长江中下游典型浅水湖泊沉积物水界面磷与铁的耦合关系

合集下载

湖泊与河流沉积物有机质分解驱动磷释放的机制研究

湖泊与河流沉积物有机质分解驱动磷释放的机制研究

湖泊与河流沉积物有机质分解驱动磷释放的机制研究1. 湖泊与河流是地球上丰富的水资源,它们不仅是自然景观的一部分,还对周围的生态系统和人类社会发展有着重要的影响。

然而,随着城市化和工业化的快速发展,湖泊与河流的水质遭受到了严重的污染和破坏,其中磷的污染是一个严重的问题。

磷是水体富营养化的主要原因之一,而湖泊与河流的磷来源主要是来自沉积物。

2. 沉积物是湖泊与河流中重要的磷储存库,其中有机质的分解是导致磷释放的重要驱动力。

有机质是指湖泊与河流底部的有机物质,例如植物残体、浮游生物和微生物等在湖泊与河流中的沉积物。

这些有机质的分解会释放出磷,加剧水体的富营养化问题。

3. 有机质的分解驱动磷释放的机制是一个复杂的过程,涉及到多种生物和非生物过程。

湖泊与河流的有机质会被细菌和真菌等微生物降解,产生溶解性有机质和氧化还原物质。

这些产物会改变水体的生物地球化学循环,进而影响磷的释放。

有机质的分解还会影响湖泊与河流的氧化还原环境,导致磷的释放。

另外,底泥中的铁、锰等元素也参与了有机质的分解过程,并影响着磷的释放。

4. 有机质分解驱动磷释放的机制研究对于湖泊与河流的水质管理和保护具有重要意义。

通过深入了解这一机制,可以更好地预测湖泊与河流磷的释放情况,采取相应的控制措施,减少水体的富营养化问题。

对有机质分解驱动磷释放的机制进行研究,也为更好地保护水体生态系统提供了科学依据。

5. 个人观点和理解:湖泊与河流水质的污染问题是当今社会亟需解决的环境问题之一。

有机质分解驱动磷释放的机制研究对于解决水体富营养化问题具有重要的意义。

作为学者和研究者,我们应该加强对这一问题的研究,探索更多有效的水质管理和保护方法,为人类社会的可持续发展贡献力量。

总结回顾:通过本文对湖泊与河流沉积物有机质分解驱动磷释放的机制进行了深入探讨,我们了解到这一机制是一个复杂的过程,涉及到多种生物和非生物过程。

有机质的分解驱动磷释放的机制研究对于湖泊与河流的水质管理和保护具有重要意义,需要进一步加强研究和探讨。

长江中下游浅水湖泊中总氮及其形态的时空分布

长江中下游浅水湖泊中总氮及其形态的时空分布

长江中下游浅水湖泊中总氮及其形态的时空分布王东红,黄清辉,王春霞,马梅,王子健(中国科学院生态环境研究中心环境水质学国家重点实验室)摘要:分析和比较了长江中下游3个浅水湖泊———太湖、巢湖和龙感湖夏、秋和冬季沉积物和上覆水中的总氮及其氮形态,描述了氮及其各形态在3个湖泊中的时空分布特征.结果表明:空间上,无论是在表层沉积物还是在上覆水中,太湖中总氮的含量均高于其他2个湖泊,且在太湖和巢湖都呈现西高东低的分布特征.氨氮在沉积物和上覆水及溶解态硝态氮在上覆水中的分布与总氮分布趋势基本相同.巢湖沉积物中氨氮浓度所占的比例稍高于太湖和龙感湖.在不同季节,表层沉积物和上覆水中的总氮含量冬季高于秋季和夏季,表层沉积物中氨氮浓度在秋季最高.巢湖和龙感湖上覆水中的溶解态硝态氮在冬季浓度较高,而在太湖西北部这种季节差异几乎没有,氨氮的浓度季节性差异也不十分明显.关键词:总氮;氨氮;硝态氮;沉积物;上覆水中图分类号:X524 文献标识码:A 文章编号:025023301(2004)增刊20027204基金项目:中国科学院知识创新工程重大项目(KZCX12SW 2122Ⅱ232);国家自然科学基金项目(40273046)作者简介:王东红(1968~),女,博士,主要研究方向为湖泊富营养化.T emporal and Spatial Distribution of Total Nitrogen and Its Species in Shallow Eutrophic Lakes of ChinaWAN G Dong 2hong ,HUAN G Qing 2hui ,WAN G Chun 2xia ,MA Mei ,WAN G Zi 2jian(State K ey Laboratory of Environmental Aquatic Chemistry ,Research Center for Eco 2Environmental Sciences ,Chinese Academy of Sciences ,Beijing 100085,China )Abstract :The temporal and spatial distribution of total nitrogen (Tot 2N )and its species in sediments and overlying water of three shal 2low eutrophic lakes (Taihu Lake ,Chaohu Lake and Longganhu Lake )in China were examined and analyzed.The spatial characteris 2tic showed that higher concentration of Tot 2N in sediments and overlying water were observed in Taihu Lake.The concentration of (Tot 2N )was higher in the west side than that in the east side in Taihu Lake and Chaohu Lake.The s patial distribution trend of dis 2solved ammonium nitrogen (DAN )in sediments and overlying water and dissolved nitrate and nitrite (DNN )in overlying water were same as the distribution of Tot 2N.The proportion of ammonium in sediment was higher in Chaohu Lake.The temporal difference showed that higher concentration of Tot 2N in sediments and overlying water was occurred in winter ,but higher concentration of am 2monium in sediments was occurred in autumn.DNN in overlying water of Chaohu Lake and Longganhu Lake was higher in winter.However ,temporal difference of DNN in the north 2west of Taihu Lake and DAN were not significant.K ey w ords :total nitrogen ;dissolved ammonium nitrogen ;dissolved nitrate and nitrite ;sediment ;overlying water 长江中下游平原是我国浅水湖泊分布最集中的地区,也是我国富营养化湖泊分布的主要地区.我国在“十五”期间大规模开展了湖泊水环境的治理,其中“三湖”治理是纳入国家计划的环境治理工作[1],而“三湖”中的太湖和巢湖就位于长江中下游地区.太湖地处北纬30°56′~31°34′和东经119°53′~120°34′之间,面积233811km 2,平均水深2m 左右[2].巢湖位于安徽省中部,处于长江、淮河两河流之间,湖体位于117°16′54″~117°51′46″E ,30°25′28″~31°43′28″N ,属长江下游左岸水系[3].龙感湖位于皖中平原西部,29°50′~30°05′N ,115°55′~116°20′E ,横跨安徽、湖北两省,地处长江北岸,与鄱阳湖隔江相峙.湖水面积为31612km 2,平均水深117m [4].长江中下游平原所形成的浅水湖泊密布及河网交错复杂的江湖复合生态系统,是我国特有的自然地貌景观,而对于像长江中下游平原地区的浅水湖泊富营养化的治理问题,尚无可以从国外借鉴的经验.虽然我国投入了很大的人力物力进行治理,但是收效不大,且情况有继续恶化的趋势.对于长江中下游湖泊的氮磷污染状况也已有大量的报道,但大多都集中在总氮和总磷上,对于形态的分布研究不多.近年来,人们对太湖和巢湖的底泥及其湖水中氮磷的空间分布也作了较多的调查和分析[5,6].龙感湖的富营养化状况也已经引起人们的关注[7],但对龙感湖的氮磷的空间分布情况目前还尚未见报道.