数列典型例题
【典型例题】等差数列前n项和的性质完整版课件

点拨:观察上述题目的特征,不难 发现需利用等差数列前n项和的性质 (1)(2)来解决,事实上这两个 性质体现的是等差中项的应用.
解析:(1)易知S7=7a4=35,可得a4=5.
(2)方法一
S9=
9a1 a9 = 9a4 a6
2
2
=54.
方法二 由于a4+a6=12,则a5=6,
从而S9=9a5=54.
点拨:观察上述题目的特征,不难 发现需利用等差数列前n项和的性质 (1)(2)来解决,事实上这两个 性质体现的是等差中项的应用.
(3)S12=
12
a1 2
a12
=21,即a1+a12=
7 2
,
则a2+a5+a8+a11=2(a1+a12)=7.
等差数列前n项和的性质
例2 (2019·西安铁一中检测) 在项数为2n+1的等差数列中,若所有奇数项的和为165,所 有偶数项的和为150,则n等于
2
4 2 22 2
2
(2)方法一
由(1)可得
S6 6
S4 4
=
3 2
,
从而S6=24.
方法二 由性质(5)知S2,S4-S2,S6-S4成等差数列,
即2,8,S6-10成等差数列, 则2+S6-10=2×8,解得S6=21 (1)设Sn是等差数列{an}的前n项和,若S7=35,则a4=____5____. (2)等差数列{an}中,a4+a6=12,Sn是数列{an}的前n项和,则S9的值为____5_4___. (3)已知等差数列{an}的前n项和为Sn,若S12=21,则a2+a5+a8+a11=____7____.
等差数列前n项和的性质
例1 (1)设Sn是等差数列{an}的前n项和,若S7=35,则a4=____5____. (2)等差数列{an}中,a4+a6=12,Sn是数列{an}的前n项和,则S9的值为____5_4___. (3)已知等差数列{an}的前n项和为Sn,若S12=21,则a2+a5+a8+a11=________.
求数列通项公式专题典型例题精校版

数列的通项公式专题题型一【积差求商】形如11++⋅=-n n n n a ka a a 例1:已知数列}{n a 满足112++⋅=-n n n n a a a a ,且211=a ,求数列}{n a 的通项公式.变式训练1:已知数列}{n a 满足113++⋅=-n n n n a a a a ,且911=a ,求数列}{n a 的通项公式.变式训练2:已知数列}{n a 满足113++⋅=-n n n n a a a a ,且21=a ,求数列}{n a 的通项公式.题型二【n a 与n S 】例2:已知数列}{n a 的前n 项和22+=n S n ,求数列}{n a 的通项公式.变式训练1:已知数列}{n a 的前n 项和n S 满足1)1(log 2+=+n S n ,求数列}{n a 的通项公式.变式训练2:已知数列}{n a 的前n 和为n S ,21=a ,且)1(1++=+n n S na n n ,求n a .变式训练3:已知数列}{n a 的前n 和为n S ,且满足21),2(,0211=≥=⋅+-a n S S a n n n ,求n a .变式训练4:已知数列}{n a 的前n 项和n S 满足2)1(41+=n n a S 且0>n a ,求}{n a 通项公式.变式训练5:数列{}n a 满足11154,3n n n a S S a ++=+=,求n a .题型三【累加法】形如已知1a 且()1n n a a f n +-=(()f n 为可求和的数列)的形式均可用累加法。
例3:已知数列}{n a ,且21=a ,n a a n n =-+1,求通项公式n a .变式训练1:已知数列}{n a 满足21=a ,231++=+n a a n n ,求}{n a 的通项公式.变式训练2:已知数列}{n a ,且21=a ,n n n a a 21+=+,求通项公式n a .变式训练3:数列{}n a 中已知11=a ,3231+++=+n a a n n n ,求{}n a 的通项公式.加强训练1:已知数列}{n a 满足11=a ,)11ln(1na a n n ++=+,求}{n a 的通项公式.加强训练2:已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。
高考数学解答题(新高考)数列求和(裂项相消法)(典型例题+题型归类练)(解析版)

专题06 数列求和(裂项相消法)(典型例题+题型归类练)一、必备秘籍常见的裂项技巧 类型一:等差型类型二:无理型类型三:指数型①11(1)11()()n n n n n a a a k a k a k a k++-=-++++如:11211(2)(2)22n n n n n k k k k++=-++++类型四:通项裂项为“+”型如:①()()()21111111nn n n n n n +⎛⎫-⋅=-+ ⎪++⎝⎭ ②()()131222(1)(11)1n nn n nn n n n n +⎛⎫++⋅-=+- ⎝+⎪⎭本类模型典型标志在通项中含有(1)n -乘以一个分式.二、典型例题类型一:等差型例题1.(2022·辽宁·鞍山一中模拟预测)已知n S 是等差数列{}n a 的前n 项和,0n a >,315S =,公差1d >,且___________.从①21a -为11a -与31a +等比中项,②等比数列{}n b 的公比为3q =,1124,b a b a ==这两个条件中,选择一个补充在上面问题的横线上,使得符合条件的数列{}n a 存在并作答. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:16nT <. 【答案】(1)选择条件见解析,21n a n =+(2)证明见解析 (1)若选①,21a -为11a -与31a +的等比中项,则()()()2132111a a a -+=-,由{}n a 为等差数列,315S =,得2315a =,∴25a =,把25a =代入上式,可得()()4616d d -+=,解得2d =或4d =-(舍) ∴13a =,21n a n =+;若选②,3q =为等比数列{}n b 的公比,且1124,b a b a ==, 可得213b b =,即413a a =,即有113)3a d a +=(,即123a d =; 又315S =,可得11332152a d +⨯⨯=,即15a d +=,解得12,3d a ==, 此时21n a n =+;第(2)问解题思路点拨:由(1)知:,设,则,典型的裂项相消的特征,可将通项裂项为:解答过程:由题意知:;(2)∵()()111111212322123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭, ∴11111111112355721232323n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪+++⎝⎭⎝⎭; ∴16n T <,得证 例题2.(2022·广东佛山·模拟预测)已知数列{}n a 的前n 项和为n S ,111a =-,29a =-,且()11222n n n S S S n +-+=+≥. (1)求数列{}n a 的通项公式; (2)已知11n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)213n a n =- (2)122212nn -(1)解:由题意得:由题意知()()112n n n n S S S S +----=,则()122n n a a n +-=≥又212a a -=,所以{}n a 是公差为2的等差数列,则()11213n a a n d n =+-=-;感悟升华(核心秘籍)本例是裂项相消法的等差型,注意裂项,是裂通项,裂项的过程中注意前面的系数不要忽略了.