化学平衡移动原理总结

合集下载

高中化学必修2 化学平衡的移动1

高中化学必修2 化学平衡的移动1

高温、高压 催化剂
2 NH 3 Q
(1)当增大N2的浓度时,N2的反应速率增 大,而NH3的速率不变,正反应速率增 大,平衡向正反应方向移动
结论:在其它条件不变时,增大反应物的浓度 或减小生成物的浓度,化学平衡向正反 应移动;反之,向逆反应方向移动。
图像:
(2)当增大压强时,容器的体积减小,N2、H2、 NH3的浓度同时增大,但是,H2和N2的反 应速率增大比NH3的大,正反应速率增大快, 平衡向正反应方向移动。
C、3molC+1molD D、1molA+0.5molB+1.5molC+0.5molD (2)恒温、恒压下的等效平衡 判断方法:将生成物按方程式完全归于反应物 ,其各反应物的物质的量之比相同时,即能达 到同一平衡状态;否则为不同的平衡状态。
结论:增大压强,平衡向气体分子数目减小的 方向移动。 图像: V正
v
V正 V逆
V逆
t
(3)当升高温度时,正逆反应速率都增大,但 向吸热方向速率增大较快,总体向正反应 方向移动。 结论:当其它条件不变时,升高温度,反应 向吸热方向移动。
图像:
V正
v
V正
V逆V逆t来自(4)催化剂:使正逆反应速率同时增大相同 的倍数。
化学平衡的移动
复习回顾:
一定条件下,可逆反应进行到 1、化学平衡: 一定程度时,正反应速率和逆 反应速率相等,反应物的浓度 和生成物的浓度不再改变的状态 2、条件: 3、标志: 一定条件(温度、压强) 正逆反应速率相等 反应物浓度和生成物浓度不再 改变
一、化学平衡的移动 化学平衡移动的原因
N 2 3H 2
结论:催化剂只能加快反应速率,但不能改 变化学平衡。