一般而言,元素的生物有效性与其形态密切相关,氮磷的总量分析不足以反映其生物可利用性,因此本文选取长江中下游地区具有代表性的、第25卷增刊2004年6月环 境 科 学ENV IRONM EN TAL SCIENCEVol.25,Sup.J une ,2004营养化水平不同的3个浅水湖泊———太湖、巢湖和龙感湖为研究对象,分析了不同形态氮在3个湖泊沉积物和上覆水中的分布.比较了总氮和各形态氮含量在这3个浅水湖泊沉积物和上覆水中不同空间和季节的变化,为系统研究浅水湖泊富营养化发生机制以及对湖泊富营养化的治理提供依据.1 研究方法111 样品采集分别于2002年10月、2003年1月和7月(代表秋冬夏3个季节)在太湖、巢湖和龙感湖采集了表层沉积物和上覆水样品.采样点分布如图1所示.太湖为6个点(T1~T6),巢湖为4个点(C1~C4),龙感湖为3个点(L1~L3).表层沉积物用中国科学院地理与湖泊研究所自制的柱状采样器,采用虹吸法吸取柱状沉积物的上覆水,用针筒过滤器和0145μm的滤膜现场过滤.之后现场分取表层0~5cm样品,装入洁净的密实袋中,挤出袋中的空气,密封好,保存在加入冰袋的保温箱中,待船靠岸后迅速运回,冻存于-20℃冰箱中.同时在现场测定了表层沉积物和上覆水的温度、p H和Eh.112 分析方法对采集的表层沉积物和上覆水进行总氮(Tot2 N)及其形态的分析,包括氨氮和溶解性硝态氮[为溶解性硝态氮和亚硝态氮之和(DAN)].沉积物和水样中的总氮采用过硫酸钾高压消解法测定[8];沉积物中的氨氮用2mol/L KCl浸提,浸提液和水样采用水杨酸2次氯酸盐光度法测定[9];硝酸盐氮采用离子色谱法[9];亚硝酸盐氮采用N2(12奈基)2乙二胺光度法[9].每个样品均重复测定3次.2 结果与讨论211 总氮的时空分布在空间上,Tot2N在3个所研究的湖泊中,无论是在表层沉积物还是在上覆水中,太湖的含量均高于其他两个湖泊,结果如图2所示.对太湖来说,西北部(T1、T2和T3点)又高于湖心(T4和T5)和东太湖(T6),说明太湖的氮污染区主要是在五里湖、梅梁湾和竺山湖一带,这显然与人类活动密切相关.五里湖和梅梁湾一带是无锡市的生活污水排放区,竺山湖北面则有大量的农田,使得这一带氮污染比东太湖严重.此次测定的结果与以前的报道相比,总氮浓度有所升高[10,11],说明虽然这几年采取了很多措施进行治理,但是情况依然不容乐观.图1 采样点分布示意图Fig.1 Sampling sets巢湖表层沉积物中的总氮呈现出西高东低的趋势,但在冬季上覆水中东部则高于西部.张之源等[6]曾观测到巢湖东半湖湖水中总氮浓度高于西半湖的异常情况,与本研究的分析数据基本吻合,可能与巢湖地区的工农业污染有关.龙感湖的情况也不容乐观,虽然上覆水中的总氮浓度并不高,但是表层沉积物中的总氮平均含量与巢湖持平,应引起足够的重视.从季节变化来看(图2),3个湖泊表层沉积物中图2 总氮在表层沉积物和上覆水中的时空分布Fig.2 Spacial charactoristics of T ot2N in sediments and overlying water的总氮含量基本上是在夏季较低而冬季较高.这可能与夏季沉积物中微生物作用较为强烈有关.有研究表明,在硝酸盐输入充足的地带沉积物的脱氮作用的活跃性与周围的温度有着良好的相关性[12]但是太湖T1点表层沉积物在秋冬的差异不大,而T2和T3点表层沉积物秋季还高于冬季.这个区域该季节上覆水中高浓度的硝酸盐含量(见图4)可能是导致沉积物中总氮浓度升高的原因[13].上覆水中的总氮含量季节差异较为明显(图2B),冬季总氮浓度明显升高,这与浅水湖泊冬季水位偏低不无关系.尤其是巢湖差异最为明显,冬季总氮浓度比夏季高出数倍.212 各形态氮的时空分布沉积物及上覆水中氨氮的空间分布见图3.太湖西北部沉积物中的氨氮浓度明显要高于湖心地区,与总氮的分布趋势相同.但东太湖站位(T6)表层沉积物中的氨氮很高,尤其是在冬季甚至高于太湖的西北部.氨氮在上覆水中的分布亦呈现出这种趋势.氨氮是有机氮矿化的第一产物,东太湖(T6)有大面积的围网养殖区,可能是造成该湖区氨氮浓度升高的原因之一.巢湖表层沉积物中的氨氮浓度平均值与太湖大致相同,但巢湖沉积物中氨氮浓度所占的比例高于太湖.与总氮的分布趋势相同,氨氮在巢湖沉积物中的分布也呈现西高东低的趋势.龙感湖沉积物中氨氮浓度与太湖湖心区及巢湖东半湖持平.图3 氨氮在表层沉积物和上覆水中的时空分布Fig.3 S pacial characteristics of DAN in sediments and overlying water上覆水中的氨氮浓度分布见图2B,可以看出太湖上覆水中的氨氮浓度明显高于巢湖和龙感湖.特别是太湖的西北部,表明该地区氮污染情况非常严重.C2点监测到的冬季异常值可能存在着一定的偶然因素.溶解态硝态氮在上覆水中的空间分布见图4,可以看出其与总氮和氨氮的分布趋势基本相同.太湖的西北部和巢湖的西半湖仍然为浓度较高的地区.而太湖湖心区和东太湖地区(T4、T5和T6点)浓度较低,在冬季甚至低于龙感湖.总体来看秋季沉积物中氨氮浓度较高,冬季有个别站位氨氮浓度高于秋季.上覆水中氨氮的浓度季节性差异则不十分明显.分析巢湖上覆水中的氨氮浓度与氧化还原电位的关系,则发现其呈现负相关关系,当氧化还原电位升高时,其浓度降低,相关系数为-0187.与Xu 的结果基本一致[14].而太湖则没有呈现这种关系,这可能说明影响太湖氨氮浓度的条件较为复杂,其变化机理需要进一步研究.图4 上覆水中溶解态硝态氮的时空分布Fig.4 Temporal difference of DNN in overlying water冬季枯水期由于水位下降,上覆水中的溶解态硝态氮的浓度升高,在巢湖和龙感湖尤为明显,巢湖几乎与太湖西北部的浓度大致相同,尤其是C2点,接近3mg/L.龙感湖的溶解态硝态氮浓度也比秋季大约升高4~5倍.但是在太湖的西北部(T1、T2和T3点)这种季节差异几乎没有,说明这一带的硝态氮污染可能为输入性的,与季节变化无关.3 结论在空间上,3个湖泊中,无论是在表层沉积物还 是在上覆水中,太湖的总氮含量均高于其他两个湖泊,且在太湖和巢湖都呈现西高东低的分布特征.氨氮在沉积物和上覆水中及溶解态硝态氮在上覆水中的分布与总氮分布趋势基本相同.巢湖沉积物中氨氮浓度所占的比例稍高于太湖和龙感湖.在季节差异上,冬季表层沉积物和上覆水中的总氮含量高于秋季和夏季,表层沉积物中氨氮浓度在秋季最高.巢湖和龙感湖上覆水中的溶解态硝态氮在冬季浓度溶解态硝态氮的浓度较高,而在太湖西北部这种季节差异几乎没有,氨氮的浓度季节性差异也不十分明显.参考文献:[1] 秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J ].湖泊科学,2002,14(3):194~202.[2] 范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及相互关系分析[J ].湖泊科学,2000,12(4):359~366.[3] 阎伍玖,鲍祥.巢湖流域农业活动与非点源污染的初步研究[J ].水土保持学报,2001,15(4):129~132.[4] 瞿文川,吴瑞金,羊向东.龙感湖地区近3000年来的气候环境变迁[J ].湖泊科学,1998,10(2):37~43.[5] 隋桂荣.太湖表层沉积物OM 、TN 、TP 的现状与评价[J ].湖泊科学,1996,8(4):319~324.[6] 张之源,王培华,张崇岱.巢湖营养化状况评价及水质恢复探讨[J ].环境科学研究,1999,12(5):45~48.[7] 羊向东张振克.近013ka 来龙感湖流域人类活动的湖泊环境响应[J ].中国科学:D 辑,2001,31(12):1031~1038.[8] 钱君龙,张连弟,乐美麟.过硫酸盐消化法测定土壤全氮全磷.土壤,1990,22(5):258~262.[9] 国家环保局《水和废水监测方法》编委会.水和废水监测方法[M ].中国环境科学出版社,1989.[10] 袁旭音,陈俊,陶于祥,等.太湖北部底泥中氮、磷的空间变化和环境意义[J ].地球化学,2002,31(4):321~328.[11] 隋桂荣.太湖表层沉积物OM 、TN 、TP 的现状与评价[J ].湖泊科学,1996,8(4):319~324.[12] 彭晓彤,周怀阳.海岸带沉积物中脱氮作用的研究进展[J ].海洋科学,2002,26(5):31~34.[13] Jorgensen K S ,Sorensen J.Two annual maxima of nitrate re 2duction and denitrification in estuarine sediment [J ].Mar.Ecol.Prog.Ser.,1988,94:267~274.[14] Xu F L ,Tao S ,Dawson1R W ,Xu Z R.The distributions andeffects of nutrients in the sediments of a shallow eutrophic Chi 2nese lake[J ].Hydrobiologia ,2003,429:85~93.。