第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的特征,可将通项裂项为:解答过程:由题意知:;(2)由题知()()11112132112213211n b n n n n ⎛⎫==- ⎪----⎝⎭则1111111111211997213211211211n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-++-+++-=-- ⎪ ⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 122212n n-=类型二:无理型例题3.(2022·重庆八中模拟预测)已知各项均为正数的等差数列{}n a 满足11a =,22112()n n n n a a a a ++=++.(1)求{}n a 的通项公式; (2)记11n n n b a a +=+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-(2)1(211)2n +-(1)解:各项均为正数的等差数列{}n a 满足11a =,22112()n n n n a a a a ++=++,整理得()()()1112n n n n n n a a a a a a ++++-=+,由于10n n a a ++≠, 所以12n n a a +-=, 故数列{}n a 是以1为首项,2为公差的等差数列.所以21n a n =-.(2)解:由(1)可得111212122121n n n n n b a a n n ++--===+-++,所以11(3153...2121)(211)22n S n n n =⨯-+-+++--=+-.例题4.(2022·福建龙岩·模拟预测)已知等差数列{}n a 的前n 项和为n S ,3518a a +=,648S =.第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的无理型特征,可将通项分母有理化为:解答过程:由题意知:;(1)求{}n a 的通项公式; (2)设112n n n b a a +-=+,求数列{}n b 的前n 项和为n T .【答案】(1)21n a n =+;(2)证明见解析﹒(1)由题可知,11261861548a d a d +=⎧⎨+=⎩,解得132a d =⎧⎨=⎩,∴21n a n =+;(2)1122232122321n n n n n b a a n n +-+--===+++-,()()()()()1517395212323212n T n n n n ⎡⎤=-+-+-+++--++--⎣⎦12123132n T n n ⎡⎤=+++--⎣⎦感悟升华(核心秘籍)本例是裂项相消法的无理型,具有明显的特征,其技巧在于分母有理化,注意裂项相消的过程中,是连续相消,还是隔项相消,计算注意细节.类型三:指数型第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的无理型特征,可将通项分母有理化为:解答过程:由题意知:;例题5.(2022·全国·模拟预测)已知等差数列{}n a 满足()*10n n a a n +->∈N ,且141015a a a ++=,2a ,4a ,8a 成等比数列.(1)求数列{}n a 的通项公式;(2)若122n a n n n n a b a a ++⋅=⋅,求数列{}n b 的前n 项和n S .【答案】(1)n a n =(2)n S 1212n n +=-++(1)解:设等差数列{}n a 的公差为d ,因为2a ,4a ,8a 成等比数列,所以()()()211137a d a d a d +=++,整理得()10d a d -=,又因为10n n a a +->,所以0d >,1a d =,又1410131215a a a a d ++=+=,即15d =15, 所以11a d ==,所以n a n =;感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,则,具有明显的裂项相消法的特征,但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得通分,逆向求裂项求和.(2)解:由(1)知,n a n =, 所以()()12221221n n nn n b n n n n +⋅==-++++,2324312112222222222223243541121n n n n n n n S n n n n n n ---+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212n n +=-++.例题6.(2022·江西·临川一中模拟预测(理))已知数列{}n a 的前n 项和为n S ,且21,*=-∈n n S a n N .(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足22,(1)*++=∈⋅⋅+n n n b n N a n n ,求数列{}n b 的前n 项和n T .【答案】(1)12n na ;(2)1112(1)2n n T n +=-+⋅. (1)因为21n n S a =-,当1n =时,1121S a =-,解得11a =,当2n ≥时,1121n n S a --=-,所以()()111212122n n n n n n n a S S a a a a ---=-=---=-,即12(2)n n a a n -=≥,所以数列{}n a 是首项为1,公比为2的等比数列.故11122n n n a --=⨯=.(2),1122211(1)(1)22(1)2n n n n n n n b a n n n n n n +++++===-⋅⋅++⋅+⋅于是12231111111111122222322(1)22(1)2n n n n T n n n ++=-+-++-=-⋅⋅⋅⋅⋅+⋅+⋅类型四:通项裂项为“+”型第(2)问解题思路点拨:由(1)知:,,则,具有明显的裂项相消法的特征,但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得通分,逆向求裂项求和例题7.(2022·吉林辽源·高二期末)已知等差数列{}n a 的前n 项和21,3n S n an b a =++=,数列{}n b 的前n 项和23n n n T b +=,12b =. (1)求数列{}n a 和{}n b 的通项公式; (2)令(1)nnn na cb =-,求数列{}nc 的前n 项和n P .【答案】(1)21n a n =+,()1n b n n =+ (2)2,?1,?1n n n n P n n n +⎧-⎪⎪+=⎨⎪-⎪+⎩为奇数为偶数感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,则,注意通项中含有明显的裂项的两个特征,①含有分式②含有(注意通项中含有是裂项为“”型的重要标志),但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得则:,注意到通项中含有,需分奇偶讨论通分,逆向求当为偶数(为正),(注意此时为偶数,代入偶数的结论中)当为奇数(为偶数)综上:(1)设等差数列{}n a 的公差为d ,则22113222n n n n d d S na d n n n a b -⎛⎫=+=+-=++ ⎪⎝⎭, 所以1,23,20,dd a b ⎧=⎪⎪⎪-=⎨⎪=⎪⎪⎩所以2,2,0,d a b =⎧⎪=⎨⎪=⎩,所以数列{}n a 的通项公式为()32121n a n n =+-=+. 因为23n n n T b +=,当2n ≥时,1113n n n T b --+=, 所以112133n n n n n n n b T T b b --++=-=-, 所以11133n n n n b b --+=,即111n n b n b n -+=-. 