高中数学:1.1.1集合的含义与表示 (32)
高中数学必修一必修1全章节ppt课件幻灯片

(2)方程x2+2x+1=0的解集中有两个元素. (3)组成单词china的字母组成一个集合.
【解题探究】 1.集合中的元素有哪些特性? 2.集合中的元素能重复吗?
探究提示: 1.集合中的元素有三个特性,即确定性、互异性和无序性. 2.构成集合的元素必须是不相同的,即集合元素具有互异性, 相同的元素只能算作一个. 【解析】1.①不正确.因为成绩较好没有明确的标准. ②正确.中国海洋大学2013级大一新生是确定的,明确的. ③正确.因为参加2012年伦敦奥运会的所有国家是确定的, 明确的. ④不正确.因为高科技产品的标准不确定. 答案:②③
(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b, c与由元素b,a,c组成的集合是相等的集合.这个性质通常 用来判断两个集合的关系.
3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,在 a∈A和a∉A两种情况中有且只有一种成立. (2)符号“∈”和“∉”只是表示元素与集合之间的关系. 4.对一些常用的数集及其记法要关注的两点
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示 第1课时 集合的含义
一、元素与集合 1.定义: (1)元素:一般地,把所研究的_对__象_统称为元素,常用小写的 拉丁字母a,b,c,…表示. (2)集合:一些元素组成的总体,简称为_集_,常用大写拉丁字 母A,B,C,…表示. 2.集合相等:指构成两个集合的元素是_一__样_的. 3.集合中元素的特性:_确__定__性_、_互_异__性__和_无__序__性__.
类型 一 集合的判定
【典型例题】
1.下列说法中正确的序号是
.
①高一(四)班学习成绩较好的同学组成一个集合;
高中数学必修一《优化方案》答案-第一章

1.1.1集合的含义与表示[读教材·填要点]1.元素与集合(1)元素与集合的定义:一般地,把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).(2)集合中元素的性质:①确定性:即给定的集合,它的元素是确定的.②互异性:即给定集合的元素是互不相同的.③无序性.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.(4)元素与集合的关系:a是集合A的元素,记作a∈A,a不是集合A的元素,记作a∉A.2.集合的表示方法除了用自然语言表示集合外,还可以用列举法和描述法表示集合.(1)列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法.(2)描述法:用集合所含元素的共同特征表示集合的方法.3.常用数集及其记法1.著名数学家能否构成一个集合?提示:不能,没有一定的评定标准,故著名数学家是不确定的对象,所以不能构成集合.2.一个集合能表示成{s,k,t,k}吗?提示:不能,集合中的元素是互不相同的,任何两个相同的对象在同一个集合中,只能算作这个集合的一个元素.3.集合{-5,-8}和{(-5,-8)}是同一集合吗?提示:不是同一集合.集合{-5,-8}中元素有2个,为数.而集合{(-5,-8)}中有一个元素为坐标(-5,-8).[例1](1)某校2013年在校的所有高个子同学;(2)不超过20的非负数;(3)帅哥;(4)直角坐标系平面内第一象限的一些点;(5)3的近似值的全体.[自主解答]“高个子”没有明确的标准,因此(1)不能构成集合.(2)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;(3)“帅哥”没有一个明确的标准,不能构成集合;(4)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(6)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以(5)不能构成集合.——————————————————判断指定的对象能不能构成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性.————————————————————————————————————————1.下列能构成集合的是()A.中央电视台著名节目主持人B.2013年沈阳全运会比赛的所有项目C.2010年上海世博园中所有漂亮的展馆D.世界上的高楼答案:B[例2]已知集合A={a[自主解答]若a+2=1,则a=-1,所以A={1,0,1},与集合中元素的互异性矛盾,应舍去;若(a+1)2=1,则a=0或a=-2,当a=0时,A={2,1,3},满足题意.当a=-2时,A={0,1,1},与集合中元素的互异性矛盾,舍去;若a2+3a+3=1,则a=-1或a=-2(均舍去).综上可知,a=0.例2中1∈A改为4∈A,则结果如何?解:若a+2=4,则a=2.∴A={4,9,13}满足题意.若(a+1)2=4,则a=1或a=-3.当a=1时,A={3,4,7},满足题意.当a=-3时,A={-1,3,4,}满足题意.若a 2+3a +3=4,则a =-3±132,代入后都满足题意,故a 的值为a =1,a =2,或a =-3或a =-3±132.——————————————————1.这类问题既要用元素的确定性,又要利用互异性检验解的正确与否.初学者解题时易忽略元素的互异性,学习中要高度重视.另外,本类问题往往涉及分类讨论的数学思想.2.一个集合中,元素之间没有先后顺序,只要构成两个集合的元素是一样的,这两个集合就是同一个集合. ————————————————————————————————————————2.含有两个实数的集合A 可以表示为{a -3,2a -1},求实数a 的取值范围. 解:∵A ={a -3,2a -1},∴由集合中元素的互异性可得a -3≠2a -1. ∴a ≠-2.∴a 的取值范围为a ≠-2.[例3] (1)方程组⎩⎪⎨⎪⎧x +y =3x -y =5的解集;(2)不等式2x -3>5的解集.[自主解答] (1)集合用描述法表示为{(x ,y )|⎩⎪⎨⎪⎧ x +y =3x -y =5}.解方程组,得⎩⎪⎨⎪⎧x =4,y =-1故集合用列举法表示为{(4,-1)}.(2)由2x -3>5可得x >4,所以不等式2x -3>5的解集为{x |x >4,x ∈R }. ——————————————————1.一个集合可以用不同的方法表示,需根据题意选择适当的方法,同时注意列举法和描述法的适用范围. 2.方程(或方程组)的解的个数较少,因此方程(或方程组)的解集一般用列举法表示;不等式(或不等式组)的解集一般用描述法表示.注意,当题目中要求求出“…的解集”或写出“…的集合”时,一定要将最终结果写成集合的形式.————————————————————————————————————————3.有下面六种表示方法①{x =-1,y =2} ②⎩⎨⎧(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x =-1,y =2.③{-1,2} ④(-1,2) ⑤{(-1,2)} ⑥{x ,y |x =-1,或y =2}.其中,能正确表示方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解集的是________(把所有正确答案的序号填在空格上).解析:[错解] ∵x 3∈A ,故x 3=0或x 3=1或x 3=x , 若x 3=0,则x =0; 若x 3=1,则x =1; 若x 3=x ,则x =1或x =0. 综上所述:所求x 的值为0或1.[错因] 本题错误的原因有两个,一是没有考虑到元素的互异性,解出来的结果没有代入检验,得出了错误结果;二是解x 2=x 时漏掉了x =-1这个答案,也导致了错误的结果.[正解] ∵x 3∈A , ∴x 3是集合A 中的元素.又∵集合A 中含有3个元素,∴需分情况讨论:①若x 3=0,则x =0,此时集合A 中有两个元素0,不符合集合中元素的互异性,舍去; ②若x 3=1,则x =1,此时集合A 中有两个元素1,不符合集合中元素的互异性,舍去;③若x 3=x ,则x =0、x =-1或x =1,当x =0、x =1时不符合集合中元素的互异性,都舍去.当x =-1时,此时集合A 中有三个元素1,0,-1,符合集合中元素的互异性;综上可知,x =-1. 1.有下列各组对象: ①接近于0的数的全体; ②比较小的正整数的全体;③平面上到点O 的距离等于1的点的全体; ④正三角形的全体.其中能构成集合的个数是( ) A .2 B .3 C .4D .5解析:①不能构成集合,“接近”的概念模糊,无明确标准.②不能构成集合,“比较小”也是不明确的,多小算小没明确标准.