浅水湖泊内源磷释放及其生物有效性——以太湖、巢湖和龙感湖为例

浅水湖泊内源磷释放及其生物有效性——以太湖、巢湖和龙感湖为例

浅水湖泊内源磷释放及其生物有效性——以太湖、巢湖和龙感湖为例浅水湖泊内源磷释放及其生物有效性——以太湖、巢湖和龙感湖为例引言水体中的磷是湖泊生态系统中的关键营养元素之一,它在湖泊营养循环中发挥着重要作用。

然而,浅水湖泊中内源磷的释放过程及其生物有效性仍存在许多未知之处。

本文以中国三大浅水湖泊之一的太湖、巢湖和龙感湖为例,探讨了这些湖泊中内源磷释放的原因及其对湖泊生态环境的影响。

一、太湖的内源磷释放及其生物有效性太湖是中国最大的淡水湖泊之一,也是内源磷释放研究的重要对象之一。

太湖水域的内源磷主要来自于富营养化的水体底泥。

研究表明,太湖底泥中富集了大量的磷,当湖泊发生水体垂直混合或风浪作用时,底泥中的磷会释放到水体中,形成内源磷。

太湖内源磷的释放具有季节性特点,主要发生在夏季和秋季,这是因为这两个季节湖泊的水温较高,湖水垂直混合较为剧烈,促使底泥中的磷释放。

太湖内源磷的释放对水体中悬浮藻类的生物量、种类和群落结构有一定影响,这是因为磷是藻类生长所需的关键营养元素之一。

二、巢湖的内源磷释放及其生物有效性巢湖位于中国安徽省,也是富营养化湖泊研究的典型水域之一。

巢湖水库的养殖业发展迅速,而养殖废水中富含大量的磷。

其他的磷污染物也是巢湖内源磷的重要来源之一。

研究发现,巢湖内源磷的释放主要发生在湖泊水位升降、沉积物搅动以及流入巢湖的河流水体的冲击作用下。

巢湖内源磷的释放对湖泊的营养状况有着显著影响,导致湖泊水体富营养化现象的加剧。

此外,巢湖内源磷的释放还会威胁湖泊生物多样性,导致水生植物和浮游动物的丰富度和分布范围发生变化。

三、龙感湖的内源磷释放及其生物有效性龙感湖位于中国江苏省,是一个典型的城市湖泊,也是内源磷释放的研究热点之一。

龙感湖的内源磷主要来自于降雨和流入湖泊的污水。

研究表明,龙感湖水体中的内源磷释放主要发生在雨季和高水位期间。

降雨水会冲刷城市地表的污物,引入湖泊中,污水中富含的磷也是龙感湖内源磷的重要来源。

长江中下游湖泊沉积物氮磷形态与释放风险关系

长江中下游湖泊沉积物氮磷形态与释放风险关系

长江中下游湖泊沉积物氮磷形态与释放风险关系张路;范成新;王建军;陈宇炜;姜加虎【期刊名称】《湖泊科学》【年(卷),期】2008(20)3【摘要】运用聚类分析、主成分分析和相关矩阵的统计分析手段,对长江中下游湖群共18个湖泊的沉积物氮磷释放风险以及湖泊沉积物、间隙水和上覆水中氮磷形态以及其他相关地球化学参数进行分析.草型和藻型湖泊的环境差异是造成氮磷释放风险的主要原因.氮磷释放风险与铁磷、藻类可利用磷、总氮、总磷、上覆水氮磷含量、间隙水氮含量、孔隙度和有机质含量间的关系最为密切,决定磷酸盐释放风险的主要形态磷是藻类可利用磷和铁磷,其他形态磷或者含量较低或者不易被转化释放.对磷酸盐释放风险影响较小.有机磷含量对磷的释放风险没有直接决定作用,但它与有机质含量间呈显著正相关.【总页数】8页(P263-270)【作者】张路;范成新;王建军;陈宇炜;姜加虎【作者单位】中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,南京,210008;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,南京,210008;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,南京,210008;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,南京,210008;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,南京,210008【正文语种】中文【中图分类】P3【相关文献】1.城市浅水湖泊沉积物磷形态分布及其与间隙水磷的关系 [J], 李璜;徐颖;朱明珠;方盛荣2.光照对湖泊沉积物磷释放及磷形态变化的影响研究 [J], 姚扬;金相灿;姜霞;李丽和3.长江中下游浅水湖泊沉积物磷释放动力学 [J], 金丹越;王圣瑞;步青云4.长江中下游与云南高原湖泊沉积物磷形态及内源磷负荷 [J], 黎睿;王圣瑞;肖尚斌;焦立新;刘文斌;倪兆奎5.长江中下游浅水湖泊沉积物总氮、可交换态氮与固定态铵的赋存特征 [J], 王圣瑞;焦立新;金相灿;刘景辉因版权原因,仅展示原文概要,查看原文内容请购买。