所以1232112321n n n n n n n b b b b b b b b b b b b -----=⨯⨯⨯⋅⋅⋅⨯⨯⨯()11432112321n n n n n n n n +-=⨯⨯⨯⋅⋅⋅⨯⨯⨯=+---. (2)()()()()()11111111nn n n n n n n a c b n n n n ++⎛⎫=-=-⋅=-+ ⎪++⎝⎭, 当n 为奇数时,11111111223341n P n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++⋅⋅⋅-+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭12111n n n +=--=-++. 当n 为偶数时,11111111223341n P n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭1111n n n =-+=-++. 综上所述,数列{}n c 的前n 项和2,1,1n n n n P n n n +⎧-⎪⎪+=⎨⎪-⎪+⎩为奇数为偶数.例题8.(2022·陕西·长安一中高二期中(文))已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S成等比数列.(1)求数列{}n a 的通项公式; (2)令()1141n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-;(2)2,2122,21n nn n T n n n ⎧⎪⎪+=⎨+⎪⎪+⎩为偶数为奇数 第(2)问解题思路点拨:由(1)知:,,则,注意通项中含有明显的裂项的两个特征,①含有分式②含有(注意通项中含有是裂项为“”型的重要标志),但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得,通分,逆向求当为奇数(为正),(注意此时为奇数,代入奇数的结论中)当为偶数(为奇数)综上:(1)∴等差数列{an }的公差为2,前n 项和为S n ,且S 1、S 2、S 4成等比数列. ∴S n =na 1+n (n ﹣1)(2a 1+2)2=a 1(4a 1+12),a 1=1,∴an =2n ﹣1; (2)∴由(1)可得()()111411112121n n n n n n b a a n n --+⎛⎫=-=-+ ⎪-+⎝⎭, 当n 为偶数时,T n =11111111113355723212121n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212121nn n =-=++. 当n 为奇数时,11111111113355723212121n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+++-⋯-+++ ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12212121n n n +=+=++ . 2,2122,21n nn n T n n n ⎧⎪⎪+∴=⎨+⎪⎪+⎩为偶数为奇数. 三、题型归类练1.(2022·内蒙古·满洲里市教研培训中心模拟预测(理))已知在等差数列{}n a 中,25a =,1033a a =. (1)求数列{}n a 的通项公式; (2)设()21n n b n a =+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =+(2)1n n + (1)设等差数列{}n a 的公差为d , 由210353a a a =⎧⎨=⎩,可得()1115932a d a d a d ⎧+=⎪⎨+=+⎪⎩解得13,2a d==,所以()13122n a n n -⨯=++= (2)由(1)可得2111(1)(22)(1)12n n b n a n n n n n n ====-++++所以111111 (22311)n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 2.(2022·山西运城·模拟预测(理))已知单调递增的等差数列{}n a 的前n 项和为n S ,512340,,1,S a a a =-成等比数列,正项等比数列{}n b 满足11631,23b a S b =+=+. (1)求{}n a 与{}n b 的通项公式; (2)设()3123log n n n c a b =+,求数列{}n c 的前n 项和n T .【答案】(1)31n a n =-,3nn b =(2)64n nT n =+ (1)设数列{}n a 的公差为d ,则0d >, 由540S =得1545402a d ⨯+=,即128a d +=①, 又123,1,a a a -成等比数列,所以()22131a a a -=,所以()()211112a d a a d +-=+,所以21(1)2d a -=②,联立①②及0d >解得12,3a d ==. 所以2(1)331n a n n =+-⨯=-. 所以161653,6572b S a d ⨯==+=, 所以35723b =+,解得327b =,又231,0b b q q =>,所以3q =,所以3nn b =.(2)由(1)得()311111(31)23log (31)(32)33132n n c n b n n n n ⎛⎫===- ⎪-+-+-+⎝⎭,所以121111111111325583132323264n n n T c c c n n n n ⎛⎫⎛⎫=+++=-+-+⋅⋅⋅+-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 3.(2022·河南·模拟预测(理))已知正项数列{}n a 的前n 项和为n S ,且()()222220n n S n n S n n -+--+=.(1)求1a 的值和数列{}n a 的通项公式; (2)设21n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)12a =;2n a n =;(2)()()32316812n n T n n +=-++. (1)由()()222220n n S n n S n n -+--+=得:()()()220n n S S n n +-+=;{}n a 为正项数列,0n S ∴>,2n S n n ∴=+;当1n =时,112a S ==;当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=;经检验:12a =满足2n a n =;()2n a n n N *∴=∈.(2)由(1)得:()()111112224282n b n n n n n n ⎛⎫===- ⎪⋅+++⎝⎭,11111111111832435112n T n n n n ⎛⎫∴=⨯-+-+-+⋅⋅⋅+-+- ⎪-++⎝⎭()()()()1111132332318212821216812n n n n n n n n ⎛⎫++⎛⎫=⨯+--=⨯-=- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭. 4.(2022·河北保定·一模)已知数列{}n a 的前n 项和为n S ,且1332n n S +-=. (1)求数列{}n a 的通项公式; (2)设3314log log n n n b a a +=⋅,求{}n b 的前n 项和n T .【答案】(1)3nn a =;(2)41n nT n =+. (1)因为1332n n S +-=,故当1n =时,13a =,当2n ≥时,1332n n S --=,则()132nn n n a S S n -=-=≥,当1n =时,13a =满足上式,所以3nn a =.(2)由(1)得()33144114log log 11n n n b a a n n n n +⎛⎫===- ⎪⋅++⎝⎭,所以12311111144141223111n n n T b b b b n n n n ⎛⎫⎛⎫=++++=⨯-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭. 故数列{}n b 的前n 项和41n nT n =+. 5.