③④均可构成集合,因为任取一个元素是否是此集合的元素有明确的标准可依.答案:A2.下面几个命题中正确命题的个数是( ) ①集合N *中最小的数是1; ②若-a ∉N *,则a ∈N *;③若a ∈N *,b ∈N *,则a +b 最小值是2; ④x 2+4=4x 的解集是{2,2}. A .0 B .1 C .2D .3解析:N *是正整数集,最小的正整数是1,故①正确;当a =0时,-a ∉N *,且a ∉N *,故②错;若a ∈N *,则a 的最小值是1,又b ∈N *,b 的最小值也是1,当a 和b 都取最小值时,a +b 取最小值2,故③正确;由集合元素的互异性知④是错误的.故①③正确.答案:C3.已知集合M ={3,m +1},且4∈M ,则实数m 等于( ) A .4 B .3 C .2D .1解析:∵4∈M ,∴4=m +1,∴m =3. 答案:B4.已知①5∈R ②13∈Q ③0={0} ④0∉N⑤π∈Q ⑥-3∈Z .正确的个数为________. 解析:①②⑥是正确的;③④⑤是错误的. 答案:35.用适当的符号填空:已知A ={x |x =3k +2,k ∈Z },B ={x |x =6m -1,m ∈Z },则有:17______A ;-5______A ;17________B .解析:令3k +2=17得,k =5∈Z . 所以17∈A .令3k +2=-5得,k =-73∉Z .所以-5∉A .令6m -1=17得,m =3∈Z , 所以17∈β. 答案:∈,∉,∈6.用适当的方法表示下列集合: (1)一年中有31天的月份的全体; (2)大于-3.5小于12.8的整数的全体; (3)梯形的全体构成的集合; (4)所有非负偶数的集合; (5)所有能被3整除的数的集合; (6)方程(x -1)(x -2)=0的解集; (7)不等式2x -1>5的解集.解:(1){1月,3月,5月,7月,8月,10月,12月}. (2){-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12}. (3){x |x 是梯形}或{梯形}. (4){0,2,4,6,8,…}. (5){x |x =3n ,n ∈Z }. (6){1,2}. (7){x |2x -1>5}. 一、选择题1.下列给出的对象中,能组成集合的是( ) A .一切很大的数 B .高中数学的所有难题 C .美丽的小女孩D .方程x 2-1=0的实数根解析:选项A ,B ,C 中的对象都没有明确的判断标准,不满足集合中元素的确定性,故A ,B ,C 中的对象都不能组成集合.答案:D2.下列命题不.正确的有( )①很小的实数可以构成集合;②集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合; ③1,32,64,⎪⎪⎪⎪-12,0.5这些数组成的集合有5个元素; ④集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .1个 B .2个 C .3个D .4个解析:①错的原因是元素不确定;②前者是数集,而后者是点集,种类不同;③32=64,⎪⎪⎪⎪-12=0.5,有重复的元素,应该是3个元素;④该集合还包括坐标轴上的点.答案:D3.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( ) A .3 B .6 C .8D .10解析:列举得集合B ={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},共含有10个元素.答案:D4.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B =(0,2),则集合A *B 的所有元素之和为( ) A .0 B .2 C .3D .6解析:依题意,A *B ={0,2,4},其所有元素之和为6. 答案:D 二、填空题5.集合A ={(2,-2),(2,2)}中含有________个元素. 解析:∵(2,-2),(2,2)是两个点,∴有2个元素. 答案:26.已知集合A ={(x ,y )|y =2x +1},B ={(x ,y )|y =x +3},a ∈A 且a ∈B ,则a 为________. 解析:∵a ∈A 且a ∈B ,∴a 是方程组⎩⎪⎨⎪⎧y =2x +1y =x +3的解.解方程组,得⎩⎪⎨⎪⎧x =2y =5,∴a 为(2,5). 答案:(2,5)7.用描述法表示方程x <-x -3的解集为________. 解析:∵x <-x -3, ∴x <-32.∴解集为{x |x <-32}.答案:{x |x <-32}8.{(x ,y )|(x +2)2+|y -3|=0,x ,y ∈R }=________.解析:由(x +2)2+|y -3|=0,又(x +2)2≥0,|y -3|≥0,所以(x +2)2=0,|y -3|=0,所以x =-2,y =3,所以{(x ,y )|(x +2)2+|y -3|=0,x ,y ∈R }={(-2,3)}.答案:{(-2,3)} 三、解答题9.已知集合A 含有两个元素a -3和2a -1, (1)若-3∈A ,试求实数a 的值. (2)若a ∈A ,试求实数a 的值. 解:(1)因为-3∈A ,所以-3=a -3或-3=2a -1. 若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1, 则a =-1.此时集合A 含有两个元素-4,-3,符合题意, 综上所述,满足题意的实数a 的值为0或-1. (2)因为a ∈A ,所以a =a -3或a =2a -1.当a =a -3时,有0=-3,不成立.当a =2a -1时,有a =1,此时A 中有两个元素-2,1,符合题意.综上知a =1.10.已知集合A ={x |kx 2-8x +16=0}只有一个元素,试求实数k 的值,并用列举法表示集合A . 解:当k =0时,原方程变为-8x +16=0, 所以x =2,此时集合A ={2};当k ≠0时,要使一元二次方程kx 2-8x +16=0有两个相等实根,需Δ=64-64k =0,即k =1.此时方程的解为x1=x2=4,集合A={4}.1.1.2集合间的基本关系[读教材·填要点]1.子集的概念2.A B(或B A)3.(1)定义:不含任何元素的集合叫做空集.(2)用符号表示为:∅.(3)规定:空集是任何集合的子集.4.子集的有关性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.[小问题·大思维]1.若A B,则A⊆B且A≠B,对吗?提示:对.∵A B,首先A⊆B,其中B中至少有一个元素不属于A,即A≠B.2.任何集合都有真子集吗?提示:不是,空集∅就没有真子集.3.{0}和∅表示同一集合吗?它们之间有什么关系?提示:{0}和∅不是同一个集合.{0}表示含有一个元素0的集合,∅是不含任何元素的集合,且∅{0}.[例1]写出集合A=[自主解答]由0个元素构成的子集:∅;由1个元素构成的子集:{1},{2},{3};由2个元素构成的子集:{1,2},{1,3},{2,3};由3个元素构成的子集:{1,2,3}.由此得集合A的所有子集为∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的都是A的真子集.——————————————————1.求解有限集合的子集问题,关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合本身.2.一般地,若集合A中有n个元素,则其子集有2n个,真子集有2n-1个,非空真子集有2n-2个. ————————————————————————————————————————1.已知集合M满足{2,3}⊆M⊆{1,2,3,4,5},求集合M及其个数.解:当M中含有两个元素时,M为{2,3};当M中含有三个元素时,M为{2,3,1},{2,3,4},{2,3,5};当M中含有四个元素时,M为{2,3,1,4},{2,3,1,5},{2,3,4,5};当M中含有五个元素时,M为{2,3,1,4,5}.所以满足条件的集合M为{2,3},{2,3,1},{2,3,4},{2,3,5},{2,3,1,4},{2,3,1,5},{2,3,4,5},{2,3,1,4,5},集合M的个数为8.[例2]下列各式正确的是(1){a}⊆{a};(2){1,2,3}={3,1,2};(3)0⊆{0};(4){1}{x|x≤5};(5){1,3}{3,4}.[自主解答]∵1<5,∴1∈{x|x≤5}.∴{1}⊆{x|x≤5}.又∵{1}≠{x|x≤5},∴{1}{x|x≤5}.∵1∈{1,3},但1∉{3,4},∴{1,3}{3,4}.