沉积物 磷

沉积物 磷

沉积物磷
磷是一种重要的营养元素,在自然界中广泛存在。

它对植物生长和动物生存至关重要。

然而,过量的磷也会导致水体富营养化,引起藻类过度生长,破坏水生态平衡。

因此,了解沉积物中磷的含量和分布对于环境保护和生态修复具有重要意义。

沉积物中的磷主要来源于土壤侵蚀、农业生产、工业排放和生活垃圾等。

在沉积物中,磷的存在形式包括有机磷和无机磷。

其中,有机磷主要与颗粒物结合,而无机磷则可以与沉积物中的钙、镁等元素结合形成难溶性磷酸盐。

沉积物中磷的迁移和转化受到多种因素的影响,如沉积物组成、水动力条件、微生物活动和环境因素等。

在迁移过程中,磷可以由沉积物释放到水体中,成为藻类生长的营养来源。

因此,研究沉积物中磷的迁移和转化机制是控制水体富营养化的关键。

为了降低水体富营养化的风险,需要采取一系列措施来控制沉积物中磷的排放。

例如,加强水土保持、推广生态农业、控制工业排放和垃圾处理等。

此外,通过人工湿地、生态浮床等技术手段也可以有效降低水体中的磷含量,促进水生态平衡。

总之,了解沉积物中磷的含量和分布对于环境保护和生态修复具有重要意义。

通过采取一系列措施来控制沉积物中磷的排放可以有效降低水体富营养化的风险,促进生态平衡和可持续发展。

长江中下游不同营养水平湖泊水体环境变化特征及机制_曾海鳌

长江中下游不同营养水平湖泊水体环境变化特征及机制_曾海鳌

长江中下游不同营养水平湖泊水体环境变化特征及机制曾海鳌1,2,吴敬禄1(1.中国科学院南京地理与湖泊研究所,江苏南京 210008;2.中国科学院研究生院,北京 100039)摘要:选择长江中下游49个湖泊进行不同季节的水体溶解无机氮(DIN )、总氮(TN )、总磷(TP ),溶解性无机磷(DIP )以及叶绿素a (Chla )等环境参数分析,开展不同营养水平湖泊水体环境变化特征及生物响应机制研究。

结果表明:DIN 、TN /TP 随TP 的变化规律反映了不同营养水平和季节下地球化学作用的影响;氨氮(NH 4-N )、TP 、DIP 、Chla 尤其是NH 4-N 的季节性变化规律与营养水平关系密切;TP <0.05mg /L 时,NH 4-N 随总磷升高的趋势夏季大于其他季节,TN /TP 与硝态氮(NO 3-N )、TN 相关性好,营养源组成和氨化作用是主要影响因素;0.05mg /L <TP <0.1mg /L 时,各季节NH 4-N 随总磷升高的趋势基本相同,TN /TP 与亚硝态氮(NO 2-N )、NO 3-N 、TN 相关好,水生植物利用、氨化和反硝化作用是主要影响因素。

TP >0.1mg /L ,冬季NH 4-N 随总磷升高的趋势明显大于其他季节,TN /TP 在冬季和春季与TN 、NO 3-N 相关性好,夏季和秋季与TP 相关性好,其主要原因在于夏季和秋季水生植物对DIN 的利用量、反硝化作用和湖泊内源释放的显著增强。

关 键 词:硝态氮;亚硝态氮;长江中下游湖泊中图分类号:P343.3 文献标识码:A 文章编号:1001-6791(2007)06-0834-08收稿日期:2006-12-15;修订日期:2007-03-23基金项目:国家自然科学基金资助项目(40673015);中国科学院知识创新工程资助项目(KZCX2-YW -319)作者简介:曾海鳌(1980-),男,重庆万州人,博士研究生,主要从事环境地球化学研究。

长江中下游湖泊沉积物的关键脱氮过程及其影响因素研究

长江中下游湖泊沉积物的关键脱氮过程及其影响因素研究

长江中下游湖泊沉积物的关键脱氮过程及其影响因素研究沉积物硝化-反硝化作用的最终产物是氮气和一氧化二氮,能将氮素永久地移出,是水域生态系统的关键脱氮途径。

长江中下游是我国湖泊分布最为广泛的区域之一,且湖泊富营养化比例高达85.9%,研究其湖泊沉积物关键脱氮过程及其影响因子,对富营养化治理具有非常重要的意义。

影响沉积物脱氮途径的因素可分为两类:一是非生物因素,包括可用的温度、氮源、碳源以及环境的溶氧量等;二是生物因素,包括沉水植物和微生物群落等。

这两类因素对脱氮途径的调控可以分为两种情形:一是近端控制,即环境因子直接且实时影响微生物氮循环的相关酶活性;二是远端控制,即环境因子通过影响氮循环相关微生物的群落结构来影响相关酶活性,这个过程作用时间较近端控制长。

尺度效应在生态学研究中尤其重要,而流域土地利用对湖泊生态系统的影响越来越受到关注。

本文以长江中下游湖泊为研究对象,运用流域尺度野外调查、单个典型湖泊案例研究以及室内受控试验相结合的研究方法,对沉积物脱氮途径进行了研究,主要结果如下:1.选取长江中下游22个湖泊为研究对象,调查了沉积物反硝化能力及其功能基因丰度、水质、沉积物理化性质、沉水植被,并据此分析了沉积物反硝化作用的影响因素。

