单片机芯片的结构及原理
stc11f04e原理

stc11f04e原理一、概述本文将介绍s tc11f04e芯片的原理,包括其基本概念、结构和工作原理。
st c11f04e是一款单片机芯片,广泛应用于各种电子设备和嵌入式系统中。
二、芯片结构s t c11f04e芯片采用高性能的8位单片机结构,集成了各种外设和功能模块,包括中央处理器、存储器、输入/输出接口、定时器、串口通信等。
它的结构紧凑,功耗低,适合在资源有限的环境中使用。
三、工作原理s t c11f04e芯片的工作原理如下:1.中央处理器s t c11f04e芯片的中央处理器采用8位的哈佛架构,具有高性能和低功耗的特点。
它可以执行各种指令,并控制其他模块的工作。
2.存储器s t c11f04e芯片内置的存储器包括F las h存储器和RA M存储器。
其中,Fl as h存储器用于存储程序和数据,而R AM存储器用于临时数据存储。
3.输入/输出接口s t c11f04e芯片提供了多个输入/输出引脚,用于与外部设备进行数据交换。
它支持数字输入输出和模拟输入输出,并能够通过中断和轮询方式进行数据传输。
4.定时器s t c11f04e芯片内置了多个定时器,用于测量时间和控制时序。
它可以实现定时中断、定时计数和PW M输出等功能。
5.串口通信s t c11f04e芯片支持异步串行通信,具有多种通信方式和协议。
它可以与其他设备进行数据交换,实现远程监控、数据传输等功能。
四、应用领域s t c11f04e芯片由于其低成本、低功耗和高性能的特点,在各种嵌入式系统中得到广泛应用。
它可以用于家电控制、电子仪器、工业自动化、智能家居等领域。
五、总结本文对s tc11f04e芯片的原理进行了简要介绍,包括其基本概念、结构和工作原理。
s tc11f04e芯片作为一款高性能的8位单片机,具有广泛的应用前景。
希望本文能对读者了解st c11f04e芯片有所帮助。
以上就是关于st c11f04e原理的文档内容,介绍了该芯片的概述、结构、工作原理、应用领域等方面的内容。
第2章 89C51单片机硬件结构和原理

2.累加器A 使用最频繁的寄存器,可写为Acc。“A”与“Acc” 书写上 的差别,将在第3章介绍。
作用如下:
(1)ALU单元的输入数据源之一,又是ALU运算结果存放单元。 (2)数据传送大多都通过累加器A,相当于数据的中转站。为 解决“瓶颈堵塞”问题,AT89S51增加了一部分可以不经过 累加器的传送指令。
18
PSW中各个位的功能: (1)Cy(PSW.7)进位标志位
可写为C。在算术和逻辑运算时,若有进位/借位,Cy=1;
否则,Cy=0。在位处理器中,它是位累加器。 (2)Ac(PSW.6)辅助进位标志位 在BCD码运算时,用作十进位调整。即当D3位向D4位产生进 位或借位时,Ac=1;否则,Ac=0。 (3)F0(PSW.5)用户设定标志位 由用户使用的一个状态标志位,可用指令来使它置1或清0, 控制程序的流向。用户应充分利用。
端(12-21V)。
4、I/O端口P0、P1、P2和P3 准双向的含义:
当I/O口作为输入时,应先向此口锁存器写入全1, 此 时该口引脚浮空,可作高阻抗输入。
1)P0口:用作通用的I/O口;当外扩存储器及I/O接口芯片时,P0口作为低8位地址 总线及数据总线的分时复用端口。 2)P1口:用作通用的I/O口 3)P2口:用作通用的I/O口;当外扩存储器及I/O接口芯片时,P2口作为高8位地址 总线 4)P3口:用作通用的I/O口;每个引脚有第二功能
图2-6 高128字节RAM(SFR区)
1、堆栈指针SP
堆栈指针SP(8位),可指向片内RAM00H~7FH的任何单元。系统 复位后,SP指向07H的RAM单元,所以入栈的第一个数据位于08H单元。
堆栈:在片内RAM区专门开辟的一个区域,数据的存取是按“后进先
MCS-51系列单片机的结构及原理