化学平衡的移动机制解析浓度变化对平衡的影响机理

化学平衡的移动机制解析浓度变化对平衡的影响机理

化学平衡的移动机制解析浓度变化对平衡的影响机理化学平衡是指在封闭系统中,反应物与生成物的浓度之间达到动态平衡的状态。

在平衡状态下,各组分的浓度保持不变,但当改变平衡体系中某个物质的浓度时,平衡会发生移动,以抵消该浓度的变化。

本文将以化学平衡的移动机制为主线,解析浓度变化对平衡的影响机理。

1. 动态平衡的基本概念动态平衡是指反应物与生成物在反应过程中,正反应速率相等,且浓度保持不变的状态。

这意味着无论反应开始时反应物浓度的增加还是减少,最终反应体系会重新建立起新的平衡,并且浓度相应调整以达到平衡。

2. 影响平衡的因素平衡反应受到三个基本因素的影响:浓度、温度和压力。

本文将着重阐述浓度对平衡的影响机理。

3. 浓度变化对平衡的影响在封闭系统中,当增加或减少某一组分的浓度时,平衡体系会通过移动平衡位置来抵消浓度的变化。

以下将介绍几种常见的浓度变化对平衡的影响机理。

3.1. 浓度增加对平衡的影响当某一物质的浓度增加时,平衡体系会移动平衡位置以减少该物质的浓度。

具体而言,浓度增加会导致反应进行正向移动,以消耗过剩物质并生成反应物。

这样,反应物的浓度会减少,而生成物的浓度会增加,最终达到新的平衡。

3.2. 浓度减少对平衡的影响与浓度增加相反,当某一物质的浓度减少时,平衡体系会移动平衡位置以增加该物质的浓度。

浓度减少会导致反应进行逆向移动,以生成减少的物质。

这样,反应物的浓度会增加,而生成物的浓度会减少,最终达到新的平衡。

4. Le Chatelier原理浓度变化对平衡的影响可由Le Chatelier原理加以解释。

Le Chatelier原理指出,在平衡反应中,一个系统受到的扰动将使系统发生变化,以抵消这个扰动。

具体来说,当平衡体系遭受浓度的变化时,系统会产生反应以减少浓度的变化,重新建立平衡。

5. 实验验证为了验证浓度变化对平衡的影响,科学家进行了一系列实验。

以铁离子和铁氰化物反应为例,当向平衡反应体系中添加铁离子时,平衡位置会朝着反应物的生成方向移动。

化学反应平衡的移动-概述说明以及解释

化学反应平衡的移动-概述说明以及解释

化学反应平衡的移动-概述说明以及解释1.引言1.1 概述化学反应平衡是指反应物与生成物在一定条件下达到一定的比例关系,达到动态平衡的状态。

在化学反应中,反应物与生成物之间的相互转化是不可避免的,而达到平衡状态后,反应物和生成物的浓度并不会发生明显的变化。

化学反应平衡的移动是指通过调节反应条件,可以使平衡反应朝着某个方向发生偏移,使得生成物或反应物的浓度发生改变。

本文将深入探讨化学反应平衡移动的原理和方法,分析影响化学反应平衡移动的因素,以及探讨如何通过适当的方法来移动化学反应平衡。

通过深入研究这些内容,我们可以更好地理解化学反应平衡的机理,为实验和工业生产中的化学反应控制提供参考和指导。

1.2 文章结构本文即将讨论化学反应平衡的移动问题,主要包括以下几个部分:第一部分将从概述化学反应平衡的基本概念入手,介绍化学反应平衡的定义、特点以及重要性,为后续的讨论做铺垫。

第二部分将详细探讨影响化学反应平衡移动的因素,包括温度、压力、浓度、催化剂等多个方面,帮助读者全面了解影响化学反应平衡的各种因素。

第三部分将介绍移动化学反应平衡的各种方法,包括改变反应条件、调节反应物浓度、使用催化剂等,帮助读者深入了解如何控制和调节化学反应平衡。

最后,结论部分将总结本文内容,强调化学反应平衡移动的重要性,并展望未来研究方向,为读者提供对该领域的更深入思考和探索的方向。

通过对以上内容的探讨,希望能够帮助读者更好地理解化学反应平衡的移动问题,进而提高对化学反应的理解和应用能力。

1.3 目的:本文旨在深入探讨化学反应平衡的移动机制,揭示影响化学反应平衡移动的因素,并介绍移动化学反应平衡的方法。

通过对这些内容的全面阐述,旨在帮助读者更好地理解化学反应平衡的本质,以及如何控制和调节化学反应平衡达到所需的结果。

此外,我们希望通过本文的撰写,引起更多对于化学反应平衡移动的关注,为未来相关研究提供新的启示和方向。

Through the comprehensive exposition of these contents, the purpose is to help readers better understand the essence of chemical reaction equilibrium and how to control and adjust the chemical reaction equilibrium to achieve the desired results. Inaddition, we hope that through the writing of this article, we can arouse more attention to the movement of chemical reaction equilibrium, and provide new insights and directions for future related research.2.正文2.1 化学反应平衡的基本概念化学反应平衡是指反应物转化为生成物的速度与生成物转化为反应物的速度达到动态平衡的状态。