结果表明,湖泊的非生物和生物因素均表现出明显的异质性,沉积物的反硝化作用相应的呈现出显著空间变化。

方差分解的结果显示,水质是影响沉积物反硝化作用的主要因素。

路径分析的结果揭示,水质对沉积物反硝化作用同时有直接或间接影响,其直接影响强于间接影响。

生物因子(相关微生物和沉水植物群落结构)并不能解释湖泊沉积物的反硝化能力。

因此,长江中下游湖泊中,非生物环境因子是沉积物脱氮途径的主要影响因素。

2.长江中下游10个代表性湖泊中,超富营养湖泊沉积物的硝化作用略高于富营养和中富营养湖泊。

硝化作用速率与水质、沉积物理化性质显著相关。

路径分析结果表明流域土地利用对沉积物硝化作用有间接影响,沉积物总氮含量可以解释其间接影响的55-60%。

水体沉积物中磷形成规律

水体沉积物中磷形成规律

水体沉积物中磷形成规律1 引言随着国家政策支持和引导力度的加大,太湖富营养化的治理逐见成效,对太湖富营养化的研究也逐步由外源性的污染控制转移到对内源性污染的关注,但外源性污染的控制依然不容忽视.太湖流域污染性工业已经得到一定控制,但流域内生活污水、农业面源污染仍未得到有效的控制,而这些污染物均通过入湖河流排入到太湖中.太湖流域内村镇级的河流特别是断头浜均与入湖河流水系相通,而这些河流长期受到沿岸农业面源污染、生活污水和人畜废水的影响,蓄积了大量的营养物质,底泥淤积严重,有些则形成黑臭河流,对下游河流及湖泊的水体生态系统构成重要的影响;此外,这些河流平时成为环保部门监测和治理的盲点区域,第一手资料仍然十分匮乏,因此,要从污染源头抓起,使外源性污染得到一定控制.沉积物是磷等营养物质的重要蓄积库,既可作为“汇”收集来自上覆水体中沉降、颗粒物、运输等多种途径带来的污染物;也可在特定的环境条件下,沉积物作为“源”将污染物再次释放到上覆水体中,从而引起水体二次污染.因此,对深受外源性污染影响的村镇级的河流特别是断头浜给予关注外,其河流的内源性污染也不容忽视.沉积物作为内源性污染的重要来源之一,是构成黑臭河流中重要的一部分.掌下浜(北段)是太滆南运河下游的自然支流之一,沿途与数条断头浜相连,流域内由于农村居住分散,加上农村集体经济实力有限,缺乏有效管理和技术处理能力,基本无完整的生活污水收集系统和处理设施,农村生活污水、农业退水直接排入现有排水沟渠塘及河道,导致河流污染日益严重,加上河道沉积物中污染物含量高,严重影响了太湖水质.同时,目前对湖泊、入湖河流、入湖河口、城市内河及湖泊的外源性污染控制的研究较多,但对农村地区的黑臭河流、断头浜的沉积物污染状况从外源和内源两方面研究相对较少.因此,笔者从太湖流域农村黑臭河流中选取掌下浜(北段)作为典型研究区域,分析河道沉积物中磷形态的分布特征及相关性,从日益加重的外源性污染和不容忽视的内源性污染两方面给予评价,以期为河流污染现状和治理及太湖富营养化防治提供基础数据.2 研究区域及方法2.1 研究区域概况掌下浜(北段)为太滆南运河下游的一条天然支流,全长约3 km,河段主要位于江苏省宜兴市周铁镇内,由北向南注入太滆南运河.河流两岸土地以农业用地和居住用地为主,随着区域经济的发展和居民生活水平的提高,日益增长的生活污水和农业退水均未经处理直接排入河流,导致河流污染日益严重.2.2 采样点设置及样品采集采样点的布设结合河流的特点,特别是农村村落分布及断头浜交汇处,从上游到下游共设13个采样点,样点具体布设如图 1所示.于2014年10月对掌下浜(北段)进行现场观测与采样,采用口径为9 cm的柱状采样器(HYDROBIOS,德国)采集未经扰动的沉积物柱状样品,每个采样点均随机采集3个样品,沉积物现场以5 cm分层,混匀后立即装入聚乙烯自封袋中,并同时运用有机玻璃采水器采集相应点位距离水面30 cm深处的河水,一同放入冷藏箱中4 ℃保存,送往实验室处理.沉积物样品送至实验室后采用孔径1 cm的铁筛对底泥进行粗筛,以除去植物残体和贝类等大颗粒物质,对筛过的底泥进行充分混匀,经冷冻干燥机(LABCONCO冻干机,美国)冻干后,玛瑙研钵充分研磨,过100目筛,放入玻璃瓶置于阴凉干燥处备用.采集的柱状沉积物均分为3层,即表层(0~5 cm)、中层(6~10 cm)、底层(11~15 cm).图1 采样点位示意2.3 理化指标测定上覆水体指标包括总氮(TN)、总磷(TP),采样点位置及上覆水体部分理化指标如表 1所示.沉积物中磷形态分析采用欧洲标准测试测量组织提出的SMT(The St and ards,Measurements and Testing Programme)协议来进行沉积物的磷形态提取.SMT法将磷分为5种形态:总磷(TP)、无机磷(IP)、有机磷(OP)、氢氧化钠提取态磷(Fe/AlP)、盐酸提取态磷(CaP),具体步骤如图 2所示.磷形态的测定采用钼锑抗分光光度法.有机质含量以沉积物分别在105 ℃及450 ℃下灼烧所得烧失量(LOI)表示.表1 采样点上覆水体部分理化指标图2 沉积物磷形态分级和测定2.4 数据分析实验所有数据均为3次平行取得的平均值.采用Excel2013进行整理,使用SPSS 18.0和Origin 8.0进行数据分析和相关图件制作.使用SNK检验进行差异显著性分析(p<0.05表示差异显著,p<0.01表示差异极显著).3 结果与讨论3.1 沉积物总磷和各组分磷的垂向分布特征3.1.1 钙结合态磷(CaP)CaP主要是与Ca结合的磷,是沉积物中较惰性的磷组分,也是一种难溶于水的化合物,它对湖水复磷贡献较小,常被认为是生物难利用性磷.CaP主要包括自生成因或生物成因的自生磷灰石磷,以及与自生碳酸钙共沉淀或外源输入的各种难溶性的磷酸钙矿物,如羟基磷灰石、过磷酸钙等.这些矿物在沉积物中稳定性很高,通常被认为是生物难利用磷,较难与活性磷成分进行形态转化,因此,也不易在沉积剖面中进行上下层间的迁移,是沉积物早期成岩过程的最终产物之一.在人为磷输入量较高的湖区,沉积物中 CaP 的含量应该较高.从图 3a中可以看出,各采样点沉积物中的Ca P含量在垂直剖面上总体呈现下降趋势.表层含量最大值出现在S13号采样点处,平均含量达到2484.84 mg · kg-1;底层(10~15 cm处)最小值出现在S2号采样处,平均含量达到392.73 mg · kg-1;在S10号采样点处含量降幅最大,表层CaP平均含量达到2102.40 mg · kg-1,底层(10~15 cm处)达到581.73 mg · kg-1,下降幅度达到72.33%.在采样点S8和S13的沉积物中,CaP的相对含量最高,分别占测定TP的58.91%和53.91%,也是沉积物中IP的主要组成部分(70.87%和67.87%).表层沉积物CaP含量高可能是由于河流两岸以居民聚居区和农田为主,河水带入大量的农业灌溉用水和生活污水,农业灌溉用水中含有大量的磷肥和未被利用的农药,加上动植物残骸随降雨径流带入河流,使得河流表层沉积物CaP含量相对较高.