物质的量为6mol

而Y的物质的量为3mol。

2X (g) + Y(g) 2Z (g) 问题(1)的物质的量/mol a=3.2 b=? c=? 从Z向X、Y转化的量/mol x (1/2)x x 从上述关系可得:3.2+x=6 x=2.8 ; b+(1/2)x =3 b=1.6 c=2.8 (2)通过达到平衡后各气体的物质的量与平衡A 相同,可以知道这是一个全等等效的问题,由于三者平衡时的关系为:

2X (g) + Y(g) 2Z (g) 平衡物质的量/mol 1.2mol 0.6mol 4.8mol 从上述平衡时各物质的量可以看出当Z的物质的量超过4.8mol时该反应一定向逆方向进行,故c>4.8mol,又由于是一个全等等效的问题,所以其最大值一定是起始是a、b等于0,只投入c,即c等于6mol值最大. II类:相似等效——相似等效分两种状态分别讨论 1.恒温恒压下对于气体体系通过“一边倒”的办法转化后,只要反应物(或生成物)的物质的量的比例.......与原平衡起始态

相同,两平衡等效。 恒温恒压下的相似等效平衡的特征是:平衡时同一物质....转化率相同,百分含量(体积分数、物质的量分数)相同,浓度..

相同..

2.恒温恒容下对于反应前后气体总物质的量没有变化...........的反应来说,通过“一边倒”的办法转化后,只要反应物(或生成物)的物质的量的比例.......与原平衡起始态相同,两平衡等效。 恒温恒容下的相似等效平衡的特征是:平衡时同一物质....转化率相同,百分含量(体积分数、物质的量分数)相同,浓度..

不相同...

拓展与延伸:属于相似等效的问题,我们只要想办法让物质的量的比例.......与原平衡起始态相同起始用量相等就行

例2.将6molX和3molY的混合气体置于容积可变的密闭容器中,在恒温恒压发生如下反应:2X (g)+Y(g) 2Z (g),反应达到平衡状态A时,测得X、Y、Z气体的物质的量分别为1.2mol、0.6mol和4.8mol。若X、Y、Z的起始物质的量分别可用a、b、c表示,若起始时a=3.2mol,且达到平衡后各气体的体积分数与平衡状态A相同,则起始时b、c的取值分别为 , 。 答案: b=1.6mol c为任意值 分析:通过题意达到平衡后各气体的体积分数与平衡状态A相同,且反应是在恒温恒压下,可以看出二者属于相似等效,故起始加量只要满足物质的量的比例.......与原平衡起始态相同即可,从上述反应我们可以看出生成物只有一种,故c为任何值时

都能满足比例故C可不看,只要a:b能满足2:1即可,故b=1.6mol 【总结】通过上述分析等效平衡的问题解题的关键是:读题时注意勾画出这些条件,分清类别,用相应的方法(使起始物质量相等或起始物质的量比相等)求解。我们常采用“一边倒”(又称等价转换)的方法,分析和解决等效平衡问题

相关文档
最新文档