高中化学平衡移动知识点总结

高中化学平衡移动知识点总结

高中化学平衡移动知识点总结:
1. 平衡常数(Kc)和平衡表达式:
-平衡常数是表示在平衡时各物质浓度的关系,通常用Kc表示。

-平衡表达式根据反应物和生成物的摩尔比例关系写出,每个物质的浓度用方括号表示。

2. 影响平衡的因素:
-反应物浓度:增加反应物浓度会驱使反应向生成物方向移动,减少反应物浓度则会导致反应向反应物方向移动。

-生成物浓度:增加生成物浓度会导致反应向反应物方向移动,减少生成物浓度则会促使反应向生成物方向移动。

-温度:温度升高通常会使反应向吸热方向移动,降低温度则使反应向放热方向移动。

-压力(对于气体反应):增加压力会使反应向分子数较少的方向移动,减小压力则会促使反应向分子数较多的方向移动。

3. Le Chatelier原理:
-当系统处于平衡状态下,当外界对系统进行扰动时,系统会通过移动平衡来减小扰动。

- Le Chatelier原理指出,当系统受到温度、浓度或压力等因素
的改变时,系统会通过移动平衡来抵消这种改变。

4. 平衡移动的影响:
-加热反应体系:增加温度会使平衡向吸热方向移动,即吸热反应向前进。

-压缩气体反应体系:增加压强会使平衡向分子数较少的方向移动,减小压强则促使平衡向分子数较多的方向移动。

-改变浓度:增加某个物质的浓度会使平衡向相应生成物的方向移动,减小浓度则导致平衡向反应物的方向移动。

5. 平衡移动的时间:
-平衡移动并不是瞬间发生的,它需要一定的时间。

具体时间取决于反应速率和反应机制。

理解平衡移动知识点对于理解化学反应的平衡态及其变化非常重要,帮助我们预测和解释实验结果,并在实际应用中优化反应条件。

化学反应的平衡移动

化学反应的平衡移动

化学反应的平衡移动在化学反应中,平衡是指反应物和生成物的浓度或分压达到一定的比例,使反应达到一个动态平衡的状态。

平衡的移动是指改变反应条件,如温度、压力、浓度等,导致反应平衡位置的改变。

本文将探讨化学反应中平衡移动的原因、影响因素以及与平衡移动相关的应用。

一、化学反应的平衡移动原因化学反应的平衡移动是基于Le Chatelier原理,即“系统在受到扰动时,会产生使该扰动缓解的变化”。

根据这个原理,当化学反应受到外界条件的改变时,系统会通过移动平衡位置来缓解这种扰动。

具体而言,以下是一些导致平衡移动的原因:1. 温度变化:改变反应温度会影响反应速率和平衡位置。

一般而言,通过增加或降低温度,反应平衡位置可以相应地向生成物或反应物方向移动。

2. 压力变化:只对气态反应有效,改变反应体系的总压力会导致反应平衡位置的变化。

通过增加或减少总压力,反应平衡位置可以向分子数较多的一方移动。

3. 浓度变化:改变反应物或生成物的浓度会导致反应平衡位置发生变化。

增加反应物浓度会使反应平衡位置向生成物方向移动,而增加生成物浓度会使反应平衡位置向反应物方向移动。

4. 催化剂的使用:催化剂可以影响反应速率,但对反应平衡位置没有直接的影响。

二、影响化学反应平衡移动的因素除了上述的原因外,还有其他因素可以影响化学反应平衡移动。

以下是一些重要的因素:1. 反应物和生成物的物态:固态反应物和生成物不会因体积的变化而引起平衡移动,而气态和溶液态的反应物和生成物则会受到压力和浓度的影响。

2. 反应的平衡常数:平衡常数描述了反应体系在平衡状态下物质浓度之间的比例。

平衡常数越大,反应偏向生成物的概率越大;平衡常数越小,反应偏向反应物的概率越大。

3. 反应速率:平衡是反应速率相等时达到的,因此改变反应速率会导致平衡位置的移动。

例如,通过增加反应物的浓度或降低生成物的浓度,可以加快反应速率,导致平衡位置向生成物方向移动。

三、平衡移动的应用1. 工业应用:平衡移动的原理在工业生产中广泛应用。

高中化学平衡移动的超全知识点总结

高中化学平衡移动的超全知识点总结

高中化学平衡移动的超全知识点总结一、化学平衡的移动1.化学平衡的移动(1)定义达到平衡状态的反应体系,条件改变,引起平衡状态被破坏的过程。

(2)化学平衡移动的过程2.影响化学平衡移动的因素(1)温度:在其他条件不变的情况下,升高温度,化学平衡向吸热反应方向移动;降低温度,化学平衡向放热反应方向移动。

(2)浓度:在其他条件不变的情况下,增大反应物浓度或减小生成物浓度,化学平衡向正反应方向移动;减小反应物浓度或增大生成物浓度,化学平衡向逆反应方向移动。

(3)压强:对于反应前后总体积发生变化的化学反应,在其他条件不变的情况下,增大压强,化学平衡向气体体积减小的方向移动;减小压强,化学平衡向气体体积增大的方向移动。