阻。P1口可驱动4个LSTTL门电路。
第2章 MCS-51系列单片机的结构及原理
图2-4 P1口的位结构图
第2章 MCS-51系列单片机的结构及原理
(2) P1口其他功能。
P1口在EPROM编程和验证程序时输入低8位地址;在 8032/8052系列中P1.0和P1.1是多功能的,P1.0可作定时器/计数 器2的外部计数触发输入端T2,P1.1可作定时器/计数器2的外部 控制输入端T2EX。 3) P2口——准双向口 P2口(P2.0~P2.7,21~28脚)的位结构如图2-5所示,引脚 上拉电阻同P1口。在结构上,P2口比P1口多一个输出控制部分。
第2章 MCS-51系列单片机的结构及原理
图2-3 P0口的位结构图来自第2章 MCS-51系列单片机的结构及原理
(1) P0口作地址/数据复用总线使用。
若从P0口输出地址或数据信息,此时控制端应为高电平, 转换开关MUX将反相器输出端与输出级场效应管V2接通,同 时与门开锁,内部总线上的地址或数据信号通过与门去驱动V1 管,又通过反相器去驱动V2管,这时内部总线上的地址或数据 信号就传送到P0口的引脚上。例如,若地址/数据为0时,该信 号一方面通过与门使V1截止,另一方面,在控制信号作用下, 该信号经反相器使V2导通,从而在引脚上输出0信号;反之, 若地址/数据为1时,将会使V1导通,V2截止,引脚输出1信号。 工作时低8位地址与数据线分时使用P0口。低8位地址由ALE信 号的负跳变使它锁存到外部地址锁存器中,而高8位地址由P2
第2章 MCS-51系列单片机的结构及原理
4个并行I/O端口作为通用I/O口使用时,共有写端口、读端
口和读引脚三种操作方式。写端口实际上就是输出数据,是将 累加器A或其他寄存器中的数据传送到端口锁存器中,然后经 输出锁存器自动从端口引脚线上输出。读端口不是真正地从外 部输入数据,而是将端口锁存器中的输出数据读到CPU的累加 器。读引脚才是真正的输入外部数据的操作,是从端口引脚线 上读入外部的输入数据。端口的上述三种操作实际上是通过指 令或程序来实现的,这些将在以后的章节中详细介绍。
单片机-第二章MCS51单片机结构及原理

OC门
频率低于 12MHz
外时钟方式电路图
MCS-51 CPU时序
一、机器周期、状态、相位
· 一个机器周期包括6个S 状态S1~S6,每个S状态
分为2 (拍)个振荡周期(相位P1,相位P2)。 · 1个机器周期= 6个S状态=12 (拍)个振荡周期 · 采用主频为 12MHz 振荡源,每个机器周期为1µ S
定时元件采用由石英晶体和电容组成并联谐振 电路。晶体和电容尽可能靠近单片机芯片。
振荡频率 1.2MHz~12MHz
19
电容通常 选择为 30PF 左右
XTAL1
C1 C2
晶 振
单 片 机
XTAL2
18
内时钟方式电路图
⑵ 控制信号 名称 功
PSEN
能
片外取指信号(片外程序存储器读)输出端 低电平有效。通过P0口读回指令或常数。
一、51单片机的管脚功能 1、按功能分类 I/O口线 控制口线 电 时 源 钟 P0 、 P1 、 P2 、 P3 共32条
PSEN、ALE、EA/VPP、RESET 共4条
Vcc、 Vss
共2条
XTAL1、 XTAL2 共2条
2、管脚的功能
(1)电源与时钟 Vcc:接+5V电源端 Vss:接地端 XTAL1:片内振荡电路输入端 XTAL2:片内振荡电路输出端 内时钟方式 时钟电路: 外时钟方式 在XTAL1、XTAL2上外接定时 内时钟方式: 元件,使其形成自激振荡器。
定时元件采用由石英晶体和电容组成并联谐振 电路。晶体和电容尽可能靠近单片机芯片。
振荡频率 1.2MHz~12MHz
19
电容通常 选择为 30PF 左右
XTAL1
C1 C2
MCS-51单片机结构和原理

整理课件 15
跳转到第一页
7FH 30H
2FH
7F
7E
7D
7C
7B
7A
79
78
2EH
77
76
75
74
73
72
71
70
2DH
6F
6E
6D
6C
6B
6A
69
68
2CH
67
66
65
64
63
62
61
60
2BH
5F
5E
5D
5C
5B
5A
59
58
2AH
57
56
55
54
53
52
51
50
29H
4F
4E
4D
4C
4B
4A
P2.1
P2.0
9F
9E
9D
9C
9B
9A
SCON
SM0
SM1
SM2
REN
TB8
RB8
99
98
98H
TI
RI
97
96
95
94
93
92
91
90
P1
90H
P1.7
P1.6
P1.5
P1.4
P1.3
P1.2
P1.1
P1.0
8F
8E
8D
8C
8B
8A
89
88
TCON
88H
TF1
TR1
TF0
TR0
IE1
IT1
IE0
整理课件 4
第3章 89C51单片机 硬件结构和原理 89C51是Atmel公司在8051基础上发展的8位单片机。介绍它的硬件

