(完整版)任意角和弧度制练习题有答案
高一数学(必修一)《第五章-任意角和弧度制》练习题及答案解析-人教版

高一数学(必修一)《第五章 任意角和弧度制》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、多选题1.已知扇形的周长是12,面积是8,则扇形的圆心角的弧度数可能是( ) A .1 B .4C .2D .3二、单选题2.终边与直线y x =重合的角可表示为( ) A .45180,k k Z ︒︒+⋅∈ B .45360,k k Z ︒︒+⋅∈ C .135180,k k Z ︒︒+⋅∈ D .225360,k k Z ︒︒+⋅∈3.下列角中与116π-终边相同的角是( ) A .30-︒B .40-︒C .20︒D .390︒4.下列说法正确的是( )A .长度等于半径的弦所对的圆心角为1弧度B .若tan 0α≥,则()2k k k Z ππαπ≤≤+∈C .若角α的终边过点()()3,40P k k k ≠,则4sin 5α D .当()224k k k Z ππαπ<<+∈时,则sin cos αα<5.已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π6.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中具有表现力的瞬间(如图).现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4πm肩宽约为8πm ,“弓”所在圆的半径约为5m 41.414≈和1.732)( )A .1.012mB .1.768mC .2.043mD .2.945m三、填空题7.6730'︒化为弧度,结果是______.8.已知扇形的周长为20cm ,面积为92cm ,则扇形的半径为________.9.折扇最早出现于公元五世纪的中国南北朝时代,《南齐书》上说:“褚渊以腰扇障日.”,据《通鉴注》上的解释,“腰扇”即折扇.一般情况下,折扇可以看作从一个圆面中剪下的扇形制作而成,设扇形的弧长为l ,扇形所在的圆的半径为r ,当l 与r 的比值约为2.4时,则折扇看上去的形状比较美观.若一把折扇所在扇形的半径为30cm ,在保证美观的前提下,此折扇所在扇形的面积是_______2cm .10.设地球半径为R ,地球上北纬30°圈上有A ,B 两点,点A 在西经10°,点B 在东经110°,则点A 和B 两点东西方向的距离是___________.四、解答题11.将下列各角化成360,,0360k k βαα=+⋅︒∈︒≤<︒Z 的形式,并指出它们是第几象限的角:(1)1320︒;(2)315-︒;(3)1500︒;(4)1610-︒.12.根据角度制和弧度制的转化,已知条件:1690α=︒(1)把α表示成2k πβ+的形式[)()Z,02k βπ∈∈,;(2)求θ,使θ与α的终边相同,且()4,2θππ∈--.13.已知一扇形的圆心角是72°,半径为20,求扇形的面积. 14.已知一扇形的圆心角为α,半径为R ,弧长为l. (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)已知扇形的周长为10 cm ,面积是4 cm 2,求扇形的圆心角;(3)若扇形周长为20 cm ,当扇形的圆心角α为多少弧度时,则这个扇形的面积最大? 15.已知扇形的周长为c ,当扇形的圆心角为多少弧度时,则扇形的面积最大.16.某商场共有三层楼,在其圆柱形空间内安装两部等长的扶梯Ⅰ、Ⅱ供顾客乘用,如图,一顾客自一楼点A 处乘Ⅰ到达二楼的点B 处后,沿着二楼地面上的弧BM 逆时针步行至点C 处,且C 为弧BM 的中点,再乘Ⅱ到达三楼的点D 处,设圆柱形空间三个楼面圆的中心分别为半径为8m ,相邻楼层的间距为4m ,两部电梯与楼面所成角的正弦值均为13.(1)求此顾客在二楼地面上步行的路程; (2)求异面直线AB 和CD 所成角的余弦值.17.某地政府部门欲做一个“践行核心价值观”的宣传牌,该宣传牌形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知2OA =米,OB x =米()02x <<,线段BA 、线段CD 与弧BC 、弧AD 的长度之和为6米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记该宣传牌的面积为y ,试问x 取何值时,则y 的值最大?并求出最大值.参考答案与解析1.AB【分析】利用扇形的弧长与面积公式建立方程组求解,再利用圆心角公式.【详解】设扇形的半径为r ,弧长为l ,面积为S ,圆心角为α,则212l r +=,182S lr ==解得2r =和8l =或4r =和4l ,则4lrα==或1.故C ,D 错误. 故选:AB . 2.A【分析】根据终边相同的角的概念,简单计算即可.【详解】终边与直线y x =重合的角可表示为45180,k k Z +⋅∈. 故选:A. 3.D【分析】由角度制与弧度制的互化公式得到113306π-=-︒,结合终边相同角的表示,即可求解. 【详解】由角度制与弧度制的互化公式,可得113306π-=-︒ 与角330-︒终边相同的角的集合为{|330360,}A k k Z αα==-︒+⋅︒∈ 令2k =,可得390α=︒所以与角330α=-︒终边相同的角是390α=︒. 故选:D. 4.D【分析】利用弧度制、三角函数值的正负、三角函数的定义和三角函数线的应用逐一判断选项即可. 【详解】对于A ,长度等于半径的弦所对的圆心角为3π弧度,A 错误; 对于B ,若tan 0α≥,则()2k k k ππαπ≤<+∈Z ,B 错误;对于C ,若角α的终边过点()()3,40P k k k ≠,则4sin 5α=±,C 错误;对于D ,当()224k k k ππαπ<<+∈Z 时,则sin cos αα<,D 正确.故选D.5.D【分析】根据扇形的圆心角、弧长和半径的关系以及扇形的面积求解. 【详解】解:将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r =由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π. 故选:D. 6.B【分析】由题意分析得到这段弓形所在的弧长,结合弧长公式求出其所对的圆心角,双手之间的距离,求得其弦长,即可求解.【详解】如图所示,由题意知“弓”所在的弧ACB 的长54488l ππππ=++=,其所对圆心角58524ππα==则两手之间的距离()522sin 1.768m 44AB AD π==⨯⨯≈.故选:B .7.38π【解析】根据角度制与弧度制的关系180π︒=,转化即可. 【详解】180π︒= 1180π︒∴=36730'67.567.51808ππ︒∴︒==⨯=故答案为:38π 【点睛】本题主要考查了弧度制与角度制的转化,属于容易题. 8.9cm【分析】由题意设扇形的半径为r cm ,弧长为l cm ,由扇形的周长、面积可得1(202)92r r -=,解出r 后,验证即可得解.