“”是“真包含于”的意思[——————————————————集合间关系的判定的步骤:首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A B;,其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B A;,最后,下结论:若A⊆B,B⊆A,则A =B ;若A ⊆B ,B A ,则A B ;若A B ,B ⊆A ,则B A ;若上述三种情况都不成立,则A B ,B A .[注意] 有时一个集合可以看成另一个集合的元素,如{1}可以看成集合{{1},1,2,3}中的元素,也可以看成子集,因此{1}∈{{1},1,2,3}与{1}⊆{{1},1,2,3}都正确.————————————————————————————————————————2.集合M ={x |x 2+x -6=0},N ={x |2x +7>0},试判断集合M 和N 的关系. 解:M ={-3,2},N =⎩⎨⎧⎭⎬⎫x |x >-72.∵-3>-72,2>-72,∴-3∈N,2∈N .∴M ⊆N . 又0∈N ,但0∉M ,∴M N .[例3] 已知集合A ={x |-3m 的取值范围. [自主解答] ∵B ⊆A ,(1)当B =∅时,m +1≤2m -1,解得m ≥2. (2)当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1解得-1≤m <2, 综上得m ≥-1. ——————————————————(1)利用集合之间的关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实点表示,不含“=”用虚点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论是必须的.————————————————————————————————————————3.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,求a 的值. 解:∵A ⊇B ,而a 2-a +1∈B ,∴a 2-a +1∈A . ∴a 2-a +1=3或a 2-a +1=a . 当a 2-a +1=3时,a =2或a =-1.(1)a =2时,A ={1,3,2},B ={1,3},这时满足条件A ⊇B ; (2)a =-1时,A ={1,3,-1},B ={1,3},这时也满足条件A ⊇B .当a 2-a +1=a 时,a =1,此时A ={1,3,1},B ={1,1},根据集合中元素的互异性,故舍去a =1. ∴a 的值为2或-1.[错解] ∵M ={x |x 2-3x +2=0}={1,2},(1)当N ={1}时,有⎩⎪⎨⎪⎧ 1+1=2,1×1=a ,∴a =1.(2)当N ={2}时,有⎩⎪⎨⎪⎧ 2+2=2,2×2=a ,不成立.(3)当N ={1,2}时,有⎩⎪⎨⎪⎧1+2=2,1×2=a ,不成立.所以,a =1.[错因] 空集是一个特殊的集合,是任何集合的子集,在解决集合关系问题时极易忽略∅,错解中没有考虑集合N 为∅的情况.[正解] ∵M ={x |x 2-3x +2=0}={1,2},又N ⊆M ,∴N =∅,或N ={1},或N ={2},或N ={1,2}. (1)当N =∅时,方程x 2-2x +a =0的判别式Δ=4-4a <0,即a >1.(2)当N ={1}时,有⎩⎪⎨⎪⎧1+1=2,1×1=a ,∴a =1.(3)当N ={2}时,有⎩⎪⎨⎪⎧ 2+2=2,2×2=a ,不成立.(4)当N ={1,2}时,有⎩⎪⎨⎪⎧1+2=2,1×2=a ,不成立.综上可知实数a 的取值范围是a ≥1. 1.下列命题中,正确的有( ) ①空集是任何集合的真子集; ②若A B ,B C ,则A C ;③任何一个集合必有两个或两个以上的真子集; ④如果不属于B 的元素也不属于A ,则A ⊆B . A .①② B .②③ C .②④D .③④解析:①空集只是空集的子集而非真子集,故①错;②真子集具有传递性,故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确.答案:C2.设集合M ={x |x >-2},则下列选项正确的是( ) A .{0}⊆M B .{0}∈M C .∅∈MD .0⊆M解析:选项B 、C 中均是集合之间的关系,符号错误;选项D 中是元素与集合之间的关系,符号错误. 答案:A3.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( ) A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆D解析:选项A 错,应当是B ⊆A .选项B 对,正方形一定是矩形,但矩形不一定是正方形.选项C 错,正方形一定是菱形,但菱形不一定是正方形.选项D 错,应当是D ⊆A .答案:B 4.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________. 解析:∵∅{x |x 2-x +a =0}.∴{x |x 2-x +a =0}≠∅. 即x 2-x +a =0有实根. ∴Δ=(-1)2-4a ≥0,得a ≤14.答案:a ≤145.若{a,0,1}={c ,1b ,-1},则a =________,b =________,c =________.解析:∵1b ≠0,∴c =0,∴a =-1,1b =1.∴a =-1,b =1.答案:-1 1 06.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B ⊆A ,求实数m 的值.解:∵B ⊆A ,∴m 2=-1,或m 2=2m -1,当m 2=-1时,显然无实数根;当m 2=2m -1时,m =1.∴实数m =1.一、选择题1.已知集合M ={x ∈Z |-3<x ≤1},则它的真子集的个数为( ) A .12 B .14 C .15D .16解析:∵M ={x ∈Z |-3<x ≤1}={-2,-1,0,1}共有4个元素,∴它的真子集共有24-1=15个. 答案:C2.定义集合A *B ={x |x ∈A ,且x ∉B },若A ={1,2,3,4,5},B ={2,4,5},则A *B 的子集个数为( ) A .1 B .2 C .3D .4解析:由题意知A *B ={1,3}, ∴A *B 的子集个数为22=4个. 答案:D3.已知集合M ={x |-5<x <3,x ∈Z },则下列集合中为集合M 子集的是( ) A .P ={-3,0,1} B .Q ={-1,0,1,2}C .R ={y |-π<y <-1,y ∈Z }D .S ={x ||x |≤3,x ∈N }解析:先用列举法表示集合,再观察元素与集合的关系.集合M ={-2,-1,0,1},集合R ={-3,-2},S ={0,1},不难发现集合P 中的元素-3∉M ,集合Q 中的元素2∉M ,集合R 中的元素-3∉M ,而S ={0,1}中的任意一个元素都在集合M 中,所以S ⊆M ,且S M .答案:D4.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为( ) A .6 B .5 C .4D .3解析:集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.答案:A 二、填空题5.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是________.解析:∵A ⊇B ,∴⎩⎪⎨⎪⎧a -1≤3,a +2≥5,∴3≤a ≤4. 答案:3≤a ≤46.设a ,b ∈R ,集合{0,ba,b }={1,a +b ,a },则b -a =________.解析:由题意可知a ≠0,则a +b =0,a =-b ,所以ba =-1,则a =-1,b =1,故b -a =2.答案:27.下列关系中正确的是________.①∅∈{0}; ②∅{0}; ③{0,1}⊆{(0,1)}; ④{(a ,b )}={(b ,a )}.解析:∵∅{0},∴①错误;空集是任何非空集合的真子集,②正确,{(0,1)}是含有一个元素的点集,③错误;{(a ,b )}与{(b ,a )}是两个不等的点集,④错误,故正确的是②.答案:②8.已知集合P ={1,2},那么满足Q ⊆P 的集合的个数是________. 解析:∵P ={1,2},Q ⊆P ,∴集合Q 可以是∅或{1}或{2}或{1,2}. 答案:4 三、解答题9.由“2,a ,b ”三个元素构成的集合与由“2a,2,b 2”三个元素构成的集合是同一个集合,求a ,b 的值. 解:根据集合相等,有⎩⎪⎨⎪⎧ a =2a ,b =b 2或⎩⎪⎨⎪⎧a =b 2,b =2a ,解得⎩⎪⎨⎪⎧ a =0,b =1或⎩⎪⎨⎪⎧a =0,b =0或⎩⎨⎧a =14,b =12.