(4)催化剂:由于催化剂能同时同等程度地增大或减小正反应速率和逆反应速率,故其对化学平衡的移动无影响。

3.勒夏特列原理在密闭体系中,如果改变影响化学平衡的一个条件(如温度、压强或浓度等),平衡就向能够减弱这种改变的方向移动。

对于反应mA(g)+nB(g)pC(g)+qD(g),分析如下:2.浓度、压强和温度对平衡移动影响的几种特殊情况(1)改变固体或纯液体的量,对平衡无影响。

(2)当反应混合物中不存在气态物质时,压强的改变对平衡无影响。

(3)对于反应前后气体体积无变化的反应,如H2(g)+I2(g)2HI(g),压强的改变对平衡无影响。

但增大(或减小)压强会使各物质的浓度增大(或减小),混合气体的颜色变深(或浅)。

(4)恒容时,同等程度地改变反应混合物中各物质的浓度时,应视为压强的影响,增大(减小)浓度相当于增大(减小)压强。

(5)在恒容容器中,当改变其中一种气态物质的浓度时,必然会引起压强的改变,在判断平衡移动的方向和物质的转化率、体积分数变化时,应灵活分析浓度和压强对化学平衡的影响。

若用α表示物质的转化率,φ表示气体的体积分数,则:①对于A(g)+B(g)C(g)类反应,达到平衡后,保持温度、容积不变,加入一定量的A,则平衡向正反应方向移动,α(B)增大而α(A)减小,φ(B)减小而φ(A)增大。

化学平衡移动原理

化学平衡移动原理

压强对化学平衡的影响:
提醒:若没有特殊说明,压强的改变就默认为改变容器容积的方 法来实现,如增大压强,就默认为压缩气体体积使压强增大。
(1)前提条件: 反应体系中有气体参加且反应 。
(2)结论: (其它条件不变的情况下)
增大压强,平衡向气体体积缩小的方向移动, 减小压强,平衡向气体体积增大的方向移动
速率减小
B.升高温度有利于反应速率增加,从而缩短达
到平衡的时间
C.达到平衡后,升高温度或增大压强都有利于
该反应平衡正向移动
D.达到平衡后,降低温度或减小压强都有利于
该反应平衡正向移动
2、某一可逆反应,A+B
C,在一定
条件下达平衡,C的含量与时间,温度关系如
图所示,则:
(1):T1__>_T2
(2):正反应为__放_热反应
C%
T2 T1
t1
t2
t
在高温下,反应 2HBr(g) H2(g) + Br2(g) (正反应为吸热反应)要使混合气体颜色加 深,可采取的方法是
A、减小压强
B、缩小体积 C、升高温度 D、增大H2浓度
( BC )
4 、催化剂对化学平衡的影响
使用催化剂
V正、V逆都增大,且增大的幅度相等 平衡不移动(但到达平衡时间缩短)
4.恒温下, 反应aX(g) bY(g) +cZ(g)达到平 衡后, 把容器体积压缩到原来的一半且达到
新平衡时, X的物质的量浓度由0.1mol/L增
大到0.19mol/L, 下列判断正确的是: A. a>b+c B. a<b+c
A
C. a=b+c D. a=b=c
3、温度对化学平衡的影响
Co(H2O)62++4Cl-