【详解】设扇形的半径为r cm ,弧长为l cm ,圆心角为θ ∵220l r +=,∴202l r =-∴192lr =,即1(202)92r r -=,解得1r =或9r = 当1r =时,则18l =,则181821l r θπ===>,不合题意,舍去; 当9r =时,则2l =,则229l r θπ==<,符合题意. 故答案为:9cm.【点睛】本题考查了扇形弧长及面积公式的应用,考查了运算求解能力,属于基础题. 9.1080【分析】首先求出弧长,再根据扇形面积公式计算可得;【详解】解:依题意30r =cm , 2.4lr=所以 2.472l r ==cm ,所以117230108022S lr ==⨯⨯=2cm ;故答案为:108010 【分析】求出,O A O B ''的长度,确定AO B ∠'的大小,再由弧长公式求得A,B 两地的东西方向的距离. 【详解】如图示,设O '为北纬30°圈的圆心,地球球心为O则60AOO '∠= ,故AO '=,即北纬30°R由题意可知2π1203AO B '∠==故点A 和B 两点东西方向的距离即为北纬30°圈上的AB 的长故AB 的长为2π3R =11.(1)132********︒=︒⨯+︒,第三象限; (2)()315360145-︒=︒⨯-+︒,第一象限; (3)1500360460︒=︒⨯+︒,第一象限; (4)()16103605190-︒=︒⨯-+︒,第三象限.【分析】先将各个角化为指定形式,根据通过终边相同的角的概念判断出角所在象限.【详解】(1)132********︒=︒⨯+︒,因为240︒的角终边在第三象限,所以1320︒是第三象限角; (2)()315360145-︒=︒⨯-+︒,因为45︒的角终边在第一象限,所以315-︒是第一象限角; (3)1500360460︒=︒⨯+︒,因为60︒的角终边在第一象限,所以1500︒是第一象限角; (4)()16103605190-︒=︒⨯-+︒,因为190︒的终边在第三象限,所以1610-︒是第三象限角. 12.(1)254218α=⨯π+π; (2)4718θπ=-.【分析】(1)先把角度数化成弧度数,再表示成符合要求的形式. (2)由(1)可得252,(Z)18k k θππ=+∈,再按给定范围求出k 值作答. (1)依题意,169251690169081801818παπππ=︒=⨯==+ 所以254218α=⨯π+π. (2)由(1)知252,(Z)18k k θππ=+∈,而(4,2)θππ∈--,则25422,()18k k Z ππππ-<+<-∈,解得2k =- 所以254741818θ=-π+π=-π. 13.80π【分析】先求出弧长,再利用扇形的面积公式直接求解. 【详解】设扇形弧长为l ,因为圆心角272721805ππ︒⨯==rad 所以扇形弧长2·2085l r παπ⨯=== 于是,扇形的面积S =12l ·r =12×8π×20=80π. 14.(1)103π;(2)12;(3)=10,=2l α 【分析】(1)根据扇形的弧长公式进行计算即可.(2)根据扇形的周长公式以及面积公式建立方程关系进行求解 (3)根据扇形的扇形公式结合基本不等式的应用进行求解即可. 【详解】(1)α=60°=rad ,∴l =α·R =×10=(cm).(2)由题意得解得 (舍去),故扇形圆心角为. (3)由已知得,l +2R =20.所以S =lR = (20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,则S 取得最大值25 此时l =10,α=2.【点睛】本题主要考查扇形的弧长公式和面积公式的应用,根据相应的弧长公式和面积公式建立方程关系是解决本题的关键.15.当扇形的圆心角为2rad 时,则扇形的面积最大.【解析】设扇形的半径为r ,弧长为l ,利用周长公式,求得2l c r =-,代入扇形的面积公式,结合二次函数的性质,即可求解.【详解】设扇形的半径为r ,弧长为l 则2l r c +=,即2(0)2c l c r r =-<<由扇形的面积公式12S lr =,代入可得222111(2)()22416c S c r r r cr r c =-=-+=--+当4c r =时,则即22cl c r =-=时,则面积S 取得最小值此时2l rad r α==,面积的最小值为2c 16.【点睛】本题主要考查了扇形的周长,弧长公式,以及扇形的面积公式的应用,其中解答中熟记扇形的弧长公式和面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题. 16.(1)2πm【分析】(1)过点B 作一楼地面的垂线,垂足为B ',则B '落在圆柱底面圆上,结合题意计算出1BO M ∠的大小,再利用扇形的弧长公式即可得出结果.(2)建立空间直角坐标系,求出异面直线AB 和CD 的方向向量,再由异面直线所成角的向量公式代入即可得出答案. (1)如图,过点B 作一楼地面的垂线,垂足为B ',则B '落在圆柱底面圆上 连接B A ',则B A '即为BA 在圆柱下底面上的射影 故BAB '∠即为电梯Ⅰ与楼面所成的角,所以1sin 3BAB '∠=.因为4BB AM '==,所以AB '=在AOB '中8OA OB ='=,所以AOB '是等腰直角三角形 连接1O ,B ,1O M ,则1π2BO M AOB '∠=∠= 因为BC CM =,所以BC 的长为π82π4⨯= 故此顾客在二楼地面上步行的路程为2π m . (2)连接2OO ,由(1)可知所在直线两两互相垂直.以O 为原点OB ',OA 和2OO 的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图所示,则()8,0,4B ()0,8,0A 与()C 和()D -,所以()8,8,4AB =- ()4CD =-. 设异面直线AB 和CD 所成角为θ,则·42cos cos ,=9AB CD AB CD AB CDθ==故异面直线AB 和CD 17.(1)22(02)2x x x θ+=<<+; (2)当12x =时,则y 的值最大,最大值为94.【分析】(1)根据弧长公式和周长列方程得出θ关于x 的函数解析式;(2)根据面积公式求出y 关于x 的函数表达式,根据二次函数性质可得y 的最大值. (1)根据题意,弧BC 的长度为x θ米,弧AD 的长度2AD θ=米2(2)26x x θθ∴-++=∴22(02)2x x x θ+=<<+. (2)依据题意,可知2211222OAD OBC y S S x θθ=-=⨯-扇扇 化简得:22y x x =-++ 02x <<∴当12x =,则2max 1192224y ⎛⎫=-++= ⎪⎝⎭.∴当12x =时,则y 的值最大,且最大值为94.。
高一任意角与弧度制题型练习(全)