(2022·安徽·北大培文蚌埠实验学校高三开学考试(文))已知数列{}n a 的前n 项和为n S ,11a =,525S =,且()*1232n n n n S a S S n ++-=+∈N .(1)求数列{}n a 的通项公式; (2)设n b =,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-(2)n T )112=(1)由1232n n n n S a S S ++-=+得:121211223222n n n n n n n n n n a S S S S S S S a a +++++++-=-+=-+-=-+即122n n n a a a ++=+, 所以数列{}n a 为等差数列, 由53525S a ==得35a =,设公差为d ,315212a a d d ==+=+,得2d =, 所以()11221n a n n =+-⨯=-, 故数列{}n a 的通项公式为21n a n =-.(2)12n b =,所以1122n Tn =++)112=.6.(2022·江苏盐城·三模)已知正项等比数列{}n a 满足1330a a +=,请在①4120S =,②481a =,③2211120n n n n a a a a --+-=,2n ≥,*n N ∈中选择一个填在横线上并完成下面问题:(1)求{}n a 的通项公式;(2)设()()12311n n n n b a a +⋅=++,{}n b 的前n 和为n S ,求证:14n S <.【答案】(1)选择见解析;3nn a =(2)证明见解析(1)设正项等比数列{}n a 公比为q ,又1330a a +=,选①,()()41234131120S a a a a a a q =+++=++=,所以3q =;选②,13431130a a a q q ⎛⎫+=+= ⎪⎝⎭,所以()()2310390,3q q q q -++==;选③,()()22111112340n n n n n n n n a a a a a a a a ----+-=-+=,所以13n n a a -=,∴3q =;又1311191030a a a a a +=+==,∴13a =,则3nn a =.(2)因为()()()()1112323111131313131n n n n n n n n n b a a +++⋅⋅===-++++++,所以122231111111313131313131n n n n S b b b +⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭11114314n +=-<+. 7.(2022·浙江金华·模拟预测)已知数列{}{},n n a b ,其中{}n a 为等差数列,且满足11211,,32a b b ===,21141,2n n n n nn a b a b n N *++-=+∈. (1)求数列{}{},n n a b 的通项公式; (2)设212n n nn n a c a a ++=,数列{}n c 的前n 项和为n T ,求证:1n T <【答案】(1)21n a n =-,131(21)22n n b n -⎛⎫=-- ⎪⎝⎭(2)证明见解析(1)解:由数列{}n a 为等差数列,{}n b 且满足11211,,32a b b ===,211412n n n n nn a b a b ++-=+,当1n =时,可得122132a b a b =+,即213322a =⨯+,解得23a =; 因为{}n a 是等差数列,所以21n a n =-,所以2141(21)(21)2n n nn n b n b +--=++,所以1121212n n n b b n n +-=+-, 所以12132121131532123n n n b b b b b b b b n n n -⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭11211112211111311222222212n n n ---⎛⎫⎛⎫- ⎪ ⎪⎪⎝⎭⎛⎫⎝⎭=++++=+=- ⎪⎝⎭-所以131(21)22n n b n -⎛⎫=-- ⎪⎝⎭.(2)解:由(1)得12311(21)(21)22(21)2(21)n n n n n c n n n n -+==--+-+,所以12n n T c c c =+++211111112323252(21)2(21)n n n n -=-+-++-⋅⋅⋅-+ 1112(21)n n =-<+.8.(2022·湖北·二模)已知正项等差数列{}n a 满足:()33n n a a n *=∈N ,且1382,1,a a a +成等比数列.(1)求{}n a 的通项公式;(2)设()()1121212n n n a n a a c ++=++,n R 是数列{}n c 的前n 项和,若对任意n *∈N 均有n R λ<恒成立,求λ的最小值. 【答案】(1)n a n =(2)最小值为23(1)解:设等差数列的公差为d ,由33n n a a =得[]11(31)3(1)a n d a n d +-=+-,则1a d =, 所以1(1)n a a n d nd =+-=.因为12a 、31a +、8a 成等比数列,所以()231812a a a +=⋅,即2(31)28d d d +=⋅, 所以27610d d --=,解得1d =或17d =-,因为{}n a 为正项数列,所以0d >,所以1d =,所以n a n =.(2)解:由(1)可得()()()()1111122112121212121212n n n a n n nn a a n n c +++++⎛⎫===- ⎪++++++⎝⎭, 所以1223111111111122121212121212312n n n n R ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪⎪ ⎪⎢⎥+++++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为对任意n *∈N 均有23n R <,所以23λ≥,所以实数λ的最小值为239.(2022·江西·临川一中高二期末(理))已知数列{}n a ,0n a >,11a =,n S 为其前n 项和,且满足()()()1112n n n n S S S S n --+-=≥.(1)求数列{}n a 的通项公式; (2)设()11nnn a b =-⋅,求数列{}n b 的前n 项和n T .【答案】(1)=n a ()1nn T =-(1)由题可知()22112n n S S n --=≥⇒数列是{}2n S 等差数列,所以()2211n S S n n =+-=,)12n n n n S a S S n -=-=≥,又因为11a ==,所以n a(2)()()11nnnnnb a -===-.所以()()311nnn T =-=+-故答案为:n a ()1n- .10.(2022·重庆八中模拟预测)已知n S 是公差不为零的等差数列{}n a 的前n 项和,36S =,2319a a a =⋅.(1)求数列{}n a 的通项公式; (2)设数列()()24141nn n a b n n +=-∈-N ,数列化{}n b 的前2n 项和为2n T ,若2112022n T +<,求正整数n 的最小值. 【答案】(1)*,N na n n =∈(2)505(1)公差d 不为零的等差数列{}n a ,由2319a a a =⋅, ()()211182a a d a d +=+,解得1a d =.又31336S a d =+=,可得11a d ==,所以数列{}n a 是以1为首项和公差的等差数列, 所以*,N na n n =∈.(2)解:由(1)可知()()241111412121nn n n b n n n ⎛⎫=-=-+ ⎪--+⎝⎭, 211111111113355743414141n T n n n n ∴=--++--+--++---+1141n =-++,2111412020n T n +=<+,20194n ∴>所以n 的最小值为505.11.