再根据集合元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.10.设集合A ={x |x 2-5x +6=0},B ={x |x 2-(2a +1)x +a 2+a =0},若B ⊆A ,求a 的值.解:法一:A ={x |x 2-5x +6=0}={2,3},由B ⊆A 得,B =∅,或B ={2},或B ={3},或B ={2,3},由于Δ=(2a +1)2-4a 2-4a =1>0,∴B ≠∅,且B 含有两个不同元素.∴B ={2,3},需2a +1=5和a 2+a =6同时成立, ∴a =2.综上所述:a =2.法二:A={x|x2-5x+6=0}={2,3},B={x|x2-(2a+1)x+a2+a=0}={x|(x-a)·(x-a-1)=0}={a,a+1},∵a≠a+1,∴当B⊆A时,只有a=2且a+1=3.∴a=2.1.1.3集合的基本运算第一课时并集与交集[读教材·填要点]1.集合的并集与交集的定义21.若A={1,2,3},B={3,4,5},那么A∪B={1,2,3,3,4,5}对吗?如何表示A∪B和A∩B?提示:A∪B={1,2,3,3,4,5}是不对的,因为不符合元素的互异性;A∪B={1,2,3,4,5},A∩B={3}.2.你认为并集概念中的“或”与我们日常生活中“或”意义一致吗?有什么区别?提示:并集中的“或”与生活中“或”是不一样的.生活用语中的“或”是“或此”“或彼”只取其一,如“老师让张明或李红去开会”,意思是张明去也可以,李红去也可以,但不包括张明和李红一起去这种情况;而并集中的“或”则是“或此”“或彼”“或彼此”.3.若集合A与集合B没有公共元素,能否说集合A与集合B没有关系?提示:当两集合A与B没有公共元素时,不能说集合A与B没有关系,而是A∩B=∅.[例1] 已知集合A ={x |(x ∪B 是( ) A .{-1,2,3} B .{-1,-2,3} C .{1,-2,3}D .{1,-2,-3}[自主解答] A ={x |(x -1)(x +2)=0}={1,-2};B ={x |(x +2)(x -3)=0}={-2,3}, ∴A ∪B ={1,-2}∪{-2,3}={-2,1,3}. [答案] C ——————————————————解决此类问题首先应看清集合中元素的范围,简化集合,若是用列举法表示的数集,可以根据交集、并集的定义直接观察或用Venn 图表示出集合运算的结果;若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点不在集合中时,应用“空心点”表示.————————————————————————————————————————1.已知集合A ={x |-1<x ≤3},B ={x |x ≤0,或x ≥52},求A ∩B ,A ∪B .解:∵A ={x |-1<x ≤3},B ={x |x ≤0,或x ≥52},把集合A 与B 表示在数轴上,如图. ∴A ∩B ={x |-1<x ≤3}∩{x |x ≤0或x ≥52}={x |-1<x ≤0或52≤x ≤3};A ∪B ={x |-1<x ≤3}∪{x |x ≤0或x ≥52}=R .[例2] 已知集合A =x 的值. [自主解答] ∵A ∪B ={1,3,x },A ={1,3,x },B ={1,x 2}, ∴A ∪B =A ,即B ⊆A , ∴x 2=3或x 2=x .①当x 2=3时,得x =±3.若x =3,则A ={1,3,3},B ={1,3},符合题意; 若x =-3,则A ={1,3,-3},B ={1,3},符合题意. ②当x 2=x 时,则x =0或x =1.若x =0,则A ={1,3,0},B ={1,0},符合题意; 若x =1,则A ={1,3,1},B ={1,1},不成立,舍去;综上可知,x =±3或x =0. ——————————————————(1)在利用集合的交集、并集性质解题时,常常会遇到A ∩B =A ,A ∪B =B 等这类问题,解答时常借助于交、并集的定义及上节学习的集合间的关系去分析,如A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B 等,解答时应灵活处理.(2)对于含有参数的问题要分类讨论,同时要检验,利用好集合中元素的互异性. ————————————————————————————————————————2.已知集合A ={4,6},B ={2,m },A ∪B ={2,4,6},则m 的值为________. 解析:∵A ={4,6},B ={2,m }, 而A ∪B ={2,4,6}, ∴m =4或m =6. 答案:4或6(1) 若A ∩B =A ∪B ,求a 的值; (2)若∅A ∩B ,A ∩C =∅,求a 的值.[巧思] (1)A ∩B =A ∪B ⇔A =B ;(2)∅A ∩B ⇔A ∩B ≠∅. [妙解] 由已知,得B ={2,3},C ={2,-4}.(1)∵A ∩B =A ∪B ,∴A =B .于是2,3是一元二次方程x 2-ax +a 2-19=0的两个根,由根与系数之间的关系知:⎩⎪⎨⎪⎧2+3=a ,2×3=a 2-19解之得a =5.(2)由A ∩B ∅⇒A ∩B ≠∅,又A ∩C =∅,得3∈A,2∉A ,-4∉A . 由3∈A 得32-3a +a 2-19=0, 解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}={2,3},与2∉A 矛盾; 当a =-2时,A ={x |x 2+2x -15=0}={3,-5},符合题意. ∴a =-2.1.已知集合M ={1,2,3,4},N ={-2,2},下列结论成立的是( ) A .N ⊆M B .M ∪N =M C .M ∩N =ND .M ∩N ={2}解析:因为-2∉M ,可排除A ;M ∪N ={-2,1,2,3,4},可排除B ;M ∩N ={2}.答案:D2.设A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为()A.{2} B.{3}C.{-3,2} D.{-2,3}解析:注意到集合A中的元素为自然数,因此易知A={1,2,3,4,5,6,7,8,9,10},而直接解集合B中的方程可知B={-3,2},因此阴影部分显然表示的是A∩B={2}.答案:A3.设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则k的取值范围是()A.k≤3 B.k≥-3C.k>6 D.k≤6解析:因为N={x|2x+k≤0}={x|x≤-k2},且M∩N≠∅,所以-k2≥-3⇒k≤6.答案:D4.已知集合A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},则A∩B∩C=________. 解析:∵A∩B={x|x是菱形}∴A∩B∩C={x|x是正方形}.答案:{x|x是正方形}5.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=________.解析:由M={0,1,2},知N={0,2,4},M∩N={0,2}.答案:{0,2}6.设集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},A∩B={-3},求实数a.解:∵A∩B={-3},∴-3∈B.∵a2+1≠-3,∴①若a-3=-3,则a=0,此时A={0,1,-3},B={-3,-1,1},但由于A∩B={1,-3}与已知A∩B={-3}矛盾,∴a≠0.②若2a-1=-3,则a=-1,此时A={1,0,-3},B={-4,-3,2},A∩B={-3},综上可知a=-1.一、选择题1.已知集合A ={x |x ≥0},B ={x |-1≤x ≤2},则A ∪B =( ) A .{x |x ≥-1} B .{x |x ≤2} C .{x |0<x ≤2}D .{x |1≤x ≤2}解析:结合数轴得A ∪B ={x |x ≥-1}. 答案:A2.设集合M ={x |-3<x <2},N ={x |1≤x ≤3},则M ∩N =( ) A .{x |1≤x <2} B .{x |1≤x ≤2} C .{x |2<x ≤3}D .{x |2≤x ≤3} 解析:∵M ={x |-3<x <2}且N ={x |1≤x ≤3}, ∴M ∩N ={x |1≤x <2}. 答案:A3.设A ={x |-3≤x ≤3},B ={y |y =-x 2+t }.若A ∩B =∅,则实数t 的取值范围是( ) A .t <-3 B .t ≤-3 C .t >3D .t ≥3解析:B ={y |y ≤t },结合数轴可知t <-3. 答案:A4.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},且B ≠∅,若A ∪B =A ,则( ) A .-3≤m ≤4 B .