任意角知识梳理一、角的概念的推广1.角按其旋转方向可分为:正角,零角,负角.①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角;②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角.例如,画出下列各角:,,.2.在直角坐标系中讨论角:①角的顶点在原点,始边在轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角.②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角.二、终边相同的角的集合设表示任意角,所有与终边相同的角,包括本身构成一个集合,这个集合可记为.集合的每一个元素都与的终边相同,当时,对应元素为.例如,如图,角、角和角都是以射线为终边的角,它们是终边相同的角.特别提醒:为任意角,“”这一条件不能漏;与中间用“”连接,可理解成;当角的始边相同时,相等的角的终边一定相同,而终边相同的角不一定相等.终边相同的角有无数个,它们相差的整数倍.终边不同则表示的角一定不同.三、区间角、区域角1.区间角、区域角的定义介于两个角之间的角的集合叫做区间角,如.终边介于某两角终边之间的角的几何叫做区域角,显然区域角包括无数个区间角.2.区域角的写法(1)若角的终边落在一个扇形区域内,写区域角时,先依逆时针方向由小到大写出一个区间角,然后在它的两端分别加上“”,右端末注明“”即可.(2)若角的终边落在两个对称的扇形区域内,写区域角时,可以先写出终边落在一个扇形区域内的一个区间角,在此区间角的两端分别加上“”,右端末注明“”即可.例如,求终边落在图中阴影内(包括边界)的角的集合,可先求落在第一象限内的区间角,故终边落在图中阴影内(包括边界)的角的集合为.3.各象限角的集合象限角象限角的集合表示第一象限角第二象限角第三象限角第四象限角四、倍角和分角问题已知角的终边所在的象限,求的终边所在象限.1.代数法由的范围求出的范围.通过分类讨论把写成的形式,然后判断的终边所在的象限.2.几何法画出区域:将坐标系每个象限等分,得个区域.标号:自轴正向起,沿逆时针方向把每个区域依次标上、、、,如图所示(此时).确定区域:找出与角的终边所在象限标号一致的区域,即为所求.题型训练题型一任意角的概念1.下列四个命题中,正确的是()A.第一象限的角必是锐角B.锐角必是第一象限的角C.终边相同的角必相等D.第二象限的角必大于第一象限的角2.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③锐角一定是第一象限的角;④小于的角一定是锐角;⑤终边相同的角一定相等.其中正确命题的个数是()A.1B.2C.3D.43.设集合,,则?题型二终边相同的角的集合1.下列各个角中与2020°终边相同的是()A.-150°B.680°C.220°D.320°2.写出终边在图中直线上的角的集合.3.写出终边落在图中阴影部分(包括边界)的角的集合.4.下列各组中,终边相同的角是()A.和()B.和C.和D.和5.若角与的终边关于轴对称,且,则所构成的集合为.6.与2021°终边相同的最小正角是.7.写出角的终边在阴影中的角的集合.题型三象限角的定义1.在,,,,这五个角中,属于第二象限角的个数是()A.2B.3C.4D.52.若是第四象限角,则一定是第几象限角?3.已知,则所在的象限是()A.第一象限B.第二象限C.第一或第二象限D.第三或第四象限题型四角所在象限的研究1.已知α为第二象限角,则所在的象限是()A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限2.已知θ为第二象限角,那么是()A.第一或第二象限角B.第一或四象限角C.第二或四象限角D.第一、二或第四象限角3.若是第二象限角,则,是第几象限角?弧度制知识梳理一、弧度制和弧度制与角度制的换算1.角度制角可以用度为单位进行度量,度的角等于周角的,这种用度作为单位来度量角的单位制叫做角度制.2.弧度制①弧度的角:长度等于半径长的弧所对的圆心角.②弧度制定义:以弧度作为单位来度量角的单位制.记法:用符号表示,读作弧度.特别提醒:(1)用弧度为单位表示角的大小时,“弧度”或“”可以略去不写,只写这个角对应的弧度数即可,如角可写成.而用度为单位表示角的大小时,“度”或“°”不可以省略.(2)不管是以弧度还是以度为单位的角的大小都是一个与半径大小无关的定值.二、角度与弧度的换算1.弧度与角度的换算公式(1)关键:抓住互化公式rad=180°是关键;(2)方法:度数弧度数;弧度数度数2.一些特殊角的度数与弧度数的对应表:【注意】①在同一问题中,角度制与弧度制不能混用;②弧度制下角可以与实数可以建立一一对应的关系,所以弧度制表示的角的范围可以用区间表示,如,但角度制表示的角的范围一般不用区间表示,即不用表示,因为区间表示的是数集,但角度数不是实数.三、弧长公式、扇形面积公式如图,设扇形的半径为,弧长为,圆心角为.1.弧长公式:.注意:在应用弧长公式时,要注意的单位是“弧度”,而不是“度”,如果一直角是以“度”为单位的,则必须先把它化为以“弧度”为单位,再代入计算.2.扇形面积公式:.3.弧长公式及扇形面积公式的两种表示角度制弧度制弧长公式扇形面积公式注意事项是扇形的半径,是圆心角的角度数是扇形的半径,是圆心角的弧度数题型训练题型一弧度制与角度制互化1.与角终边相同的最小正角是?(用弧度制表示)2.若四边形的四个内角之比为,则四个内角的弧度数依次为.3.对应的弧度数为4.把化为弧度的结果是5.如图,用弧度制表示终边落在下列阴影部分的角.6.若θ=-3rad,则θ的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限题型二扇形的弧长、面积、与圆心角问题1.半径为,中心角为的角所对的弧长为()A.B.C.D.2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为()A.2B.4C.6D.83.已知扇形的周长为,圆心角为,则扇形的面积为?4.一个扇形的弧长与面积都是,则这个扇形圆心角的弧度数为()A.B.C.D.5.已知弧度的圆心角所对的弦长为,那么,这个圆心角所对的弧长是()A.B.C.D.6.半径为,圆心角为的扇形的弧长为()A.B.C.D.7.设扇形的弧长为,半径为,则该扇形的面积为?8.已知扇形的周长为,面积为,则扇形圆心角的弧度数为?。