(2022·天津市武清区杨村第一中学二模)已知{}n a 是等差数列,{}n b 是等比数列,且114342131,2,2,a b a b b b a a ====+.(1)求数列{}{},n n a b 的通项公式;(2)记{}n b 的前n 项和为n S ,证明:()n n n S a b n *≤⋅∈N ;(3)记()311(1)*++⋅=-∈⋅n n n nnn a b c n a a N ,求数列{}n c 的前2n 项和. 【答案】(1)(),2nn n a n b n *=∈=N ;(2)证明见解析;(3)2212221n n T n +=-+(1)设等差数列公差为d ,等比数列公比为q ,所以()2311111132132222222d q d a d b q b q q d q b q a d⎧+==+=⎧⎧⇒⇒⎨⎨⎨=+==+⎩⎩⎩,所以,2n n na b n ==, (2){}n b 的前n 项和为 248222222n n n n n n n n n S n a b =++++≤++++=⋅=⋅,(当1n =时,取等号)命题得证.(3)由(1)得,()()131131222(1)(1)(1)11n nn n n n nn n n n n n a b c a n n a n +++⎛⎫+ ⎪+⋅⋅=-=-=-+⎝+⎭⋅, 所以数列{}n c 的前2n 项和2212244881616122()3222241334522nn n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++++ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭-⎝⎭,2212221n n T n +=-+12.(2022·黑龙江实验中学模拟预测(理))已知数列{}n a 满足11a =,11n n n n a a a a --=-,且0n a ≠. (1)求数列{}n a 的通项公式; (2)若()()11121n n n n b n a a ++=-+,数列{}n b 前n 项和为nT,求2022T .【答案】(1)1n a n =;(2)20222023. (1)由11n n n n a a a a --=-,0n a ≠得:1111n n a a --=,又111a ,∴数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列,1n n a ∴=,1n a n ∴=;(2)由(1)知:()()()()1121111111n n n n b n n n n +++=-=-+++;20221111111111223342021202220222023T ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++--+++⋅⋅⋅+++-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12022120232023=-=.13.(2022·湖北·蕲春县第一高级中学模拟预测)已知数列{}n a 的前n 项和为n S ,其中1215a S ==,,当2n ≥时,1124n n n a S S +-,,成等差数列. (1)求数列{}n a 的通项公式.(2)记数列()()2123211n n n a a ++⎧⎫⋅⎪⎪⎨⎬++⎪⎪⎩⎭的前n 项和n T ,求证:121855n T ≤<.【答案】(1)14n n a -=;(2)证明见解析.(1)依题意,当2n ≥时,1144n n n a S S +-+=, 故11444n n n n a S S a +-=-=, 由1215a S ==,得22144a a a ==,,故数列{}n a 是以1为首项,4为公比的等比数列,则14n n a -=;(2)依题意,()()()()2211123232111141414141n n n n n n n n a a ++++⋅⋅==-++++++,故12231111111111414141414141541n n n n T ++⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭, ∴n *∈N ,∴1112111855415n T +=≤-<+,即121855n T ≤<.。
高中数学-数列经典例题(裂项相消法)(1)

数列裂项相消求和的典型题型1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1{1+n n a a 的前100项和为()A .100101B .99101C .99100D .1011002.数列,)1(1+=n n a n 其前n 项之和为,109则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距为()A .-10B .-9C .10D .93.等比数列}{n a 的各项均为正数,且6223219,132a a a a a ==+.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1{n b 的前n 项和.4.正项数列}{n a 满足02)12(2=---n a n a n n .(Ⅰ)求数列}{n a 的通项公式n a ;(Ⅱ)令,)1(1nn a n b +=求数列}{n b 的前n 项和n T .5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S .(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设数列}{n b 满足,,211*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T .6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;(Ⅱ)令),(11*2N n a b n n ∈-=求数列}{n b 的前n 项和n T .7.在数列}{n a 中n n a n a a 211)11(2,1,+==+.(Ⅰ)求}{n a 的通项公式;(Ⅱ)令,211n n n a a b -=+求数列}{n b 的前n 项和n S ;(Ⅲ)求数列}{n a 的前n 项和n T .8.已知等差数列}{n a 的前3项和为6,前8项和为﹣4.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设),,0()4(*1N n q q a b n n n ∈≠-=-求数列}{n b 的前n 项和n S .9.已知数列}{n a 满足,2,021==a a 且对*,N n m ∈∀都有211212)(22n m a a a n m n m -+=+-+--.(Ⅰ)求53,a a ;(Ⅱ)设),(*1212N n a a b n n n ∈-=-+证明:}{n b 是等差数列;(Ⅲ)设),,0()(*11N n q q a a c n n n n ∈≠-=-+求数列}{n c 的前n 项和n S .10.已知数列}{n a 是一个公差大于0的等差数列,且满足16,557263=+=a a a a .(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)数列}{n a 和数列}{n b 满足等式),(2222*33221N n b b b b a n n n ∈++++= 求数列}{n b 的前n 项和n S .11.已知等差数列}{n a 的公差为2,前n 项和为n S ,且421,,S S S 成等比数列.(1)求数列}{n a 的通项公式;(2)令,4)1(112+--=n n n a a n b 求数列}{n b 的前n 项和n T .12.正项数列}{n a 的前n 项和n S 满足:0)()1(222=+--+-n n S n n S n n .(1)求数列}{n a 的通项公式n a ;(2)令,)2(122nn a n n b ++=数列}{n b 的前n 项和为n T ,证明:对于,*N n ∈∀都有645<n T .