-3<m <4 C .2<m <4D .2<m ≤4解析:∵A ∪B =A ,∴B ⊆A .又B ≠∅, ∴⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7m +1<2m -1即2<m ≤4.答案:D 二、填空题5.已知集合A ={1,2,4},B ={2,4,6},则A ∪B =________. 解析:集合A ,B 都是以列举法的形式给出,易得A ∪B ={1,2,4,6}. 答案:{1,2,4,6}6.已知集合A ={x |x ≥5},集合B ={x |x ≤m },且A ∩B ={x |5≤x ≤6},则实数m =________. 解析:用数轴表示集合A 、B 如图所示, 由于A ∩B ={x |5≤x ≤6}, 则m =6. 答案:67.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围是________. 解析:如图所示,若A ∪B =R ,则a ≤1. 答案:a ≤18.已知集合A ={(x ,y )|y =ax +3},B ={(x ,y )|y =3x +b },A ∩B ={(2,5)},则a =________,b =________. 解析:∵A ∩B ={(2,5)}. ∴5=2a +3.∴a =1. ∴5=6+b .∴b =-1. 答案:1 -1 三、解答题9.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解:(1)∵B ={x |x ≥2},A ={x |-1≤x <3}, ∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a2},B ∪C =C ⇔B ⊆C ,∴a >-4.10.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎩⎪⎨⎪⎧ 3-x >0,3x +6>0,集合B ={m |3>2m -1},求A ∩B ,A ∪B . 解:解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3,则A ={x |-2<x <3},解不等式3>2m -1,得m <2,则B ={m |m <2}. 用数轴表示集合A 和B ,如图所示, 则A ∩B ={x |-2<x <2},A ∪B ={x |x <3}.第二课时 补集及集合运算综合问题[读教材·填要点]1.全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么称这个集合为全集. (2)符号表示:通常记作U . 2.补集1.已知集合A、∁U A(U为全集),则A∩(∁U A)与A∪(∁U A)各有什么特点?提示:A∩(∁U A)=∅,A∪(∁U A)=U.2.设U为全集,则∁U∅、∁U U、∁U(∁U A)分别表示什么集合?提示:∁U∅=U,∁U U=∅.∁U(∁U A)=A.3.判断∁U(A∩B)=(∁U A)∩∁U B,∁U(A∪B)=(∁U A)∪(∁U B)是否正确.提示:不对.结合韦恩图可知∁U(A∩B)=(∁U A)∪(∁U B)∁U(A∪B)=(∁U A)∩(∁U B).[例1]设全集U={0,1,2,3}U m的值.[自主解答]如图,∵U={0,1,2,3},∁U A={1,2},∴A={0,3}.∴方程x2+mx=0的两根为x1=0,x2=3,∴0+3=-m.即m=-3.——————————————————(1)根据补集定义,借助Venn图,可直观地求出全集,此类问题,当集合中元素离散时,可借助V enn图;当集合中元素连续时,可借助数轴,利用数轴分析法求解.(2)解题时要注意使用补集的几个性质:∁U U=∅,∁U∅=U,A∪(∁U A)=U. ————————————————————————————————————————1.已知全集U,集合A={1,3,5,7,9},∁U A={2,4,6,8},∁U B={1,4,6,8,9},求集合B.解:借助Venn,如右图所示,得U={1,2,3,4,5,6,7,8,9},∵∁U B={1,4,6,8,9},∴B={2,3,5,7}.[例2]设U={x∈N|x(∁U A)∩(∁U B),(∁U A)∪(∁U B).[自主解答]∵U={x∈N|x<10}={0,1,2,3,4,5,6,7,8,9},A={1,5,7,8},B={3,4,5,6,9},∴A∩B={1,5,7,8}∩{3,4,5,6,9}={5},A ∪B ={1,5,7,8}∪{3,4,5,6,9}={1,3,4,5,6,7,8,9}. ∵∁U A ={0,2,3,4,6,9},∁U B ={0,1,2,7,8},∴(∁U A )∩(∁U B )={0,2},(∁U A )∪(∁U B )={0,1,2,3,4,6,7,8,9}. ——————————————————1.解决集合的混合运算时,一般先运算括号内的部分,如求∁U (A ∪B )时,先求出A ∪B ,再求补集.2.当集合是用列举法表示时,如数集,可以通过列举集合的元素分别得到所求的集合;当集合是用描述法表示时,如不等式形式表示的集合,则可借助数轴求解.————————————————————————————————————————2.已知U =R ,A ={x |x >0},B ={x |x ≤-1},则[A ∩(∁U B )]∪[B ∩(∁U A )]=( ) A .∅ B .{x |x ≤0}C .{x |x >-1}D .{x |x >0,或x ≤-1}解析:∵B ={x |x ≤-1},∴∁U B ={x |x >-1}. 又∵A ={x |x >0},∴A ∩(∁U B )={x |x >0}. 又∵∁U A ={x |x ≤0}. ∴B ∩(∁U A )={x |x ≤-1}.∴[A ∩(∁U B )]∪[B ∩(∁U A )]={x |x >0,或x ≤-1}. 答案:D[例3] 设全集U =R ,U a 的取值范围. [自主解答]∁U P ={x |x <-2或x >1}, ∵M ∁U P ,∴分M =∅,M ≠∅,两种情况讨论. (1)M ≠∅时,如图可得或⎩⎪⎨⎪⎧3a <2a +5,3a ≥1,∴a ≤-72,或13≤a <5.(2)M =∅时,应有3a ≥2a +5⇒a ≥5. 综上可知,a ≤-72,或a ≥13.——————————————————1.M⊆N,一般分两种情况讨论:①M=∅,②M≠∅.2.解用不等式表示的数集间的集合运算时,一般要借助于数轴求解,此法的特点是简单直观,同时要注意各个端点的画法. ————————————————————————————————————————3.已知集合A={x|-4≤x≤-2},集合B={x|x-a≥0}.(1)若A⊆B,求a的取值范围;(2)若全集U=R,且A⊆(∁U B),求a的取值范围.解:∵A={x|-4≤x≤-2},B={x|x≥a},(1)由A⊆B,结合数轴(如图所示)可知a的范围为a≤-4.(2)∵U=R,∴∁U B={x|x<a},要使A⊆∁U B,须a>-2.动但不喜爱乒乓球运动的人数为________.[巧思]先将文字语言转化为集合语言,设U为全班学生组成的集合,A、B分别表示喜爱篮球运动的学生组成的集合、喜爱乒乓球运动的学生组成的集合,再利用Venn图可直观得出答案.[妙解]设全集U={全班30名学生},A={喜爱篮球运动的学生},B={喜爱乒乓球运动的学生},画出Venn图如图所示.设既喜欢篮球运动又喜欢乒乓球运动的人数为x,则(15-x)+x+(10-x)=30-8,解得x=3,所以喜爱篮球运动但不喜爱乒乓球运动的人数为12.[答案]121.设全集为R,A={x|x<3,或x>5},B={x|-3<x<3},则()A.∁R(A∪B)=R B.A∪(∁R B)=RC.(∁R A)∪(∁R B)=R D.A∪B=R解析:∵∁R A={x|3≤x≤5},∁R B={x|x≤-3,或x≥3},逐个验证知B正确.答案:B2.(2013·临沂一模)已知全集U=Z,集合A={0,1},B={-1,0,1,2},则图中阴影部分所表示的集合为()A.{-1,2} B.{-1,0}C.{0,1} D.{1,2}解析:图中阴影部分表示的集合为(∁U A)∩B,因为A={0,1},B={-1,0,1,2},所以(∁U A)∩B={-1,2}.答案:A3.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=() A.{5,8} B.{7,9}C.{0,1,3} D.{2,4,6}解析:因为A∪B={0,1,2,3,4,5,6,8},所以(∁U A)∩(∁U B)=∁U(A∪B)={7,9}.答案:B4.已知全集U={2,3,a2-a-1},A={2,3},若∁U A={1},则实数a的值是________.解析:∵U={2,3,a2-a-1},A={2,3},∁U A={1},∴a2-a-1=1,即a2-a-2=0,∴a=-1或a=2.