高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角的终边经过点(-4,3),则cos=( )A.B.C.-D.-【答案】D【解析】由题意可知x=-4,y=3,r=5,所以.故选D.【考点】三角函数的概念.2.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=() A.B.C.-D.-【答案】D【解析】∵α是第二象限角,∴cosα=x<0,即x<0.又cosα=x=,解得x=-3,∴tanα==-.3.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cosθ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A.1B.2C.3D.4【答案】A【解析】由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin=sin,但与的终边不相同,故④错;当θ=π,cosθ=-1<0时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.4.把表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ值是()A.B.C.D.【答案】A【解析】∵∴与是终边相同的角,且此时=是最小的,选A.5.α是第二象限角,P(x,)为其终边上一点,且cosα=x,求sinα的值.【答案】【解析】∵OP=,∴cosα==x.又α是第二象限角,∴x<0,得x=-,∴sinα==.6.已知扇形的周长为8cm,则该扇形面积的最大值为________cm2.【答案】4【解析】设扇形半径为rcm,弧长为lcm,则2r+l=8,S=rl=r×(8-2r)=-r2+4r=-(r-2)2+4,所以S=4(cm2)max7.若角α,β满足-<α<β<π,则α-β的取值范围是()A.(-,)B.(-,0)C.(0,)D.(-,0)【答案】B【解析】由-<α<β<π知,-<α<π,-<β<π,且α<β,所以-π<-β<,所以-<α-β<且α-β<0,所以-<α-β<0.8.计算2sin(-600°)+tan(-855°)的值为()A.B.1C.2D.0【答案】C【解析】∵sin(-600°)=-sin600°=-sin(360°+240°)=-sin240°=-sin(180°+60°)=sin60°=,同理tan(-855°)=-tan(2×360°+135°)=-tan135°=-tan(180°-45°)=tan45°=1,∴原式=2×+×1=2.9.已知(1)求的值;(2)若是第三象限的角,化简三角式,并求值.【答案】(1);(2).【解析】(1)利用商数关系及题设变形整理即得的值;(2)注意既是一个无理式,又是一个分式,那么化简时既要考虑通分,又要考虑化为有理式.考虑通分,显然将两个式子的分母的积作为公分母,这样一来,被开方式又是完全平方式,即可以开方去掉根号,从将该三角式化简.试题解析:(1)∵∴ 2分解之得 4分(2)∵是第三象限的角∴= 6分=== 10分由第(1)问可知:原式== 12分【考点】三角函数同角关系式.10.已知角x的终边上一点坐标为,则角x的最小正值为( )A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值11.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】B【解析】已知弧度数为2的圆心角所对的弦长也是2,所以,即,所以.【考点】弧度制.12.已知角的终边经过点,且,则的值为()A.B.C.D.【答案】A【解析】,故点的坐标为,所以,所以,解得,故选A.【考点】三角函数的定义13.运用物理中矢量运算及向量坐标表示与运算,我们知道:两点等分单位圆时,有相应正确关系为,三等分单位圆时,有相应正确关系为,由此推出:四等分单位圆时的相应正确关系为 .【答案】【解析】用两点等分单位圆时,关系为,两个角的正弦值之和为0,且第一个角为,第二个角与第一个角的差为:,用三点等分单位圆时,关系为,此时三个角的正弦值之和为0,且第一个角为,第二个角与第一个角的差与第三个角与第二个角的差相等,均为有,依此类推,可得当四点等分单位圆时,为四个角正弦值之和为0,且第一个角为,第二个角为,第三个角,第四个角为,即其关系为.【考点】三角函数的定义与三角恒等式.14.已知扇形的周长是8cm,圆心角为2 rad,则扇形的弧长为 cm.【答案】4【解析】设扇形的弧长,半径,圆心角分别为,则,又由即,得.【考点】扇形的弧长公式.15.已知为钝角,且,则与角终边相同的角的集合为.【答案】【解析】由为钝角,且,得,所以与角终边相同的角的集合为,当然也可写成,但注意制度要统一,不要丢掉.【考点】特殊角的三角函数、终边相同角的集合.16.(1)设扇形的周长是定值为,中心角.求证:当时该扇形面积最大;(2)设.求证:.【答案】(1)详见解析;(2)详见解析.【解析】(1)由扇形周长为定值可得半径与弧长关系(定值),而扇形面积,一般地求二元函数最值可消元化为一元函数(见下面详解),也可考虑利用基本不等式,求出最值,并判断等号成立条件,从而得解;(2)这是一个双变元(和)的函数求最值问题,由于这两个变元没有制约关系,所以可先将其中一个看成主元,另一个看成参数求出最值(含有另一变元),再求解这一变元下的最值,用配方法或二次函数图象法. 试题解析:(1)证明:设弧长为,半径为,则, 2分所以,当时, 5分此时,而所以当时该扇形面积最大 7分(2)证明:9分∵,∴, 11分∴当时, 14分又,所以,当时取等号,即. 16分法二:9分∵,, 11分∴当时,, 14分又∵,∴当时取等号即. 16分【考点】扇形的周长和面积、三角函数、二次函数.17.已知角的终边与单位圆交于,则()A.B.C.D.【答案】A【解析】因为,角的终边与单位圆交于,所以,,=,故选.【考点】三角函数的定义,三角函数诱导公式、倍角公式.18.已知角的顶点在坐标原点,始边与轴的正半轴重合,,角的终边与单位圆交点的横坐标是,角的终边与单位圆交点的纵坐标是,则的值为()A.B.C.D.【答案】C【解析】由题意可知,,因为所以,,所以.【考点】三角函数的定义,和差角公式.19.若角与角终边相同,则在内终边与角终边相同的角是 .【答案】【解析】因为角与角终边相同,所以=2kπ+,z,=,令k=0,1,2,3分别得到,即为所求。
任意角和弧度制练习题

一任意角和弧度制一、选择题1.一个扇形的弧长与面积都是5,则这个扇形圆心角的弧度数为()A. B. C. D.2.与角终边相同的角是()A. B. C. D.3.一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角弧度数为( )4.已知{第一象限角},{锐角},{小于90°的角},那么、、关系是()A.B. C. D.5.周长为,圆心角为的扇形的面积等于(A) (B) (C) D)6.已知MP,OM,AT分别为角的正弦线、余弦线、正切线,则一定有()A. B. C. D.7.与角-终边相同的角是()A. B. C. D.8.把-1125°化成α+2kπ (0≤α<2π,k∈Z=)的形式是()9.若角α终边在第二象限,则π-α所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.下列各角中与240°角终边相同的角为()11.(5分)(2010•宁夏)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.12.半径为10 cm,面积为100cm2的扇形中,弧所对的圆心角为()A.2弧度B. C.弧度 D.10弧度13.下列命题正确的是()A.小于的角一定是锐角B.终边相同的角一定相等C.终边落在直线上的角可以表示为D.若,则角的正切值等于角的正切值。