INT0 外部中断0输入
INT1 外部中断1输入
T0 定时器0的外部输入(计数输入)
T1 定时器1的外部输入(计数输入)
WR 外部数据存储器写选通控制输出
RD 外部数据存储器读选通输出控制
4. 程序状态标志寄存器 PSW
D7
D6 D5 D4 D3 D2 D1 D0
CY AC F0 RS1 RS0 OV — P
MOVC A,@A+DPTR
MOVC A , @A+PC CPU读取片外ROM时,发出PSEN信号(程序存储允
许输出),作为读ROM的选通控制信号。
程序存储器中的保留单元
存储单元地址
保留用途
0000H—0002H 复位后初始化引导程序地址
0003H—000AH 外部中断0中断服务程序入口地址
000BH—0012H 定时器/计数器0溢出中断服务程序 入口地址
89C51单片机基本组成包括有:
一个8位的微处理器; 片内数据存储器RAM有128B,
21个特殊功能寄存器SFR; 片内程序存储器Flash ROM 有4KB;
可寻址片内外统一编址的64KB的ROM, 可寻址片外64KB的RAM; 4个8位并行I/O接口(P0—P3); 一个全双工通用异步串行接口UART; 两个16位的定时器/计数器; 五个中断源、两个优先级的中断控制系统;
R0 — R7
18H — 0FH
R0 — R7
10H — 17H
R0 — R7
18H — 1FH
R0 — R7
⑵ 位寻址区
片内RAM的 20H—2FH这16 个字节,可以 用位寻址方式 访问各位。
这128位的位地 址00H-7FH。
有专门的位操 作指令,采用位
2MCS51单片机的基本结构与工作原理

第二章MCS51单片机的基本结构与工作原理一、8051单片机内部包含哪些主要逻辑功能部件?提示:(1)CPU—包括运算器和控制器。
其中运算器主要有运算逻辑部件ALU(实质上就是一个全加器)、累加器A、暂存器TMP(如B寄存器、数据指针DPTR)、程序状态字PSW(寄存程序运行的状态信息);控制器主要有程序计数器PC(实质是加1计数器)、指令寄存器IR(存放指令操作码的专用寄存器)、指令译码器、定时控制逻辑电路(按指令的性质发出一系列定时信号)、条件转移逻辑电路。
(2)内部RAM。
共有256个RAM单元。
其中低128个单元(00H—7FH)供用户使用,高128个单元(80H—FFH)是专用寄存器,有着特殊逻辑功能(又名特殊功能寄存器SFR)。
(3)内部ROM。
8031内部无ROM,8051有4KB掩膜ROM。
(4)定时/计数器。
MCS51共有2个16位的定时/计数器(T0、T1)。
(5)并行I/O口。
MCS51共有4个8位并行I/O口(P0、P1、P2、P3)。
(6)串行口。
MCS51有1个全双工的串行口。
(7)中断控制系统。
MS51共有5个中断源,且分两个优先级别。
(8)时钟电路。
系统允许的最高晶振频率为12MHz(主要用于通信)。
二、MCS51问片内RAM、片外提示:(1(2)(片内外统一编址空间共64KB)、128个单元中的21个单元SFR,高128个单元中的107个空闲地址,用户不能使用。
切记!)、片外数据存储器(寻址空间64KB)。
(3)从功能上划分为程序存储器、内部数据存储器、特殊功能寄存器、位地址空间、外部数据存储器。
访问片内RAM的指令助记符是MOV;如MOV P1,A访问片外RAM的指令助记符是MOVX;如MOVX @DPTR ,A访问片外ROM的指令助记符是MOVC;如MOVC A,@A+PC三、MCS51单片机片内RAM按用途可以划分几个区域?各有什么作用?(片内RAM低128单元划分哪三个主要部分?各部分主要功能是什么?)提示:片内RAM是最灵活的地址空间,在物理上分成两个独立的功能不同的区域,即低128个单元(00H —7FH)的数据RAM区、高128个单元(80H—FFH)的特殊功能寄存器SFR区(见下一题的回答)。
第2章 单片机的内部结构及工作原理