答案:1.A ;2.B3.解:(Ⅰ)设数列{a n }的公比为q ,由a 32=9a 2a 6有a 32=9a 42,∴q 2=.由条件可知各项均为正数,故q=.由2a 1+3a 2=1有2a 1+3a 1q=1,∴a 1=.故数列{a n }的通项式为a n =.(Ⅱ)b n =++…+=﹣(1+2+…+n )=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,∴数列{}的前n项和为﹣.4.解:(Ⅰ)由正项数列{a n}满足:﹣(2n﹣1)a n﹣2n=0,可有(a n﹣2n)(a n+1)=0∴a n=2n.(Ⅱ)∵a n=2n,b n=,∴b n===,T n===.数列{b n}的前n项和T n为.5.解:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1有:,解有a1=1,d=2.∴a n=2n﹣1,n∈N*.(Ⅱ)由已知++…+=1﹣,n∈N*,有:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,∴,n=1时符合.∴=,n∈N*由(Ⅰ)知,a n=2n﹣1,n∈N*.∴b n=,n∈N*.又T n=+++…+,∴T n=++…++,两式相减有:T n=+(++…+)﹣=﹣﹣∴T n=3﹣.6.解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴有,解有a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n;(Ⅱ)由(Ⅰ)知a n=2n+1,∴b n====,∴T n===,即数列{b n}的前n项和T n=.7.解:(Ⅰ)由条件有,又n=1时,,故数列构成首项为1,公式为的等比数列.∴,即.(Ⅱ)由有,,两式相减,有:,∴.(Ⅲ)由有.∴T n=2S n+2a1﹣2a n+1=.8.解:(Ⅰ)设{a n}的公差为d,由已知有解有a1=3,d=﹣1故a n =3+(n ﹣1)(﹣1)=4﹣n ;(Ⅱ)由(Ⅰ)的解答有,b n =n •q n ﹣1,于是S n =1•q 0+2•q 1+3•q 2+…+n •q n ﹣1.若q ≠1,将上式两边同乘以q ,有qS n =1•q 1+2•q 2+3•q 3+…+n •q n .上面两式相减,有(q ﹣1)S n =nq n ﹣(1+q+q 2+…+q n ﹣1)=nq n ﹣于是S n =若q=1,则S n =1+2+3+…+n=∴,S n =.9.解:(Ⅰ)由题意,令m=2,n=1,可有a 3=2a 2﹣a 1+2=6再令m=3,n=1,可有a 5=2a 3﹣a 1+8=20(Ⅱ)当n ∈N *时,由已知(以n+2代替m )可有a 2n+3+a 2n ﹣1=2a 2n+1+8于是[a 2(n+1)+1﹣a 2(n+1)﹣1]﹣(a 2n+1﹣a 2n ﹣1)=8即b n+1﹣b n =8∴{b n }是公差为8的等差数列(Ⅲ)由(Ⅰ)(Ⅱ)解答可知{b n }是首项为b 1=a 3﹣a 1=6,公差为8的等差数列则b n =8n ﹣2,即a 2n+1﹣a 2n ﹣1=8n ﹣2另由已知(令m=1)可有a n =﹣(n ﹣1)2.∴a n+1﹣a n =﹣2n+1=﹣2n+1=2n 于是c n =2nq n ﹣1.当q=1时,S n =2+4+6++2n=n (n+1)当q ≠1时,S n =2•q 0+4•q 1+6•q 2+…+2n •q n ﹣1.两边同乘以q ,可有qS n =2•q 1+4•q 2+6•q 3+…+2n •q n .上述两式相减,有(1﹣q )S n =2(1+q+q 2+…+q n ﹣1)﹣2nq n =2•﹣2nq n =2•∴S n =2•综上所述,S n =.10.解:(Ⅰ)设等差数列{a n }的公差为d ,则依题意可知d >0由a 2+a 7=16,有,2a 1+7d=16①由a 3a 6=55,有(a 1+2d )(a 1+5d )=55②由①②联立方程求,有d=2,a 1=1/d=﹣2,a 1=(排除)∴a n =1+(n ﹣1)•2=2n ﹣1(Ⅱ)令c n =,则有a n =c 1+c 2+…+c n a n+1=c 1+c 2+…+c n+1两式相减,有a n+1﹣a n =c n+1,由(1)有a 1=1,a n+1﹣a n =2∴c n+1=2,即c n =2(n ≥2),即当n ≥2时,b n =2n+1,又当n=1时,b 1=2a 1=2∴b n =于是S n =b 1+b 2+b 3+…+b n =2+23+24+…2n+1=2n+2﹣6,n ≥2,.11.解(1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n -14n a n a n +1=(-1)n -14n (2n -1)(2n +1)=(-1)n -1(12n -1+12n +1).当n 为偶数时,T n =(1+13)-(13+15)+…+(12n -3+12n -1)-(12n -1+12n +1)=1-12n +1=2n 2n +1.当n 为奇数时,T n =(1+13)-(13+15)+…-(12n -3+12n -1)+(12n -1+12n +1)=1+12n +1=2n +22n +1.所以T nn 为奇数,n 为偶数.(或T n =2n +1+(-1)n -12n +1)12.(1)解由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0,由于{a n }是正项数列,所以S n +1>0.所以S n =n 2+n (n ∈N *).n ≥2时,a n =S n -S n -1=2n ,n =1时,a 1=S 1=2适合上式.∴a n =2n (n ∈N *).(2)证明由a n =2n (n ∈N *)得b n =n +1(n +2)2a 2n =n +14n 2(n +2)2=1161n 2-1(n +2)2T n…=1161+122-1(n +1)2-1(n +2)2<=564(n ∈N *).即对于任意的n ∈N *,都有T n <564.。
等差数列前n项和典型例题

【误区警示】对解答本题时易犯错误的具体分析如下:
【即时训练】在等差数列{an}中,a1=50,d=-0.6. (1)从第几项起以后各项均小于零? (2)求此数列前n项和的最大值. 【解题提示】(1)实质上是解一个不等式,但要注意 n为正整数;(2)转化为求二次函数的最大值的问题.
数列,设其公差为D,前10项和为10S10+ 10 9 ·D=S100=10
2
D=-22,∴S110-S100=S10+(11-1)D
=100+10×(-22)=-120. ∴S110=-120+S100=-110. 练习:1、等差数列{an}的前n项和为Sn,已知S8=132,Sm=690, Sm-8=270(m>8),则m为( ) 2、等差数列{ n}的前m项和为30,前2m项和为100,前3m项和为(210)
a
知识点:等差数列前n项和的性质的应用 (1)项数(下标)的“等和”性质: Sn= n(a1 a n) n(a m a n m 1)
2 2
(2)项的个数的“奇偶”性质: 等差数列{an}中,公差为d:
①若共有2n项,则S2n=n(an+an+1);
S偶-S奇=nd;S偶∶S奇= an+1∶an;
故此数列的前110项之和为-110. 方法二:设Sn=An2+Bn 100A+10B=100 10000A+100B=10,解得A=-11/100,B=111/10,S110=-110
方法三:Sn=
n(a1 a n) n(a m a n m 1) . 2 2
方法四:数列S10,S20-S10,S30-S20,„,S100-S90,S110-S100成等差
数列配凑法的典型例题