答案:-1或25.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________.解析:如图:由数轴可知:∁A B={x|0≤x<2,或x=5}.答案:{x|0≤x<2,或x=5}6.设全集U={x|0<x<10,x∈N},若A∩B={3},A∩(∁U B)={1,5,7},(∁U A)∩(∁U B)={9},求集合A,B.解:U={1,2,3,4,5,6,7,8,9},由题意画出Venn图,∴A={1,3,5,7},B={2,3,4,6,8}.一、选择题1.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=()A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}解析:画出数轴,如图所示,∁U B={x|x≤1},则A∩(∁U B)={x|0<x≤1}.答案:B2.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B是非空集合,则A∩B的元素个数为()A.mn B.m+nC.n-m D.m-n解析:画出Venn图,如图.∵U=A∪B中有m个元素,(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素.答案:D3.已知集合A={x|x<a},B={x|x<2},且A∪(∁R B)=R,则a满足()A.a≥2 B.a>2C.a<2 D.a≤2解析:∁R B={x|x≥2},则由A∪(∁R B)=R得a≥2.答案:A4.设S为全集,则下列几种说法中,错误的个数是()①若A∩B=∅,则(∁S A)∪(∁S B)=S;②若A∪B=S,则(∁S A)∩(∁S B)=∅;③若A∪B=∅,则A=B.A.0 B.1C.2 D.3解析:①如图,(∁S A)∪(∁S B)=S,正确.②若A∪B=S,则(∁S A)∩(∁S B)=∁S(A∪B)=∅,故成立.③若A∪B=∅,则A=B=∅.答案:A二、填空题5.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=________,A∩(∁N B)=________.解析:因为集合A与集合B都有元素3和9,所以A∩B={3,9},结合Venn图(如图所示),易得A∩(∁N B)={1,5,7}.答案:{3,9}{1,5,7}6.设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B=∅,则实数m的取值范围是________.解析:∵A={x|x≥-m},∴∁U A={x|x<-m}.又∵(∁U A)∩B=∅,-m≤-2.∴m≥2.答案:m≥27.设全集U={a,b,c,d},集合A={a,b},B={b,c,d},则(∁U A)∪(∁U B)=________.解析:依题意得知,∁U A={c,d},∁U B={a},(∁U A)∪(∁U B)={a,c,d}.答案:{a,c,d}8.已知全集U(U≠∅)和集合A、B、D,且A=∁U B,B=∁U D,则A与D的关系是________.解析:A=∁U B=∁U(∁U D)=D.答案:A=D三、解答题9.已知全集U={x|-1≤x≤4},A={x|-1≤x≤1},B={x|0<x≤3},求∁U A,(∁U B)∩A.解:∵U={x|-1≤x≤4},A={x|-1≤x≤1},B={x|0<x≤3},结合数轴(如图).可知∁U A={x|1<x≤4},∁U B={x|3<x≤4,或-1≤x≤0}.结合数轴(如图).可知(∁U B)∩A={x|-1≤x≤0}.10.2011年8月世界大学生运动会在深圳举行,大运村的50名志愿者中,会讲英语的有36人,会讲日语的有20人,既会讲英语又会讲日语的有14人,问既不会讲英语又不会讲日语的有多少人?解:设全集U={50名志愿者},A={会讲英语的志愿者},B={会讲日语的志愿者},A∩B={既会讲英语又会讲日语的志愿者},画出Venn图,如图,则由Venn图知,既不会讲英语又不会讲日语的志愿者有50-22-14-6=8(人).1.2.1函数的概念[读教材·填要点]1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.1.从函数的定义看,它的定义域和值域能否为空集?提示:因为定义中的A、B是非空数集,所以函数的定义域和值域都不能为空集.2.所有的数集都能用区间表示吗?提示:区间是数集的另一种表示方法,但并不是所有数集都能用区间表示,如{1,2,3,4}就不能用区间表示.3.如何用区间表示下列数集?(1){x|x≥1};(2){x|2<x≤3};(3){x|x>1且x≠2}.提示:(1)[1,+∞)(2)(2,3](3)(1,2)∪(2,+∞)[例1]设M={x|0≤x≤2}M到集合N的函数关系的有()A.0个B.1个C.2个D.3个[自主解答][答案] B——————————————————判断所给对应是否是函数,首先观察两个集合A、B是否是非空数集,其次验证对应关系下,集合A中数x 的任意性,集合B中数y的唯一性. ————————————————————————————————————————1.图中(1)(2)(3)(4)四个图象各表示两个变量x,y的对应关系,其中表示y是x的函数关系的有________.解析:由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,对于本题而言,当-1≤a≤1时,直线x=a与函数的图象仅有一个交点,当a>1或a<-1时,直线x=a与函数的图象没有交点.从而表示y 是x的函数关系的有(2)(3).答案:(2)(3)[例2](1)f (x )=3x +2;(2)f (x )=3-x1-x -1.[自主解答] (1)使根式3x +2有意义的实数x 的集合是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-23,从而函数f (x )=3x +2的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-23.(2)要使3-x1-x -1有意义,只要⎩⎨⎧x -1≥0,3-x ≥0,x ≠2.因此函数f (x )=3-x1-x -1的定义域为{x |1≤x ≤3且x ≠2}. ——————————————————求函数定义域的方法及注意事项:(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:①分式的分母不为0;②偶次根式的被开方数非负;③y =x 0要求x ≠0.(2)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(3)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.————————————————————————————————————————2.求下列函数的定义域: (1)y =(x +1)0|x |-x ;(2)y =2x +3-12-x +1x. 解:(1)由⎩⎪⎨⎪⎧ x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}.(2)要使函数有意义,需⎩⎨⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x+1x 的定义域为⎣⎡⎭⎫-32,0∪(0,2).[例3] (1)f (x )=(x )2,g (x )=x 2; (2)f (x )=x 2-2x -1,g (t )=t 2-2t -1.[自主解答] (1)由于函数f (x )=(x )2的定义域为{x |x ≥0},而g (x )=x 2的定义域为{x |x ∈R },它们的定义域不同,所以它们不表示同一函数.(2)两个函数的定义域和对应关系都相同,所以它们表示同一函数. ——————————————————判断两个函数f (x )和g (x )是否是相等函数的步骤是:①先求函数f (x )和g (x )的定义域,如果定义域不同,那么它们不相等,如果定义域相同,再执行下一步;②化简函数的解析式,如果化简后的函数解析式相同,那么它们相等,否则它们不相等.————————————————————————————————————————3.下列各组函数中,f (x )与g (x )表示同一函数的是( ) A .f (x )=x -1与g (x )=x 2-2x +1 B .f (x )=x 与g (x )=x 2xC .f (x )=x 与g (x )=3x 3 D .f (x )=x 2-4x -2与g (x )=x +2解析:A 选项中,f (x )与g (x )的对应关系不同,它们不表示同一函数;B ,D 选项中,f (x )与g (x )的定义域不同,它们不表示同一函数.答案:C求函数y =(x -2)(x +1)(x -2)(x +3)的定义域.[错解] 要使函数y =(x -2)(x +1)(x -2)(x +3)=x +1x +3有意义,则x ≠-3.故所求函数的定义域为{x |x ≠-3}.[错因] 约分扩大了自变量的取值范围.由于同时约去了函数中分子、分母的公因式“x -2”,使原函数变形为y =x +1x +3,从而改变了原函数的自变量x 的取值范围,也就是说,函数y =(x -2)(x +1)(x -2)(x +3)与函数y =x +1x +3不相等. [正解] 要使函数有意义,必须使(x -2)(x +3)≠0, 即x -2≠0且x +3≠0, 解得x ≠2且x ≠-3,。