随着沉积深度增加,CaP含量在垂直剖面上表现出下降的趋势,说明掌下浜(北段)短暂的沉积历史内,钙磷的转化不是沉积磷早期成岩作用的优势过程.此外,这也与已有的一些研究结论并不相同.由于各研究采用的是不同的分级分离方法,得到的磷形态并不一致,导致结论不同也是可能的.从图 4可以看出,沉积物中CaP的平均含量占TP的比例达到57.13%,说明CaP构成了沉积物TP的主要部分,同时说明CaP是沉积物中主要的无机磷形态.图3 各采样点磷形态垂向分布(a.CaP ,b.Fe/AlP ,c.OP ,d.TP ,e.IP)图4 各采样点磷形态垂向分布含量占TP 的比例3.1.2 铁铝结合态磷(Fe/AlP)铁铝结合态磷(Fe/AlP)主要是指通过物理和化学作用吸附在铁、铝氧化物和氢氧化物胶体表面上的磷,深受沉积物粒度及pH 、氧化还原电位等环境因子的影响.大多数研究认为,铁铝结合态磷的迁移转化过程是沉积物向上覆水体释放磷的主要机制之一,因此,被认为是沉积物中主要活性磷组分,对沉积物水界面磷的循环起到主要作用.同时,Fe/AlP 在各种磷形态中占有重要的地位,这部分磷的来源与人类活动有关,主要来源于生活污水和工业废水,所以Fe/AlP 可以反映出区域磷污染的情况.从图 3b 中可以看出,各采样点沉积物中的Fe/AlP 含量在垂直剖面上从底层到表层总体呈现增加趋势,Fe/AlP 的相对含量在不同采样点存在明显差异.其中,在S6号采样点处含量降幅最大,表层Fe/AlP 平均含量达到320.55 mg · kg -1,底层(10~15cm)达到83.15 mg · kg -1,下降幅度达到74.06%.在S5号采样点处Fe/AlP 平均含量出现逆增长,Fe/AlP 平均含量由表层的72.27mg · kg -1增加到底层的78.45mg · kg -1,增长幅度仅到8.55%.在采样点S8和S13的沉积物中,Fe/AlP 的相对含量较高,分别占测定TP 的8.4%和8.19%.究其原因,由于铁存在氧化还原平衡,容易受到氧化还原电位变化的影响.随着沉积深度的增加,有机质降解消耗溶解氧,导致溶解氧随深度增加而不断降低,使沉积环境相应变得还原,沉积物还原能力也随之大大增强,氧化还原电位降低,沉积物中的三价铁随之被还原为二价铁,胶体状的〖Fe(OH)3〗x变成可溶性的Fe(OH)2,吸附在上面的磷随着二价铁的溶出而释放到间隙水中,然后依靠浓度梯度向上覆水中迁移释放,在氧化还原电位较高的表层沉积物中形成矿物而沉淀,表层沉积物对磷酸根迁移的屏蔽效应造成在沉积物表层的富集.底泥中存在的厌氧细菌也会促进这一过程的进行.另外,随着沉积深度的增加,非晶矿物逐步变得有序化,铁的氧化物和氢氧化物与磷结合能力随之逐渐减弱,这也可能是铁磷含量随深度增加而降低的原因.沉积物中铝磷含量同样随着沉积深度的增加而呈现降低的趋势,可能受到如沉积物粒度和沉积物粘度,以及其形成时间和沉积物成因等环境因子的影响,但关于其机理一部分人认为这可能与其氧化物在沉积物中的循环相关,随着深度的增加,沉积环境由氧化转向还原,Fe/AlP随着其氧化物被还原溶解而逐渐释放或向其它形态磷转化;另一部分人则认为Fe/AlP对沉积物中磷的吸附与释放虽然有很多相似之处,但铝氢氧化物不受氧化还原电位的影响,而且对水体和沉积物中的磷是永久性吸附.沉积物Fe/AlP 的分布规律及迁移机制还需进一步深入研究.3.1.3 有机磷(OP)有机磷(OP)包括由陆源性排放物质组成的难降解性有机磷部分和由死亡的水生生物尸体组成的可降解性有机磷部分.其中,可降解有机磷部分可以在早期成岩过程中随有机质的降解而释放,甚至向其它结合态磷转化.有机磷作为湖泊沉积物中重要的组成部分,是不容忽视的潜在生物有效磷源,对湖泊富营养化具有重要作用.有机磷在沉积物中的含量是由多种因素控制的,如输入量、沉积特性、早期成岩作用及生物作用等,被认为部分可被生物所利用,与人类活动有关,主要来源于面源污染.由图 3c可以看到,各采样点OP含量(除 S3、S5外)随深度增加而逐渐减小,其中,在S9号采样点处含量降幅最大,表层OP平均含量达到537.14 mg · kg-1,底层(10~15 cm)达到140.01 mg · kg-1,下降幅度达到73.93%.下降幅度最小出现在S5号采样点处,OP平均含量为152.26~143.69 mg · kg-1,下降幅度仅到5.63%.表层OP平均含量相对较高可能与河流两岸长期不断排放的生活污水和农业退水,以及地表径流将作物秸秆、有机生活垃圾带入河流,使大量有机质沉降在沉积物表层发生降解有关,造成表层有机磷含量偏高.此外,OP平均含量随着沉积深度增加而减少可能是OP己经部分出现分解释放,有一部分随着沉积深度的增加,沉积物中溶解氧含量随之降低,厌氧程度越高,而厌氧条件加剧了有机质的矿化作用,OP进入泥-水界面后转化为其他形态,很可能分解成为可溶性的小分子有机磷或溶解性正磷酸盐,溶解组分经过间隙水自下而上迁移扩散,转化为其它可生物利用的磷,从而影响上覆水的质量.3.1.4 总磷(TP)和无机磷(IP)掌下浜(北段)沉积物中TP含量及IP含量在剖面上的变化(除S3、S4、S5号采样点外)总体表现出自底层到表层逐步增加的趋势(如图 3d和3e所示),表现出“表层富集”现象.在各采样点,沉积物中TP含量较高,平均含量达到2050.13 mg · kg-1;表层沉积物中TP含量最大值出现在S13号采样点处,达到4379.31 mg · kg-1,但降幅最大的出现在S7号采样点处,表层TP含量是沉积物底层(10~15 cm)的3.18倍,降幅达到68.55%.无机磷(IP)是湖泊生态系统中非常重要的磷形态.沉积物中IP平均含量达到1625.30mg · kg-1;表层沉积物中IP平均含量最大值和最小值分别出现在S13号和S5号采样点处,分别为3484.57 mg · kg-1和545.37 mg · kg-1,含量降幅最大的出现在S2号采样点处,表层TP含量是沉积物底层(10~15 cm)的3.57倍,降幅达到71.96%.从图 3d、3e和图 4中可以得出,沉积物TP、IP含量垂向变化趋势基本与CaP一致,而且CaP又在TP、IP中比例均达到最大,说明沉积物中TP含量主要受其中IP含量影响,而IP含量主要受其中CaP含量影响.沉积物中TP含量所表现出的“表层富集”一种普遍存在的现象,一些人认为这主要是外源污染严重而导致沉积物表层磷含量的增加: 还有一些人认为这可能是由于沉积物中磷的地球生物化学作用而导致其向表层迁移所致越大.TP含量在垂直距离上表现出逐渐降低的原因可能是河流流速缓慢,低栖动物较少,河流中水生植物较少,根系对沉积物中TP含量影响较小;此外,受到生活污水排放量的增加和农业面源污染加大的影响,大量的外源营养物质不能够及时扩散被悬浮物质吸附就直接沉淀下来.3.2 有机质含量与各形态磷的相关关系沉积物中有机质是极为重要的胶体之一,是与重金属及其有机质污染物发生吸附、分配和络合等作用的活性物质,同时也是反映沉积物有机营养程度的重要标志.