数列配凑法的典型例题例1【配凑和为定值,为使用均值不等式】已知x,y>0x,y>0,2x+3y=42x+3y=4,求xyxy的最大值;法1:xy=6xy6=(2x)⋅(3y)6≤16⋅(2x+3y2)2=23xy=6xy6=(2x)⋅(3y)6≤16⋅(2x+3y2)2=23例2【配凑为消去一部分分母,便于使用均值不等式】已知a>1,b>0,a+b=4a>1,b>0,a+b=4,求1a−1+4b1a−1+4b的最小值。
分析:由于a+b=4⟹(a−1)+b=3a+b=4⟹(a−1)+b=3,故1a−1+4b=13(1a−1+4b)×31a−1+4b=13(1a−1+4b)×3 =13(1a−1+4b)×[( a−1)+b]=13(1a−1+4b)×[(a−1)+b]=13(1+4+ba−1+4(a−1)b)⩾13(5+24–√)=3=13(1+4+ba−1+4(a−1)b)⩾13(5+24)=3,当且仅当例3【】研究函数f(x)=x23−x f(x)=x23−x的图像或者单调性,分析:①[配凑法]变形,x23−x=−x2x−3=−(x−3)2+6x−9x−3x23−x=−x2x−3=−(x−3)2+6x−9x−3=−(x−3)−6x−18+9x−3=−(x−3)−9x−3−6=−(x−3)−6x−18+9x−3=−(x−3)−9x−3−6=−[(x−3)+9x−3]−6=−[(x−3)+9x−3]−6;其图像可以借助f(x)=x+9xf(x)=x+9x的图像变换得到,借助图像就可以研究其所有性质了;②[换元法]变形,令3−x=t3−x=t,则x=3−t x=3−t,则f(x)=x23−x=(3−t)2t f(x)=x23−x=(3−t)2t=t2−6t+9t=t+9t−6=(3−x)+93−x −6=t2−6t+9t=t+9t−6=(3−x)+93−x−6=−[(x−3)+9x−3]−6=−[(x−3)+9x−3]−6;③也可以使用导数法研究,但是和上述方法[其优越性在于能用上我们积累的常用的模板函数的性质]相比,感觉繁琐,例4已知函数f(x)f(x)满足条件 f(x−−√+1)=x+2x−−√f(x+1)=x+2x,求f(x)f(x)的解析式;分析: f(x−−√+1)=x+2x−−√=(x−−√+1)2−1f(x+1)=x+2x=(x+1)2−1,注意右端需要配凑出以x−−√+1x+1为整体变量的代数式,以便于下一步的代换,到此配凑工作结束;令x−−√+1=tx+1=t,则新元t≥1t≥1故解析式为f(t)=t2−1(t≥1)f(t)=t2−1(t≥1),再将自变量替换为我们适应的xx,则所求的解析式为f(x)=x2−1(x≥1)f(x)=x2−1(x≥1)。
2022年高考数学一轮复习专题 专题49 求数列前n项和常用方法经典例题与练习(解析版)

【详解】
(1)设等比数列an 的公比为 q,则 a3 a1q2 2q2 8 ,所以 q = 2 或 q 2 (舍),
所以 an a1qn1 2n , n N * .
(2)由(1)得 an
2n
,所以
Sn
a1
1 qn 1 q
2 1 2n
1 2
2n1 2 .
【点睛】
本题主要考查等比数列的通项公式及求和公式,熟记公式是求解的关键,侧重考查数学运算
an
a n-1
a a q n1
n
1
a a q
nm
n
m
3、前 n 项和
sn
(a1
an)n
2
sn
n
a1
n(n 1) 2
d
q=1 , Sn =na1;
q
1,Sn
=
a1(1-q 1-q
n
)
= a1-anq 1-q
4、中项
a、A、b 成等差数列 A= a+b ; 2
a、A、b 成等比数列 A b aA
①定义法: an q an1
②等差中项概念;anan2
an
2 1
(an
0)
③函数法:an cqn ( c,q 均为不为 0 的
常数,n N ),则数列an 是等比数列.
④数列{a n } 的前 n 项和形如
④数列{a n } 的前 n 项和形如 Sn an2 bn
Sn Aqn A ( A,q 均为不等于 0 的常
专题 49 求数列前 n 项和常用方法经典例题与练习(解析版) 等差数列与等比数列性质的比较
1、定义
2、通项 公式
等差数列性质
an+1-an =d(n 1) ; an -an-1=d(n 2)
数列裂项相消典型例题

一个典型的数列裂项相消的例题如下:
例题:考虑数列{1, 1, 2, 3, 5, 8, 13, ...},其中每一项等于前两项的和。
给定一个正整数N,计算数列的前N项之和。
解题思路:
这个数列是著名的斐波那契数列,它的定义是F(1) = 1,F(2) = 1,F(n) = F(n-1) + F(n-2)(n >= 3)。
我们可以使用裂项相消的方法来解决这个问题。
首先,我们可以设S为数列的前N项和。
那么S的表达式可以写为:
S = 1 + 1 + 2 + 3 + 5 + 8 + ... + F(N-1) + F(N)
然后,我们观察数列中每一项与它前一项的关系,即F(n) = F(n-1) + F(n-2)。
根据这个关系,我们可以发现S的表达式中的一些项可以相互抵消,通过相消的方式简化求解过程。
具体来说,我们可以将S的表达式中的项分为两组,一组是从F(1)到F(N-2)的项,另一组是F(N-1)和F(N)。
对于第一组,我们可以看到F(n)等于它的前两项之和,所以这些项可以两两抵消。
因此,我们可以得到:
S = F(N-1) + F(N)
对于第二组,我们可以看到F(N)等于F(N-1)和F(N-2)的和,所以这两项仍然保留在S中。
综合上述分析,我们可以得到以下简化后的表达式:
S = F(N) + F(N-1)
因此,这个问题的答案就是数列中第N项和第N-1项的和,即F(N) + F(N-1)。
我们可以通过计算斐波那契数列的第N项和第N-1项的值,然后求和来得到最终的答案。
希望这个解题思路能够帮助到你解决数列裂项相消的典型例题!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列典型例题一.选择题1.若数列{}n a 是等差数列,且11a =,35a =,则10a 等于( )A .19B .21C .37D .412.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++等于( )A .120B .105C .90D .753.在等差数列{}n a 中,533a =,45153a =,则201是该数列的第( )项A .60B .61C .62D .634若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )A .12B .13C .14D .156等差数列{}n a 的前n 项和为n S ,若70a >,80a <,则下列结论正确的是( )A .78S S <B .1516S S <C .130S >D .150S >7等差数列{}n a 中,已知公差12d =,且139960a a a +++=,则12100a a a +++=( )A .170B .150C .145D .12013.已知等差数列{}n a 的公差12d =,8010042=+++a a a ,那么=100S ( )A .80B .120C .135D .160.9在等差数列{}n a 中,公差2-=d ,n S 为前n 项和,若1110S S =,则=1a ( ) A.18 B.20 C.22 D.24 10等差数列{}n a 中,10120S =,那么110a a +=( )A. 12B. 24C. 36D. 4811.已知等差数列{}n a 中,60191371=+++a a a a ,那么=19S ( )A .390B .285C .180D .12012. 在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( )A.84B.72C.60D.4814. 等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20项和等于( )A.160B.180C.200D.22015若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-1516.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-40017.