14.下面有五个命题:①函数的最小正周期是;②终边在y轴上的角的集合是;③在同一坐标系中,函数的图象和函数的图象有一个公共点;④把函数;⑤在中,若,则是等腰三角形;其中真命题的序号是().(1)(2)(3).(2)(3)(4).(3)(4)(5).(1)(4)(5)15.已知弧度为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B. C. D.16.已知是锐角,那么是()(A)第一象限角 (B)第二象限角(C)小于180的正角 (D)第一或第二象限角17.点P从(1,0)出发,沿单位圆逆时针方向运动弧长达到Q点,则Q的坐标为A. B. C. D.18.已知为第三象限角,则所在的象限是()A. 第一或第二象限B. 第二或第三象限C.第一或第三象限D. 第二或第四象限19.若是第一象限角,则是 ( )第一象限角第二象限角第三象限角第四象限角20.过原点作圆的两条切线,则该圆夹在两条切线间的劣弧长为 A. B. C. D.21.下列命题中正确的是()A.第一象限角一定不是负角B.小于90的角一定是锐角C.钝角一定是第二象限的角D.终边相同的角一定相等22.若,则点位于()A.第一象限 B.第二象限C.第三象限D.第四象限23.在内与终边相同的角有()个1 2 324.若,且,则角的终边所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限25.若α、β的终边关于y轴对称,则下列等式正确的是()A.sinα=sinβB.cosα=cosβC.tanα=tanβD.tanα·tanβ=126.集合中的角所表示的范围(阴影部分)是( ).27.若是第三象限的角,则是()A.第一、二、三象限角 B.第一、二、四象限角C.第一、三、四象限角 D.第二、三、四象限角28.下列命题正确的是()Α.三角形的内角必是一、二象限内的角B.第一象限的角必是锐角C.不相等的角终边一定不同D.=29.将分针拨快10分钟,则分针转过的弧度数是()A. B.- C. D.-30.若圆中一段弧长正好等于该圆外切正三角形的边长,设这段弧所对的圆心角是,则的值所在的区间为()A. B. C. D.31.若sinα<0且tanα>0,则α的终边在( )A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题32.已知扇形的半径为R,周长为3R,则扇形的圆心角等于____________.33.圆的半径为,为圆周上一点,现将如图放置的边长为的正方形(实线所示,正方形的顶点和点重合)沿着圆周顺时针滚动,经过若干次滚动,点第一次回到点的位置,则点走过的路径的长度为▲.34.已知是单位圆上(圆心在坐标原点)任一点,将射线绕点逆时针旋转到交单位圆于点,则的最大值为.35.若角α与角β的终边关于y轴对称,则α与β的关系是___________.36.如图,长为,宽为1的矩形木块,在桌面上做无滑动翻滚,翻滚到第三面后被一块小木块挡住,使木块与桌面成角,则点A走过的路程是_____________37.给出下列说法:①终边在y轴上的角的集合是②若函数f(x)=asin2x+btanx+2,且f(-3)=5,则f(3)的值为-1③函数y=ln|x-1|的图象与函数y=-2cos x(-2≤x≤4}的图像所有交点的横坐标之和等于6,其中正确的说法是__________〔写出所有正确说法的序号)38.如右图,半径为1的圆的圆心位于坐标原点,点P从点A(1,0)出发,依逆时针方向等速沿单位圆周旋转.已知点P在1秒钟内转过的角度为θ(0<θ<π),经过2秒钟到达第三象限,经过14秒钟后又恰好回到出发点A,则θ=.39.正方形铁片的边长为8cm,以它的一个顶点为圆心,一边长为半径画弧剪下一个顶角为的扇形,用这块扇形铁片围成一个圆锥形容器,则这个圆锥形容器的容积等于________cm3.40.给出下列结论①扇形的圆心角为弧度,半径为2,则扇形的面积是;②某小礼堂有25排座位,每排20个,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的所有25名学生进行测试,这里运用的是系统抽样方法;③一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“两次都不中靶”互为对立事件;④若数据:的方差为8,则数据的方差为16;其中正确结论的序号为.(把你认为正确结论的序号都填上).41.已知是第四象限角,则必定不在第象限.42.若角与角的终边关于轴对称,则与的关系是___________________________.43.若α是第一象限的角,则π-α是第______象限的角44.若角满足,则的取值范围是_____________。
任意角和弧度制、任意角的三角函数专题及答案

任意角和弧度制、任意角的三角函数专题一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-342.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 36.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .129.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .410.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .3219.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π321.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .1222.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12D .323.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.任意角和弧度制、任意角的三角函数专题及答案一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-34答案 D解析 根据三角函数的定义,tan α=y x =35-45=-34,故选D. 2.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 答案 A解析 ∵sin2>0,cos3<0,tan4>0,∴sin2cos3tan4<0.3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π答案 B解析 由题意知l =|α|r ,∴|α|=l r =1812=32.4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是()A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 答案 A解析 由三角函数的定义知,选A.5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 3答案 D解析 依题意得cos α=x x 2+5=24x <0,由此解得x =-3,故选D. 6.