(9)定时器0和定时器1寄存器 TCON:定时器控制寄存器。 TMOD:定时器方式寄存器。 TL0、TH0:定时器0寄存器。 TL1、TH1:定时器1寄存器。 (10)P0~P3端口寄存器 (11)栈指针SP寄存器 栈指针SP寄存器指示出堆栈顶部在内部数据存储器 中的位置。系统复位后,SP初始化为07H,如果不重新 设置,就使得堆栈由08H单元开始。但08H~1FH单元属 于工作寄存器区,所以在程序设计中,最好把SP的值 设置的大一些,一般将堆栈开辟在30H~7FH区域中。 SP的值越小,堆栈容量就越大,但最大为128字节。
专用寄存器(Special Function Registers)也叫特殊功能寄存 器,就是将内部RAM的高128单元作为特殊功能寄存器使用。 其单元地址为80H~FFH。
寄存器 0 F8H F0H E8H E0H D8H D0H C8H C0H B8H B0H A8H A0H 98H 90H
88H 80H
P3口的特殊功能 口的特殊功能
引脚 1(80C52) 2(80C52) 10 11 12 13 14 15 16 17 特殊功能符号 P1.0/ T2 P1.1/ T2 P3.0/ RXD P3.1/ TXD P3.2/ INT0 P3.3/ INT1 P3.4/ T0 P3.5/ T1 P3.6/ WR P3.7/ RD 功能说明 定时/计数器 T2 计数输入端 T2 的捕捉/重新加载的触发输入 串行数据输入端 串行数据输出端 外部中断 0 申请信号 外部中断 1 申请信号 定时/计数器 T0 计数输入端 定时/计数器 T1 计数输入端 外部数据 RAM 写控制信号 外部数据 RAM 读控制信号
单片机引脚
(9)ALE/PROG(30脚):地址锁存允许信号。 有以下三个作用: 当外接存储器(RAM/ROM)时,ALE(允许地 址锁存)的输出用于锁存地址的低8位。一般 ALE接锁存器的EN端。 当没有外部存储器时,ALE端可输出脉冲信号, 此频率为石英振荡频率的1/6。因此,它可用作 对外部芯片提供输出的时钟,或用于定时的目 的。 (10)(29脚):外部程序存储器的读选通 信号
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机芯片的结构及原理
单片机是一种集成电路芯片,包含了微处理器、存储器、输入输出端
口和其他外围设备,被广泛应用于各种嵌入式系统中。
单片机芯片的结构
主要包括中央处理器(CPU)、存储器系统、时钟和定时器、输入输出
(I/O)端口以及其他外设等部分。
以下将对单片机芯片的结构和原理进
行详细介绍。
1.中央处理器(CPU):
CPU是单片机的核心部分,它负责执行计算机指令,控制系统的运行。
CPU包含算术逻辑单元(ALU)、控制单元(CU)、寄存器等部分。
ALU负
责执行整数和逻辑运算,CU负责控制数据的流动和指令的执行。
寄存器
则用于存放CPU所需的数据和指令。
2.存储器系统:
单片机的存储器系统包含了程序存储器和数据存储器。
程序存储器用
于存放程序指令,通常是只读存储器(ROM)或闪存(EEPROM);数据存
储器用于存放程序执行所需的数据,通常是随机存储器(RAM)。
存储器
系统还包括存储管理单元,用于控制数据的读写和存储器之间的数据传输。
3.时钟和定时器:
时钟和定时器是单片机系统中的重要组成部分,它们用于提供系统的
时序控制和计时功能。
时钟负责产生微处理器和其他外围设备所需的时钟
信号,而定时器则用于计时和延时,可以实现各种需要精确时间控制的功能,例如脉冲生成、脉宽调制等。
4.输入输出(I/O)端口:
单片机的输入输出端口用于与外部设备进行数据交换。
它们可以是并行口、串行口、通用输入输出口等。
并行口可以同时传输多个信号位,适用于数据传输要求较高的设备,例如显示器、打印机等;串行口则适用于数据传输速率较低的设备,例如键盘、鼠标等。
5.其他外设:
除了输入输出端口之外,单片机还可以通过外部接口与其他外设进行通信,例如模数转换器(ADC)、数模转换器(DAC)、计数器等。
这些外设可以提供对模拟信号的采集和处理,以及对数字信号的计数和控制等功能。
单片机的原理是通过时钟信号的驱动下,CPU执行程序中的指令,从而完成各种功能。
当系统上电后,单片机的复位电路将使系统进入复位状态,此时CPU的指令计数器被初始化为0,程序从指定的地址开始执行。
CPU在执行指令时,从存储器中取出指令并进行译码执行,然后根据指令的要求对相关寄存器和数据进行操作,最终实现所需的功能。
编程人员可以通过编写程序,将所需的功能以指令的形式存储在存储器中,并通过CPU的执行来实现。
总而言之,单片机芯片的结构包括中央处理器、存储器、时钟和定时器、输入输出端口以及其他外设等部分,通过时钟信号的驱动下,CPU执行程序中的指令,从而实现各种功能。