数列1,11+2,11+2+3,…,11+2+…+n的前n 项和为( )A.2n 2n +1B.2n n +1C.n +2n +1D.n2n +118.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12n B .2n 2-n +1-12n C .n 2+1-12n -1 D .n 2-n +1-12n19在等比数列}{n a 中,公比2q =,且30303212=⋅⋅⋅⋅a a a a ,则30963a a a a ⋅⋅⋅⋅ 等于( )A .102B .202C .162D .15220设等比数列{}n a 的前n 项和为n S ,若633S S =,则96=SS ( )A .2B .73C .83D .321等比数列}{n a 中,已知对任意自然数n ,=+⋯+++n a a a a 32121n -,则22212n a a a ++⋅⋅⋅+=( )A .()221n - B .()1213n - C .41n- D .()1413n -22在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m =A .9B .10C .11D .1223已知{}n a 是等比数列,25124a a ==,,则12231n n a a a a a a ++++=( ))4116.n A --( B .16(12)n -- C .()32143n -- D .()32123n -- 24等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a ++=( )A .12B .10C .8D .32log 5+25已知各项均为正数的等比数列{}n a ,1235a a a =,78910a a a =,则456a a a =A.B .7C .6D.26.某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2+n n ,则前n 个奇数项的和为( )A .)1(32+-n nB .)34(2-n nC .23n -D .321n二.填空题1在等差数列{}n a 中,,16,482==a a 则等于12a ________2.在等差数列{}n a 中,21=a ,1221=-+n n a a 。
则101a 的值________ 3在等差数列{}n a 中,3997=+a a ,求=+151a a ________ =+133a a ________ 8a =________4在等差数列{}n a 中,47a =,1121a =,则它的首项1a =_______,前n 项和n S =_______. 5等差数列{}n a 中, 25a =,633a =,则35a a +=______________.6数列{}n a 的前n 项和24n S n n =-,n n b a =,则数列{}n b 的前n 项和n T =_______.数列{}n a 的前n 项和24n S n n =-,n n b a =,则数列{}n b 的前n 项和n T =_______.7在等比数列{}n a 中,若39,a a 是方程231190x x -+=的两根,则6a 的值是 .在等差数列{}n a 中,若39,a a 是方程231190x x -+=的两根,则6a 的值是 .8已知等比数列{}n a 中,33a =,10384a =,则该数列的通项n a = .9在等比数列{}n a 中,22a =,5128a =,则它的公比q =_______,前n 项和n S =_______. 10等比数列{}n a 的公比为2,则123422a a a a ++的值为 .11在等比数列{}n a 中,22a =,5128a =,则它的公比q =_______,前n 项和n S =_______. 12等差数列{}n a 的前n 项和为n S ,且53655-=S S ,则4=a . 在等比数列{}n a 中,若39,a a 是方程231190x x -+=的两根,则6a 的值是 . 13等比数列{}n a 的公比为2,则123422a a a a ++的值为 .14已知首项是23的等比数列{}n a 不是递减数列,其前n 项和为n S (*N n ∈),且33a S +,55a S +,44a S +乘等差数列。
求数列{}n a 通项公式15已知等差数列{}n a 中21321=++a a a ,48654=++a a a ,求=++987a a a 16已知等差数列{}n a 中,343-=n a n ,求{}n a 中,从第几项开始0<n a三解答题:1根据下面{}n a 的通项公式,写出它的前5项.211n a n =)( (2))>1(14,211n a a a n n +==- 2.已知数列{}n a 中,531=a ,)2(111≥-=-n a a n n ,则的值为多少?2013a3.已知在等差数列{}n a 中,82+=n a n(1)求1a ,2a ,d (2)求等差数列{}n a 的前n 项和为n S 。
4.已知在等差数列{}n a 中,20-3n +=n a(1)求1a ,2a ,d (2)求等差数列{}n a 的前n 项和为n S 。
(3)当n 为多少时,n S 有最小值,且最小值为多少?5.已知在等差数列{}n a 中,152=a ,58=a 。
(1)求等差数列{}n a 的通项公式。
(2)求等差数列{}n a 的前n 项和为n S .(3)当n 为多少时,n S 有最大值,且最大值为多少?6.已知在等比数列{}n a 中,23=a ,166=a .(1)求等比数列{}n a 的通项公式。
(2)求等比数列{}n a 的前n 项和为n S7.已知在等比数列{}n a 中,82=a ,324=a .(1)求等比数列{}n a 的通项公式。
(2)若数列{}n a 为递增数列时,求{}n a 的前n 项和为n S .8.已知在数列{}n a 中,此数列前n 项和为n S ,且n n S n 622+= (1)求此数列的1a ,2a ,3a 。
(2)求此数列的通项公式{}n a9已知在数列{}n a 中,此数列前n 项和为n S ,且1622++=n n S n (1)求此数列的1a ,2a ,3a 。
(2)求此数列的通项公式{}n a10.已知在数列{}n a 中,此数列前n 项和为n S ,且n n S n 322+=,求此数列的通项公式{}n a 。
11已知数列{}n a 的前n 项和为n S ,382--=n n S n ,则当n 为多少时,n S 有最小值,且最小值为多少?12.已知数列{}n a 的前n 项和为n S ,32922++-=n n S n 当n 为多少时,n S 有最大值,且最大值为多少?13.已知11=a ,n n a b 1=,且)12111>+=-n a a n n ,((1)求证{}n b 为等差数列。
(2)求{}n a 通项公式14.已知2n n a b =,且4221+=+n n a a ,0>n a ,且31=a 。
(1)求证{}n b 为等差数列。
(2)求{}n a 通项公式构造法求n a :例1.已知数列{}n a 满足11a =,1112n n a a +=+,求其通项公式例2已知数列{}n a 满足21=a ,941+=+n n a a ,求其通项公式数列求和问题:1.倒序相加法:等差数列前n 项和公式的推导方法:例1.求和:2.分组法求和:适用于(等差数列±等比数列)例1.求数列的前n 项和;例2.已知数列{}n a 为等差数列,且12+=n a n ;{}n b 为等比数列,且n n b 23⨯=。
n n n b a c +=,求{}n c 前n 项和n T)(211121n n n n nnn a a n S a a a Sa a a S+=⇒⎩⎨⎧+++=+++=- 222222222222110108339221011++++++++ 1614,813,412,211例3.已知数列{}n a 为等差数列,且12+=n a n ;{}n b 为等比数列,且n n b 23⨯=。