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 答案 B解析 由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0,所以y =-1+1-1=-1.7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 答案 C解析 设扇形的半径为R ,则12R 2|α|=2,∴R 2=1,∴R =1,∴扇形的周长为2R +|α|·R =2+4=6,故选C.8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .12答案 D解析 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z),又β=-π3,所以α=2k π+5π6(k ∈Z),即得sin α=12.9.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .4 答案 A解析 由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.10.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.答案 ⎝ ⎛⎭⎪⎫12,32解析 根据题意得Q (cos π3,sin π3),即Q ⎝ ⎛⎭⎪⎫12,32.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.答案 ⎩⎨⎧⎭⎬⎫-π3,5π3解析 因为角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以角α为第四象限角,且tan α=-3,即α=-π3+2k π,k ∈Z ,因此落在(-2π,2π)内的角α的集合为⎩⎨⎧⎭⎬⎫-π3,5π3.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 答案 0解析 由题意得P (a ,-b ),Q (b ,a ),∴tan α=-b a ,tan β=a b (a ,b ≠0),∴sin αcos β+tan αtan β+1cos α·sin β=-b a 2+b 2b a 2+b 2+-ba ab +1a a 2+b 2·a a 2+b 2=-1-b 2a 2+a 2+b2a 2=0.二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案 C解析 由题意|OM |=|cos x |,f (x )=|OM ||sin x |=|sin x cos x |= 12|sin2x |,由此可知C 正确. 14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 答案 C解析 由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号, 故sin2α=2sin αcos α>0,故选C.15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 答案 C解析 ∵a =sin33°,b =cos55°=sin35°,c =tan35°=sin35°cos35°,∴sin35°cos35°>sin35°>sin33°.∴c >b >a ,选C.16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12答案 A解析 由题意得f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6=f ⎝ ⎛⎭⎪⎫5π6+sin 5π6+sin11π6+sin 17π6=0+12-12+12=12.三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n 时,2n π+π4≤α≤2n π+π2,此时α的终边和π4≤α≤π2的终边一样.当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,此时α的终边和π+π4≤α≤π+π2的终边一样.18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .32答案 B解析 r =64m 2+9,∴cos α=-8m 64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,∴m =±12,∴m =12.19.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 答案 A解析 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎨⎧3a -9≤0,a +2>0,即-2<a ≤3. 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π3答案 B解析 ∵sin 5π6=12,cos 5π6=-32,∴角x 的终边经过点⎝ ⎛⎭⎪⎫12,-32,tan x =-3,∴x =2k π+53π,k ∈Z ,∴角x 的最小正值为5π3.(也可用同角基本关系式tan x =sin xcos x得出.) 21.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .12答案 C解析 如图,由三角函数的定义,设x A =cos α,则y B =sin(α+30°),∴x A -y B =cos α-sin(α+30°)=12cos α-32sin α=cos(α+60°)≤1.22.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12 D .3答案 A解析 设此扇形的半径为r ,弧长为l ,则2r +l =4,面积S =12rl =12r (4-2r )=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2.从而α=l r =21=2.23.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )答案 C解析 如图,取AP 的中点为D ,设∠DOA =θ,则d =2r sin θ=2sin θ,l =2θr =2θ, ∴d =2sin l2,故选C.24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.