高中数学必修一

必修一第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
只要构成两个集合的元素是一样的,我们就成为这两个集合是相等的。
如果a是集合A的元素,就说a属于集合A,记作a;如果a不是集合A中的元素,就说a不属于集合A,记作a。
全体非负整数组成的集合称为非负整数集(或自然数集),记作N;所有正整数组成的集合称为正整数集,记作N*或N+;全体整数组成的集合称为整数集,记作Z;全体有理数集合的集合称为有理数集,记作Q;全体实数组成的集合称为实数集,记作R。
例举法:把集合的元素一一列举出来,并用花括号“”括起来表示集合的方法叫做例举法。
描述法:用集合所含元素的共同特征表示集合的方法称为描述法。
1.1.2 集合间的基本关系一般地,对于两个集合A,B如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集。
记作AB(或BA)读作“A含于B”(或“B含于A”)。
如果集合A是集合B的子集(AB),且集合B是集合A的子集(BA),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B。
如果集合AB,但存在元素xB,且xA,我们称集合A是集合B的真子集,记作AB(或BA)。
我们把不含任何元素的集合叫做空集,记作,并规定:空集是任何集合的子集。
1.1.3 集合的基本运算并集一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A 与B的并集,记作AB(读作“A并B”),即AB=交集一般地,由属于集合A且属于集合B的所有元素组成的集合,称作A与B的交集,记作A(读作“A交B”),即A若A则A补集一般地,如果一个集合含有我们所研究问题中涉及到所有问题中涉及到所有元素,那么就称这个集合为全集,通常记作U。
对于一个集合A,由于全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作C U A,即C U A= (C U A C U B)=C U(C U A C U B)=C U1.2 函数及其表示1.2.1 函数的概念设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为集合A到集合B的一个函数,记作 y=f(x),x A其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域。
高中数学 初升高课程衔接 第一章 集合 1.1 集合的含义

1.1集合的含义及其表示课标知识与能力目标1.理解集合的含义,熟悉常用数集及其表示法.2.了解属于关系和集合相等的意义,了解有限集、无限集、空集的意义.3.掌握集合的两种常用的表示方法:列举法、描述法和图示法,并能正确地表示一些简单的集合.知识点1集合的含义1.元素与集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.集合中的每一个对象称为该集合的元素,简称元.2.元素与集合的符号表示:通常用大写拉丁字母来表示集合,例如集合A、集合B等;通常用小写拉丁字母表示集合的元素,例如元素a,b等.3集合中元素的三个特性(1)确定性.集合中的元素是否属于这个集合是确定的,即任何一个对象都能明确它是或不是某个集合的元素,两者必具其一.这是判断一组对象是否形成集合的标准.例如:比5大的整数可以构成一个集合,6就是该集合的元素,而3就不是该集合的元素,非常明确,不存在模棱两可的元素.(2)互异性.给定集合中的元素是互不相同的.例如集合{1,1,2},这种表示是错误的,应写成{1,2},(3)无序性.集合与其中元素的排列顺序无关.例如集合{1,2,3},{3,2,1},{3,1,2}都是同一集合.4.元素与集合的关系(1)属于(符号:∈),a是集合A中的元素.记作a∈A,读作“a属于A”.(2)不属于(符号:∉或∈),a不是集合A中的元素,记作a∉A或a∈A.读作“a不属于A”.数集有限集:含有有限个元素的集合称为有限集.无限集:含有无限个元素的集合称为无限集.空集:不含任何元素的集合称为空集,记作∅ .(易错点)典型例题考点1集合的识别例1下列研究的对象能否构成集合(1)世界上最高的山峰(2)高一数学课本中的难题(3)中国国旗的颜色(4)充分小的负数的全体(5)book中的字母(6)立方等于本身的实数(7)不等式2x-8<13的正整数解例2 下列各组对象:①接近于0的数;②比较小的正整数;③平面坐标系内所有到点O的距离等于1的点;④正三角形的全体;⑤2的近似值.其中能构成集合的个数是__________.例3 下列各组中的对象能构成集合的是__________.①2010年广州亚运会的火炬手;②较为聪明的同学;③无理数中不大于4的数;④数学中特别难的问题;⑤直角坐标系中第一象限的点.考点2 元素与集合的关系例1 用∈或∉填空1_______N -3_________N 0__________N0_______N* π________R 227_______Q cos300_______Z例2 下列关系中错误的是__________.①_x0001_ 0∈N *;②-32∈Q;③πQ ;④0N ;⑤3∈R;⑥-3∈Z;⑦0∈Z;⑧0.9∈R.例3 集合A 中的元素由A 的关系? (1)0 (2(3例4 设A 是实数集合,满足若a∈A,则11-a ∈A,且1A .(1)若2∈A,则A 中至少含有哪些元素?(2)A 能否为单元素集合?若能,请求出来;若不能,请说明理由. (3)若a∈A,则1-1a 是A 中的元素吗?说明理由.考点3 集合元素的性质例1 集合M中的元素为1,x,x2-x,求x的范围?例2 三个元素的集合1,a,ba,也可表示为0,a2,a+b,求a2005+ b2006的值.知识点2 集合的表示方法1.列举法:将集合的元素一一列举出来,并置于花括号“{ }”内.用这种方法表示集合,元素之间要用逗号分隔,但列举时与元素的次序无关. 规律方法:应用列举法应注意的问题:(1)用列举法表示集合,要注意是数集还是点集;(2)列举法适合表示有限集,当集合中元素个数较少时,用列举法表示集合比较方便,且使人一目了然.因此,判定集合是有限集还是无限集,选择适当的表示方法是关键.2.描述法:将集合的所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式. 规律方法:使用描述法时,应注意六点: (1)写清楚集合中的代表元素; (2)说明该集合中元素的性质; (3)不能出现未被说明的字母;(4)多层描述时,应当准确使用“且”“或”; (5)所有描述的内容都要写在花括号内; (6)用于描述的语句力求简明、确切.3.图示法(Venn 图):为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。
高中数学知识点总结第一章

高中数学 知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念 集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法 N 表示自然数集,N* 或N + 表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集B {x A A =∅=∅B A ⊆ B B ⊆B {x A A = A ∅=B A ⊇ B B ⊇A ð{x ()U A =∅ð ()U A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法()()()U U A B A B =痧?()()()U U A B A B =痧?(2)一元二次不等式的解法〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由yxo于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)a f xx a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[0)、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈, 都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在处有定义,则.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图: ①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位 0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换 01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸 ③对称变换 ()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