掌下浜(北段)各采样点位沉积物中垂向剖面上有机质含量的变化如图 5所示.从图 5可以看出,各采样点沉积物中有机质的平均含量位于均7.25%~9.46%之间,比对长寿湖沉积物有机质含量研究结果高出3~4倍,与对南四湖沉积物有机质含量研究结果相似,与对太湖西岸湖滨带沉积物有机质含量研究结果相似但变化范围相比较小.在现场采样时发现各采样点河流均淤积严重,黑臭底泥淤积最严重的可达1 m 以上,沉积物中有机质的重要来源有可能是河流两岸的生活污水、农业退水和各种生物残体的分解.除S3、S5、S10采样点外,其余采样点沉积物中有机质含量均随沉积深度的增加而降低,其中,降幅最大的出现在S2号采样点处,由表层的8.05%降到底层的5.14%;此外,表层有机质含量最大值同样出现在S9号采样点处,表层最小值出现在S3号采样点处,有机质含量仅达6.72%.由表 2可知,沉积物中有机质与各形态磷的相关性并不一致.沉积物中有机质在空间分布上与TP 与IP含量均具有显著的相关性(p<0.01),相关系数分别为0.94和0.92,说明沉积物中LQI的矿化分解过程中产生的有机酸与其他的螯合剂将部分无机固定态磷释放为可溶态的磷,有机质中富里酸聚阴离子与磷酸盐阴离子产生吸附竞争,通过专性吸附进入矿物离子,由此促进沉积物中磷的释放.此外,沉积物中有机质含量与CaP也显著相关(p<0.05,n=13),与OP和Fe/AlP的相关性不显著,表明沉积物中TP含量主要来自于CaP,其次是Fe/AlP和OP.图5 各采样点垂直剖面上有机质含量的变化表2 沉积物样品中有机质、总磷和各形态磷含量之间的相关关系3.3 沉积物各形态磷相关性分析沉积物中磷的质量比受沉积物性质、水力条件、生物作用及人类干扰等多种因素的影响.了解沉积物中各形态磷之间的相关关系及各形态磷与物理化学因素之间的关系,有利于认识磷形态分布特征,能够为总结沉积物中磷迁移转化规律提供依据,从而更好地为入湖河流治理及管理服务,本文中各形态磷含量之间的相关关系如表 2所示.TP和IP、CaP具有显著的相关性(p<0.01),相关系数均达到0.98以上,与OP也具有显著的相关性(r=0.88,p<0.05,n=13).TP与IP之间存在显著的相关性(r=0.99,p<0.01, n=13),说明沉积物中TP的含量主要是由IP控制;而TP和CaP、IP和CaP含量同样均呈显著的相关性(r=0.98,r=0.99 p<0.01,n=13),由此进一步表明沉积物中 TP 含量的增加,主要来自CaP,其次是OP,也说明CaP构成了IP的主要部分,同样也映证了近年来河流两岸农业废水和生活污水排放量日益增加的现状,使得采样区域富营养化现状不断加剧,河流水体中不断增加的磷向沉积物迁移,造成沉积物中磷的不断增加并在沉积物中沉淀下来.在各形态磷中,OP与Fe/AlP、CaP 均呈显著的正相关关系(相关系数分别为0.80、0.88,p<0.01,n=13),表明沉积物中OP含量对Fe/AlP、CaP的含量均有影响,与其部分可被生物利用的特征较为符合,但从实验结果看,对CaP的影响要稍大一些.CaP与Fe/AlP之间也存在显著的相关性(r=0.95, p<0.01,n=13),说明Fe/AlP的还原释放对CaP的形成,特别是对自生磷灰石磷形成具有一定的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长江中下游典型浅水湖泊沉积物水界面磷与铁的耦合关系 龚梦丹;金增锋;王燕;林娟;丁士明 【摘 要】目前普遍认为磷铁耦合关系是P迁移的主要机制,但大部分研究结果并未提供直接的原位证据.为了探索沉积物剖面磷(P)与铁(Fe)的耦合关系,利用ZrO-Chelex薄膜扩散梯度技术(ZrO-Chelex DGT),分别对太湖、巢湖、鄱阳湖和洞庭湖4个浅水湖泊沉积物有效态Fe和P进行高分辨采样和分析.结果表明,不同湖区有效态Fe和P浓度在沉积物水界面处开始增加,之后波动变化,垂向异质性较强,但两者浓度变化同步.有效态P和Fe浓度的相关分析结果证明两者浓度具有显著的线性相关.室内厌氧培养实验进一步表明,Fe3+的还原性促使Fe2+与铁结合态磷的释放,促使DGT有效态P与Fe同步变化.该结果表明沉积物P的二次迁移和释放受Fe氧化还原过程的控制,为铁磷耦合关系提供了直接证据.%It is universally accepted that the coupling relationship between phosphorus(P)and iron(Fe)is responsible for the migration of P,but there is little direct in situ evidence.In order to investigate the coupling relationship between P and Fe in sediments of shallow lakes,the concentrations of labile P and Fe in the sediments in Lakes Taihu,Chaohu,Poyang and Dongting were measured using ZrO-Chelex diffusive gradients in thin films(ZrO-Chelex DGT).The results showed that both labile Fe and P began to increase downward below the sediment-water surface followed by fluctuation up to the bottom of the sediment profiles.Their changes were consistent along the profiles,which were further supported by the positively linear correlations among them.Anaerobic incubation experiment further showed that the reductive dissolution of iron oxides led to the releases of ferrous Fe and P associated with iron oxides.The results proved that the remobilization of P in sediments was dominated by Fe redox.