答案 15解析 因为π<α<3π2时,cos α<0,所以r =-5cos α,故sin θ=-35,cos θ=45,则sin θ+cos θ=15.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值. 解 ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10,∴r =2 3.当x =10时,P 点坐标为(10,-2),由三角函数的定义,有sin α=-66,1tan α=-5,∴sin α+1tan α=-66-5=-65+66; 当x =-10时,同样可求得sin α+1tan α=65-66.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.解 设P ,Q 第一次相遇时所用的时间是t , 则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π. 所以t =4(秒),即第一次相遇的时间为4秒.设第一次相遇点为C ,第一次相遇时P 点已运动到终边在π3·4=4π3的位置,则x C =-cos π3·4=-2,y C =-sin π3·4=-2 3.所以C 点的坐标为(-2,-23). P 点走过的弧长为43π·4=163π,Q 点走过的弧长为23π·4=83π.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.解 (1)由题意可得f (x )=-(x -1)2+1+a ,而0≤x ≤3,所以m =f (1)=1+a ,n =f (3)=a -3.(2)由题意知,角β终边经过点A (a ,a ), 当a >0时,r =a 2+a 2=2a , 则sin β=a 2a =22,cos β=a 2a =22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=2+64.当a <0时,r =a 2+a 2=-2a , 则sin β=a -2a=-22,cos β=a -2a=-22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=-2+64.综上所述,sin ⎝ ⎛⎭⎪⎫β+π6=-2+64或2+64.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.解 (1)因为x 1=35,y 1>0,所以y 1=1-x 21=45,所以sin α=45,cos α=35,所以x 2=cos ⎝ ⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=-210.(2)S 1=12sin αcos α=14sin2α.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以α+π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以S 2=-12sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=-14sin ⎝ ⎛⎭⎪⎫2α+π2=-14cos2α.因为S 1=43S 2,所以sin2α=-43cos2α,即tan2α=-43,所以2tan α1-tan 2α=-43,解得tan α=2或tan α=-12.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以tan α=2.。
(2021年整理)任意角和弧度制练习题有答案(2)

(完整)任意角和弧度制练习题有答案(2)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)任意角和弧度制练习题有答案(2))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)任意角和弧度制练习题有答案(2)的全部内容。
任意角和弧度制练习题一、选择题1、下列角中终边与330°相同的角是()A.30° B.—30° C.630° D.-630°2、-1120°角所在象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、把-1485°转化为α+k·360°(0°≤α<360°,k∈Z)的形式是( )A.45°-4×360° B.-45°-4×360°C.-45°-5×360° D.315°-5×360°4。
在“①160°②480°③-960°④—1600°”这四个角中,属于第二象限的角是( )A.①B.①②C。
①②③ D。
①②③④5、终边在第二象限的角的集合可以表示为: ( )A.{α∣90°<α〈180°}B.{α∣90°+k·180°〈α<180°+k·180°,k∈Z}C.{α∣-270°+k·180°〈α<-180°+k·180°,k∈Z}D。
任意角的概念与弧度制知识点习题附答案

典型题一 有关角的概念的问题
1.下列命题正确的是: ( )
A.终边相同的角一定相等。
B.第一象限的角都是锐角。
C.锐角都是第一象限的角。
D.小于 900 的角都是锐角。
2.下列结论:①第一象限角都是锐角
②锐角都是第一象限角
③第一象限角一定不是负角
④第二象限角是钝角
⑤小于 180°的角是钝角、直角、或锐角。
4.与角 终边相同的角的集合为 k 360 , k k 180 45, k
1)终边落在 y=x 上:
45 +k 360, k
2)终边落在第一象限角平分线上:
5.弧度制:把长度等于半径长的弧所对的圆心角叫做 1 弧度的角,用符号 rad 表示,读作弧度。 以弧度为单位来度量角的单位制度叫弧度制。
C.3 个
D.4 个
2.[四川遂宁 2019 高一测试]将表的分针拨慢 20 分钟,则分针转过的角的弧度是(
)
A. 2 3
B. 3
C. 2 3
D.
3
3.已知扇形的周长为 6cm,半径是 2cm,则扇形的圆心角的弧度数是( )
A.4
B.1
C.1 或 4
D.2
4.若角α是第二象限角,则 是(
)
2
D. α-β=90°+ k 360 (k∈Z)
12.已知角α与β的终边关于 y 轴对称,则α与β的关系为( )
A. α-β=π+2kπ B. α-β=π +2kπ
2
13.若α=2kπ+π (k∈Z),则α的终边在(
3
3
2
C. α+β=2kπ )
A.第一象限
B.第四象限
(完整word)任意角和弧度制知识点与同步练习,推荐文档

我们把按逆时针方向旋转所形成的角叫正角,那么同学们猜猜看,负角怎么规定呢?零角呢?
生:按顺时针方向旋转所形成的角叫负角,如果一条射线没有作任何旋转,我们称它形成了一个零角。
轴右侧的角的集合.
~中,轴右侧的角可记为,同样把该范围”后,得
,,故轴右侧角的集合为
.
()后与原来角终边重合,同样一个
()角后,所得
、在~间,找出与下列各角终边相同的角,并判定它们是第几象限角
;(;(.