化学平衡移动的总结

化学平衡移动的总结

化学平衡移动的总结化学平衡是化学反应过程中,反应物与生成物浓度达到一定比例时的一种状态。

在这种状态下,反应物与生成物的浓度之间的比值保持不变,称为平衡常数。

化学平衡的移动是指改变化学平衡条件,使得反应物与生成物的浓度发生变化。

本文将对化学平衡移动进行总结,包括影响化学平衡移动的因素以及如何通过改变这些因素来移动平衡。

一、影响化学平衡移动的因素1. 温度:温度是影响化学平衡移动的重要因素之一。

根据Le Chatelier原理,当反应放热时,提高温度会使平衡向反应物一侧移动,反之则向生成物一侧移动。

这是因为提高温度会增加反应物的动能,促使反应向吸热方向进行,从而使平衡移动。

2. 压力(或浓度):对于气体反应,压力的改变会影响化学平衡的移动方向。

当压力增加时,平衡会向压力较小的一侧移动,以减小压力。

而对于溶液反应,则可以通过改变浓度来移动平衡。

增加反应物浓度会使平衡向生成物一侧移动,反之亦然。

3. 物质的添加或去除:向平衡体系中添加或去除某种物质,会导致平衡移动。

当某种物质被添加到平衡体系中时,平衡会向减少该物质的一侧移动,以恢复平衡。

而当某种物质被去除时,平衡会向补充该物质的一侧移动。

二、移动化学平衡的方法1. 温度控制:通过改变温度,可以移动化学平衡。

例如,对于放热反应,可以通过提高温度来向生成物一侧移动平衡;对于吸热反应,则可以通过降低温度来移动平衡。

2. 压力(或浓度)控制:对于气体反应,可以通过改变压力来移动平衡。

增加压力会使平衡向压力较小的一侧移动,减小压力则相反。

对于溶液反应,可以通过改变浓度来移动平衡。

增加反应物浓度会使平衡向生成物一侧移动,减小反应物浓度则相反。

3. 物质的添加或去除:通过向平衡体系中添加或去除物质,可以移动平衡。

添加某种物质会使平衡向减少该物质的一侧移动,去除某种物质则相反。

三、案例分析1. 铵氨水的制备:铵氨水(氨水和铵盐的混合物)可以通过以下反应制备:NH3(g) + H2O(l) ⇌ NH4OH(aq)在该反应中,平衡向生成物一侧移动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学平衡移动原理总结work Information Technology Company.2020YEAR化学平衡系列问题化学平衡移动影响条件(一)在反应速率(v )-时间(t )图象中,在保持平衡的某时刻t 1改变某一条件前后,V 正、V 逆的变化有两种:V 正、V 逆同时突变——温度、压强、催化剂的影响 V 正、V 逆之一渐变——一种成分浓度的改变 对于可逆反应:mA(g) + nB(g)pc(g) + qD(g) + (正反应放热)【总结】增大反应物浓度或减小生成物浓度,化学平衡向正反应方向移动;减小反应物浓度或增大生成物浓度,化学平衡向逆反应方向移动。

增大压强,化学平衡向系数减小的方向移动;减小压强,平衡会向系数增大的方向移动。

升高温度,平衡向着吸热反应的方向移动;降低温度,平衡向放热反应的方向移动。

催化剂不改变平衡移动 (二)勒夏特列原理(平衡移动原理)如果改变影响平衡的一个条件,平衡就会向着减弱这种改变的方向移动。

具体地说就是:增大浓度,平衡就会向着浓度减小的方向移动;减小浓度,平衡就会向着浓度增大的方向移动。

反应条件 条件改变 v 正 v 逆 v 正与v 逆关系 平衡移 动方向 图示 选项浓 度增大反应物浓度 减小反应物浓度 增大生成物浓度 减小生成物浓度加快 减慢 不变 不变 不变 不变 加快 减慢 v 正>v 逆 v 正<v 逆 v 正<v 逆 v 正>v 逆 正反应方向 逆反应方向 逆反应方向 正反应方向 B C B C 压 强 m+n >p+q m+n <p+q m+n =p+q 加压加快 加快 加快 加快 加快 加快 v 正>v 逆 v 正<v 逆 v 正=v 逆 正反应方向 逆反应方向 不移动 A A E m+n >p+q m+n <p+q m+n =p+q减压 减慢 减慢 减慢 减慢 减慢 减慢 v 正<v 逆 v 正>v 逆 v 正=v 逆 逆反应方向 正反应方向 不移动 D D F温 度 升 温 降 温 加快 减慢 加快 减慢 v 正<v 逆 v 正>v 逆 逆反应方向 正反应方向 A D 催化剂 加快加快加快v 正=v 逆不移动E增大压强,平衡就会向着压强减小的方向移动;减小压强,平衡就会向着压强增大的方向移动。

升高温度,平衡就会向着吸热反应的方向移动;降低温度,平衡就会向着放热反应的方向移动。

平衡移动原理对所有的动态平衡都适用,如对后面将要学习的电离平衡,水解平衡也适用。

(讲述:“减弱”“改变”不是“消除”,更不能使之“逆转”。

例如,当原平衡体系中气体压强为P时,若其它条件不变,将体系压强增大到2P,当达到新的平衡时,体系压强不会减弱至P甚至小于P,而将介于P~2P之间。

)化学平衡小结——等效平衡问题一、概念在一定条件(恒温恒容或恒温恒压)下,同一可逆反应体系,不管是从正反应开始,还是从逆反应开始,在达到化学平衡状态时,任何相同组分的百分含量....(体积分数、物质的量分数等)均相同,这样的化学平衡互称等效平衡(包括“全等等效和相似等效”)。