【期刊名称】《湖泊科学》 【年(卷),期】2017(029)005 【总页数】9页(P1103-1111) 【关键词】沉积物;薄膜扩散梯度;铁磷耦合;内源;有效性;长江中下游 【作 者】龚梦丹;金增锋;王燕;林娟;丁士明 【作者单位】中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,南京 210008;中国科学院大学,北京 100049;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,南京 210008;中国科学院大学,北京 100049;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,南京 210008;中国科学院大学,北京 100049;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,南京 210008;中国科学院大学,北京 100049;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,南京 210008

【正文语种】中 文 湖泊沉积物是水体氮、磷等营养盐重要的汇,由于浅水湖泊易受风浪扰动作用发生再悬浮,造成沉积物氮、磷等营养物质释放到上覆水,因此比深水湖泊更易引起湖泊富营养化[1]. 目前太湖和巢湖等多个浅水湖泊面临水质恶化和湖泊富营养化等问题[2-4]. 研究表明,磷(P)是湖泊蓝藻水华产生的限制性因子[5],内源P的释放是切断外源污染后,富营养化现象持续存在的重要原因[6-8]. 在探讨内源P释放机制时,铁、铝、钙结合态磷(Ca-P、Al-P、Fe-P)等都纳入研究范围,其中Fe-P是沉积物中最易受环境影响而引起磷释放的形态[9]. 目前,大量研究围绕沉积物Fe和P的关系展开[10-12]. Bortleson等[13]研究发现湖泊沉积物中P和Fe呈现显著的相关性. 进一步的研究表明, Fe含量高的沉积物,NH4Cl-P、NaOH-P浓度相对也高[14]. Søndergaard等[15]对丹麦浅水湖泊沉积物进行P形态分析时,提出沉积物表层P浓度受外源P负荷和Fe浓度影响,且随着两者浓度增加而增加. 另外也有研究表明P的释放与P/Fe比值呈负相关,在P/Fe<1时,P的释放速度明显升高[16]. 这些发现都验证了Fe和P的循环对P的界面释放起重要作用,Fe3+的降低对P释放具有主导作用,在高P水平下沉积物中Fe与P的关系更加密切[17]. 目前有关沉积物的研究主要基于主动采样技术,采样和运输过程会破坏沉积物原有性质,改变沉积物氧化还原条件[18],且分辨率低(cm级别),分析测定步骤繁琐且速度较慢. 新型原位被动采样技术ZrO-Chelex薄膜扩散梯度技术(ZrO-Chelex DGT),可以在不破坏沉积物情况下,能够原位同步获取沉积物剖面有效态P和Fe的信息,分辨率达到毫米级. Xu等[19]和Sun等[20]通过室内模拟实验证明ZrO-Chelex DGT在自然界正常水体下能够同时测量沉积物剖面有效态P和Fe浓度,且其对这两种离子的检测极限浓度较高. 本研究选取长江中下游地区典型浅水湖泊太湖、巢湖、鄱阳湖和洞庭湖这4个湖泊为研究对象,利用ZrO-Chelex DGT同步获取现场沉积物-水界面有效态P和Fe浓度的剖面分布信息,并对两者的变化进行分析,同时进行室内模拟实验,进一步明确铁磷耦合关系,为内源磷释放机理提供直接证据. 1.1 研究区概况 太湖、巢湖、鄱阳湖和洞庭湖为中国四大淡水湖泊,他们分别位于江苏省南部、安徽省江淮丘陵中部、江西省北部以及湖南省东北部,其面积分别为2328、760、2933和2625 km2,平均深度分别为1.9、2.7、5.1和6.4 m. 湖泊土壤类型基本为Fe、Mn元素富集的红壤或黄壤,湖水矿化度较高,主要为以Ca2+为主的阳离子以及以为主的阴离子,其pH偏弱碱性,这些性质为蓝藻生长提供了适宜的环境[21]. 研究表明,这些湖泊均存在富营养化现象,且主要受农业非点源污染以及工业废水排放点源污染所致[22]. 1.2 ZrO-Chelex DGT技术原理和装置准备 薄膜梯度扩散技术(DGT)作为一种原位被动采样技术,由Davison等于1994年发明[23]. 该技术是以费克第一扩散定律为理论基础,当装置投放至水体或沉积物中,环境中自由态离子通过滤膜和扩散膜组成的扩散层,进而被固定膜捕获并累积,根据通量与费克第一定律公式计算出DGT有效浓度[24]. ZrO-Chelex DGT是在氧化锆DGT(Zr-oxide DGT)基础上发展起来的复合DGT,利用ZrO-Chelex凝胶层作为同步固定Fe、P的固定层[19,25],其容量较高[19],还可同时测定P和As5+、Cr6+、Mo6+、Sb5+、Se6+、V5+、W6+等重金属离子[26-27]. ZrO-Chelex DGT购置于南京智感环境科技有限公司,采用了新型平板DGT塑料外套[28],固定膜的配制方法参考文献[19],扩散膜为1.5%琼脂糖,厚度为0.8 mm,滤膜为PVDF膜(0.45 μm, 厚度为0.1 mm). 组装DGT装置时,首先将固定膜放置在底板上,之后依次放置扩散膜和滤膜,最后盖板固定3层膜,置于去离子水充氮去氧16 h备用. 1.3 样品采集与分析方法 1.3.1 样品采集 2015年5-7月,依次在太湖、巢湖、鄱阳湖和洞庭湖进行DGT装置投放和现场表层泥取样,其采样点分布见图1. 通过重力投放器,将DGT装置投放到采样点湖区沉积物中,24 h后回收DGT装置,标记沉积物-水界面,用去离子水冲洗装置表面沉积物,装入自封袋保持湿润,带回实验室进行分析. 采集太湖梅梁湾柱状样品和水样,低温保存带回实验室. 其中柱状样进行现场分层,用于室内培养实验. 1.3.2 室内培养实验 将太湖梅梁湾分层泥进行相同层次的混匀过筛,按沉积物分层顺序分装成4个平行沉积物柱状样,并添加上覆水(原位过滤水样),恒温25℃下淹水培养. 室内模拟好氧-厌氧环境,首先将稳定后的沉积物间断曝气使其充分好氧,随后加盖子密封,使沉积物逐渐厌氧,每天定时监测上覆水溶解氧浓度,在好氧3 d,厌氧7、14、30 d时投放DGT装置,同步获取沉积物剖面P、Fe的信息. 1.3.3 样品分析方法 ZrO-Chelex DGT固定膜中有效态P和Fe浓度的测定参考文献[19]:沿DGT装置暴露窗口边缘划开,取出固定膜,用去离子水轻轻冲洗后吸去残留水,然后置于陶瓷组刀上将膜切成1 mm宽的长条,于400 μl 1 mol/L的HNO3提取液中,16 h后吸出提取液,待测有效态Fe;固定膜长条加入400 μl去离子水取出残留HNO3,加入400 μl 1 mol/L NaOH提取液,16 h后吸出提取液,待测有效态P浓度. 提取液中和Fe2+浓度的测定分别采用钼蓝和邻菲罗啉微量比色法[29]. 沉积物分析方法:将不同湖区的沉积物带回实验室后,称取约2 g 沉积物样品烘干测定含水率. 剩余样品封袋后马上进行低温冷冻,再将冻土进行冷冻干燥,研磨过筛后装入自封袋中待分析. 沉积物各指标均按照标准分析方法分析[30]. 烧失量(LOI)通过在550℃环境下灼烧沉积物6 h测定;元素含量测定采用LiBO2消解法,提取液中总磷含量采用钼蓝显色法测定,其他金属离子含量用ICP-AES进行测定. 1.4 数据处理和分析 根据和Fe2+微量比色的标准曲线,得到提取液中P和Fe的浓度,两者的累积量M为: 式中,Ce为提取液中P和Fe的浓度,Ve和Vg分别为提取液和固定膜的体积, fe为提取率,ZrO-Chelex固定膜P和Fe的提取率分别为96%和88%. 有效态P和Fe浓度可依据公式(2)得到: 式中,CDGT为沉积物剖面有效态浓度的平均值[31];Δg为扩散层厚度(cm);Dg

相关文档
最新文档