)∵
角终边相同的角是角,它是第三象限的角;
)∵
终边相同的角是,它是第四象限的角;
角终边相同的角是,它是第二象限角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意角和弧度制练习题
一、选择题
1、下列角中终边与330°相同的角是()
A.30° B.-30° C.630° D.-630°
2、-1120°角所在象限是()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3、把-1485°转化为α+k·360°(0°≤α<360°,k∈Z)的形式是()
A.45°-4×360° B.-45°-4×360°
C.-45°-5×360° D.315°-5×360°
4.在“①160°②480°③-960°④—1600°”这四个角中,属于第二象限的角是()
A.①
B.①②
C.①②③ D。
①②③④
5、终边在第二象限的角的集合可以表示为: ()
A.{α∣90°〈α<180°}
B.{α∣90°+k·180°<α〈180°+k·180°,k∈Z}
C.{α∣-270°+k·180°〈α<-180°+k·180°,k∈Z}
D。
{α∣-270°+k·360°〈α<-180°+k·360°,k∈Z}
6。
终边落在X轴上的角的集合是( )
Α。
{α|α=k·360°,K∈Z } B.{α|α=(2k+1)·180°,K∈Z }
C。
{ α|α=k·180°,K∈Z } D.{ α|α=k·180°+90°,K∈Z }
7。
若α是第四象限角,则180°+α一定是()
Α.第一象限角 B. 第二象限角 C.第三象限角 D。
第四象限角
8。
下列结论中正确的是()
A.小于90°的角是锐角B。
第二象限的角是钝角
C.相等的角终边一定相同
D.终边相同的角一定相等
9.下列命题中的真命题是 ( )
A .三角形的内角是第一象限角或第二象限角
B .第一象限的角是锐角
C .第二象限的角比第一象限的角大
D .{}Z k k ∈±⋅=,90360| αα={}Z k k ∈+⋅=,90180| αα
10、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(
)
A .B=A ∩C
B .B ∪C=
C C .A ⊂C
D .A=B=C
11.若α是第一象限的角,则—2α
是( )
A.第一象限的角
B.第一或第四象限的角
C.第二或第三象限的角 D 。
第二或第四象限的角
12。
集合A={α|α=k ·90°,k ∈N +}中各角的终边都在( )
A.x 轴的正半轴上
B.y 轴的正半轴上
C.x 轴或y 轴上
D.x 轴的正半轴或y 轴的正半轴上
13。
α是一个任意角,则α与-α的终边是( )
A 。
关于坐标原点对称
B 。
关于x 轴对称
C.关于直线y=x 对称
D.关于y 轴对称
14.设k ∈Z ,下列终边相同的角是 ( )
A .(2k +1)·180°与(4k ±1)·180°
B .k ·90°与k ·180°+90°
C .k ·180°+30°与k ·360°±30°
D .k ·180°+60°与k ·60°
15.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()
A .2
B .1sin 2
C .1sin 2
D .2sin
16.一钟表的分针长10 cm,经过35分钟,分针的端点所转过的长为:( )
A .70 cm
B .670
cm C .(3425-3π)cm D .3π
35 cm
17.180°-α与α的终边( )
A .关于x 轴对称
B .关于y 轴对称
C .关于原点对称
D .以上都不对 18.设集合M ={α|α=5-2ππk ,k ∈Z },N ={α|-π<α<π},则M ∩N 等于() A .{-105ππ3,} B .{-5
10ππ4,7} C .{-5-105ππππ4,107,3,} D .{0
7,031-1ππ } 19.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为( )
A .2°
B .2
C .4°
D .4
20.如果弓形的弧所对的圆心角为
3
π,弓形的弦长为4 cm ,则弓形的面积是:( ) A .(344-9π) cm 2 B .(344-3
π )cm 2 C .(348-3π)cm 2 D .(328-3π) cm 2 21.设集合M ={α|α=k π±6π,k ∈Z },N ={α|α=k π+(-1)k 6π,k ∈Z }那么下列结论中正确的是( )
A .M =N
B .M N
C .N M
D .M N 且N M
二、填空题(每小题4分,共16分,请将答案填在横线上)
22. 若角α的终边为第二象限的角平分线,则α的集合为____________________.
23.与1991°终边相同的最小正角是______,绝对值最小的角是_________.
24.若角α是第三象限角,则2
α角的终边在 ,2α角的终边在______________。
25。
若角α、β的终边互为反向延长线,则α与β之间的关系是___________.
26.已知α是第二象限角,且,4|2|≤+α则α的范围是 。
27. 在0与360范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?(1)120- (2)640 (3)95012'-
28.中心角为60°的扇形,它的弧长为2π,求它的内切圆的面积
29.已知扇形的周长为20 cm ,当扇形的中心角为多大时,它有最大面积,最大面积是多少?
答案:
1.B
2.D 3。
D 4。
D
5。
D 6。
C 7.B 8。
C
9.D 10.B 11.D 12.C 13。
B 14。
A 15.B
16。
D 17.B 18。
C 19。
B 20。
C 21.C
22.
试题分析:在上第一个出现终边在第二象限角平分线的角为,之后每隔个单位出现一
个终边落在第二象限角平分线上角,因此所求集合为。
23。
1991=360*5+191=360*6-169
与1991°终边相同的最小正角是(191),绝对值最小的角是(169)
24. 这里有一个技巧,就是把每个象限两等分(求角的几等分,就把每个象限几等分),就是沿原点对折,给这八个区域依次编上号,怎么编呢,就是1,2,3,4,1,2,3,4,这里出现三的区域是第二象限和第四象限 (看原来的那个角在第几象限,这里就找出现几的区域),所以答案就是第二象限和第四象限,你多练几次,就知道了.第二问的话,因为180度+2kπ=
25. 角α与角β的终边互为反向延长线,说明α=β+(2k+1)π,k ∈Z,
故答案为:(1)α=π—β+2k π,(k ∈z );(2)α=π+β+2k π,(k ∈z ).
26. 第二象限角为2k π+π∕2﹤a ﹤2k π+π,又由绝对值≤4得,-6≤a ≤2。
k=0时,π∕2﹤a ﹤π,满足范围;
k=1时,—3/2 π﹤a ﹤-π,满足范围。
k 取其他值时不成立,故a 的取值范围为]2,2(),23(πππ⋃-- 27。
(1)—120度=—360度+240度 所以0度到360度的范围内 240度和-120度终边相同 在第三象限
(2)640度=360度+280度 所以0度到360度的范围内 280度和640度终边相同 在第四象限
(3)—990度12分=-360度×3+89度48分 所以0度到360度的范围内 89度48分和-990度
12分终边相同在第一象限
28.设扇形和内切圆的半径分别为R,r.
由2π=
π
3
R,解得R=6.
∵3r=R=6,∴r=2.
∴S=4π
29。
25.设半径=x,则弧长为20—2x
扇形面积
=1/2*半径*弧长
=1/2*x*(20-2x)
=—x²+10x
对称轴是x=5
∴x=5时,扇形面积最大值=-25+50=25平方厘米弧长为=10cm
圆心角=弧长/半径=10/5=2 rad。