概念的理解:(1)只要是等效平衡,平衡时同一物质的百分含量....(体积分数、物质的量分数等)一定相同(2)外界条件相同:通常可以是①恒温、恒容,②恒温、恒压。

(3)平衡状态只与始态有关,而与途径无关,(如:①无论反应从正反应方向开始,还是从逆反应方向开始②投料是一次还是分成几次③反应容器经过扩大—缩小或缩小—扩大的过程,)比较时都运用“一边倒”倒回到起始的状态.............进行比较。

二、等效平衡的分类在等效平衡中比较常见并且重要的类型主要有以下二种:I类:全等等效——不管是恒温恒容........就是全等等效....还是恒温恒压.....。

只要“一边倒”倒后各反应物起始用量是一致的“全等等效”平衡除了满足等效平衡特征[转化率相同,平衡时百分含量(体积分数、物质的量分数)一定相等]外还有如下特征“.一边倒.............................”.后同物质的起始物质的量相等,平衡物质的量也一定相等。

拓展与延伸:在解题时如果要求起始“物质的量相等”或“平衡物质的量相等”字眼的肯定是等效平衡这此我们只要想办法让起始用量相等就行例1.将6molX和3molY的混合气体置于密闭容器中,发生如下反应:2X (g)+Y(g),反应达到平衡状态A 时,测得X、Y、Z气体的物质的量分别为1.2mol、0.6mol和4.8mol。

若X、Y、Z的起始物质的量分别可用a、b、c表示,请回答下列问题:(1)若保持恒温恒容,且起始时a=3.2mol,且达到平衡后各气体的体积分数与平衡状态A相同,则起始时b、c的取值分别为,。

(2)若保持恒温恒压,并要使反应开始时向逆反应方向进行,且达到平衡后各气体的物质的量与平衡A 相同,则起始时c的取值范围是。

答案:(1)b=1.6mol c=2.8mol (2)4.8mol<c<6mol分析:(1)通过题意我们可以看出问题该反应是反应前后气体系数不等的反应,题中给出保持恒温恒容,且达到平衡后各气体的体积分数与平衡状态A相同可以看出该平衡应与原平衡形成全等等效....,故一定要使一边倒后的X的物质的量为6mol而Y的物质的量为3mol。

2X (g) + Y(g) 2Z (g)问题(1)的物质的量/mol a=3.2 b= c=从Z 向X 、Y 转化的量/mol x (1/2)x x从上述关系可得:3.2+x=6 x=2.8 ; b+(1/2)x =3 b=1.6 c=2.8(2)通过达到平衡后各气体的物质的量与平衡A 相同,可以知道这是一个全等等效的问题,由于三者平衡时的关系为:2X (g) + Y(g)2Z (g)平衡物质的量/mol 1.2mol 0.6mol 4.8mol从上述平衡时各物质的量可以看出当Z 的物质的量超过4.8mol 时该反应一定向逆方向进行,故c>4.8mol,又由于是一个全等等效的问题,所以其最大值一定是起始是a 、b 等于0,只投入c,即c 等于6mol 值最大. II 类:相似等效——相似等效分两种状态分别讨论1.恒温恒压下对于气体体系通过“一边倒”的办法转化后,只要反应物(或生成物)的物质的量的比例.......与原平衡起始态相同,两平衡等效。

恒温恒压下的相似等效平衡的特征是:平衡时同一物质....转化率相同,百分含量(体积分数、物质的量分数)相同,浓度..相同..2.恒温恒容下对于反应前后气体总物质的量没有变化...........的反应来说,通过“一边倒”的办法转化后,只要反应物(或生成物)的物质的量的比例.......与原平衡起始态相同,两平衡等效。

恒温恒容下的相似等效平衡的特征是:平衡时同一物质....转化率相同,百分含量(体积分数、物质的量分数)相同,浓度..不相同...拓展与延伸:属于相似等效的问题,我们只要想办法让物质的量的比例.......与原平衡起始态相同起始用量相等就行 例2.将6molX 和3molY 的混合气体置于容积可变的密闭容器中,在恒温恒压发生如下反应:2X (g)+Y(g)2Z(g),反应达到平衡状态A 时,测得X 、Y 、Z 气体的物质的量分别为1.2mol 、0.6mol 和4.8mol 。

若X 、Y 、Z 的起始物质的量分别可用a 、b 、c 表示,若起始时a=3.2mol ,且达到平衡后各气体的体积分数与平衡状态A 相同,则起始时b 、c 的取值分别为 , 。

答案: b=1.6mol c 为任意值分析:通过题意达到平衡后各气体的体积分数与平衡状态A 相同,且反应是在恒温恒压下,可以看出二者属于相似等效,故起始加量只要满足物质的量的比例.......与原平衡起始态相同即可,从上述反应我们可以看出生成物只有一种,故c 为任何值时都能满足比例故C 可不看,只要a:b 能满足2:1即可,故b=1.6mol【总结】通过上述分析等效平衡的问题解题的关键是:读题时注意勾画出这些条件,分清类别,用相应的方法(使起始物质量相等或起始物质的量比相等)求解。

我们常采用“一边倒”(又称等价转换)的方法,分析和解决等效平衡问题例3:在一定温度下,把2mol SO 2和1mol O 2通入一定容积的密闭容器中,发生如下反应,22O SO 2 3SO 2,当此反应进行到一定程度时反应混合物就处于化学平衡状态。

现在该容器中维持温度不变,令a 、b 、c 分别代表初始时加入的322SO O SO 、、的物质的量(mol ),如果a 、b 、c 取不同的数值,它们必须满足一定的相互关系,才能保证达到平衡状态时,反应混合物中三种气体的百分含量仍跟上述平衡完全相同。

请填空:(1)若a=0,b=0,则c=___________。

(2)若a=0.5,则b=___________,c=___________。

(3)a 、b 、c 的取值必须满足的一般条件是___________,___________。

(请用两个方程式表示,其中一个只含a 和c ,另一个只含b 和c )解析:通过化学方程式:22O SO 2+3SO 2可以看出,这是一个化学反应前后气体分子数不等的可逆反应,在定温、定容下建立的同一化学平衡状态。

起始时,无论怎样改变322SO O SO 、、的物质的量,使化学反应从正反应开始,还是从逆反应开始,或者从正、逆反应同时开始,但它们所建立起来的化学平衡状态的效果是完全相同的,即它们之间存在等效平衡关系。

我们常采用“等价转换”的方法,分析和解决等效平衡问题。

(1)若a=0,b=0,这说明反应是从逆反应开始,通过化学方程式22O SO 2+3SO 2可以看出,反应从2molSO 3开始,通过反应的化学计量数之比换算成2SO 和2O 的物质的量(即等价转换),恰好跟反应从2mol SO 2和1mol O 2的混合物开始是等效的,故c=2。

(2)由于a=0.5<2,这表示反应从正、逆反应同时开始,通过化学方程式22O SO 2+3SO 2可以看出,要使0.5 mol SO 2反应需要同时加入0.25mol O 2才能进行,通过反应的化学计量数之比换算成SO 3的物质的量(即等价转换)与0.5 mol SO 3是等效的,这时若再加入1.5 mol SO 3就与起始时加入2 mol SO 3是等效的,通过等价转换可知也与起始时加入2 mol SO 2和1mol O 2是等效的。

故b=0.25,c=1.5。

(3)题中要求2mol SO 2和1mol O 2要与a mol SO 2、b mol O 2和c mol SO 3建立等效平衡。

由化学方程式22O SO 2+3SO 2可知,c mol SO 3等价转换后与c mol SO 2和2O mol 2c等效,即是说,2SO mol )c a (+和2O mol )2cb (+与a mol SO 2、b mol O 2和c mol SO 3等效,那么也就是与2mol SO 2和1mol O 2等效。

相关文档
最新文档