精品教案 1.1.1 集合的含义与表示

1.1 集合1.1.1 集合的含义与表示整体设计教学分析集合语言是现代数学的基本语言,同时也是一种抽象的数学语言.教材将集合的初步知识作为初、高中数学课程的衔接,既体现出集合在高中数学课程中举足轻重的作用,又体现出集合在数学中的奠基性地位.课本除了从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义、性质、表示方法之外,还特别注意渗透了“概括”与“类比”这两种常用的逻辑思考方法.因此,建议教学时,应引导学生从大量的实例中概括出集合的含义;多创设让学生运用集合语言进行表达和交流的情境和机会,以便学生在实际应用中逐渐熟悉自然语言、集合语言和图形语言各自的特点和表示方法,能进行相互转换并且灵活应用,充分掌握集合语言.与此同时,本小节作为高一数学教学的第一节新授课,知识体系中的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流、讨论,让学生在阅读与交流中理解概念并熟悉新符号的使用.这样,既能够培养学生自我阅读、共同探究的能力,又能提高学生主动学习、合作交流的精神.三维目标1.了解集合的含义;理解元素与集合的“属于”关系;熟记常用数集专用符号.2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3.能选择不同的形式表示具体问题中的集合.重点难点教学重点:集合的基本概念与表示方法.教学难点:选择适当的方法表示具体问题中的集合.课时安排1课时教学过程导入新课思路1.集合对我们来说可谓是“最熟悉的陌生人”.说它熟悉,是因为我们在现实生活中常常用到“集合”这个名词;比如说,军训的时候,教官是不是经常喊:“高一(4)班的同学,集合啦!”那么说它陌生,是因为我们还未从数学的角度理解集合,从数学的层面挖掘集合的内涵.那么,在数学的领域中,集合究竟是什么呢?集合又有着怎样的含义呢?就让我们通过今天这堂课的学习,一起揭开“集合”神秘的面纱.思路2.你经常会谈论你的家庭,你的班级.其实在讲到你的家庭、班级的时候,你必定在联想构成家庭、班级的成员,例如:家庭成员就是被你称为父亲、母亲、哥哥、姐姐、妹妹、弟弟……的人;班级成员就是与你在同一个教室里一起上课、一起学习的人;一些具有特定属性的人构成的群体,在数学上就是一个集合.那么,在数学中,一些对象的总体怎样才可以构成集合、集合中的元素有哪些特性?集合又有哪些表示方法呢?这就是本节课我们所要学习的内容.思路3.“同学们,在小学和初中的学习过程中,我们已经接触过一些集合的例子,比如说:有理数集合,到一个定点的距离等于定长的点的集合(圆),那么大家是否能够举出更多关于集合的例子呢?”(通过两个简单的例子,引导大家进行类比,运用发散性思维思考说出更多的关于集合的实例,然后教师予以点评.)“那么,集合的含义究竟是什么?它又该如何表示呢?这就是我们今天要研究的课题.”推进新课新知探究提出问题①中国有许多传统的佳节,那么这些传统的节日是否能构成一个集合?如果能,这个集合由什么组成?②全体自然数能否构成一个集合?如果能,这个集合由什么组成?③方程x2-3x+2=0的所有实数根能否构成一个集合?如果能,这个集合由什么组成?④你能否根据上述几个问题总结出集合的含义?讨论结果:①能.这个集合由春节、元宵节、端午节等有限个种类的节日组成,称为有限集.②能.这个集合由0,1,2,3,……等无限个元素组成,称为无限集.③能.这个集合由1,2两个数组成.④我们把研究对象统称为“元素”,把一些元素组成的总体叫做“集合”.提出问题通过以上的学习我们已经知道集合是由一些元素组成的总体,那么是否所有的元素都能构成集合呢?请看下面几个问题.①近视超过300度的同学能否构成一个集合?②“眼神很差”的同学能否构成一个集合?③比较问题①②,说明集合中的元素具有什么性质?④我们知道冬虫夏草既是一种植物,又是一种动物.那么在所有动植物构成的集合中,冬虫夏草出现的次数是一次呢还是两次?⑤组成英文单词every的字母构成的集合含有几个元素?分别是什么?⑥问题④⑤说明集合中的元素具有什么性质?⑦在玩斗地主的时候,我们都知道3,4,5,6,7是一个顺子,那比如说老师出牌的时候把这五张牌的顺序摆成了5,3,6,7,4,那么这还是一个顺子么?类比集合中的元素,一个集合中的元素是3,4,5,6,7,另外一个集合中的元素是5,3,6,7,4,这两个集合中的元素相同么?集合相同吗?这体现了集合中的元素的什么性质?讨论结果:①能.②不能.③确定性.问题②对“眼神很差”的同学没有一个确定的标准,到底怎样才算眼神差,是近视300度?400度?还是说“眼神很差”只是寓意?我们不得而知.因此通过问题①②我们了解到,对于给定的集合,它的元素必须是确定的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合中元素的确定性.④一次.⑤4个元素.e,v,r,y这四个字母.⑥互异性.一个集合中的元素是互不相同的,也就是说,集合中的元素不能重复出现.⑦是.元素相同.集合相同.体现集合中元素的无序性,即集合中的元素的排列是没有顺序的.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.提出问题①如果用A表示所有的自然数构成的集合,B表示所有的有理数构成的集合,a=1.58,那么元素a和集合A,B分别有着怎样的关系?②大家能否从问题①中总结出元素与集合的关系?③A表示“1~20内的所有质数”组成的集合,那么3__________A,4__________A.讨论结果:①a是集合B中的元素,a不是集合A中的元素.②a是集合B中的元素,就说a属于集合B,记作a∈B;a不是集合A中的元素,就说a不属于集合A,记作a∉A.因此元素与集合的关系有两种,即属于和不属于.③3∈A,4∉A.提出问题①从这堂课的开始到现在,你们注意到我用了几种方法表示集合吗?②字母表示法中有哪些专用符号?③除了自然语言法和字母表示法之外,课本还为我们提供了几种集合的表示方法?分别是什么?④列举法的含义是什么?你能否运用列举法表示一些集合?请举例!⑤能用列举法把下列集合表示出来吗?小于10的质数;不等式x-2>5的解集.⑥描述法的含义是什么?你能否运用描述法表示一些集合?请举例!⑦集合的表示方法共有几种?讨论结果:①两种,自然语言法和字母表示法.②非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.③两种,列举法与描述法.④把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.例如“地球上的四大洋”组成的集合可以用列举法表示为{太平洋,大西洋,印度洋,北冰洋},方程x2-3x+2=0的所有实数根组成的集合可以用列举法表示为{1,2}.⑤“小于10的质数”可以用列举法表示出来;“不等式x-2>5的解集”不能够用列举法表示出来,因为这个集合是一个无限集.因此,当集合是无限集或者其元素数量较多而不便于无一遗漏地列举出来的时候,如果我们再用列举法来表示集合就显得不够简洁明了.⑥用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例如,不等式x-2>5的解集可以表示为{x∈R|x>7};所有的正方形的集合可以表示为{x|x是正方形},也可写成{正方形}.⑦自然语言法、字母表示法、列举法、描述法.应用示例例1 下列所给对象不能构成集合的是__________.(1)高一数学课本中所有的难题;(2)某一班级16岁以下的学生;(3)某中学的大个子;(4)某学校身高超过1.80米的学生.活动探究:教师首先引导学生通过读题、审题,了解本题考查的基本知识点——集合中元素的确定性;然后指导学生对4个选项进行逐一判断;判断所给元素是否能构成集合,关键是看是否满足集合元素的确定性.解析:(1)不能构成集合.“难题”的概念是模糊的,不确定的,无明确的标准,对于一道数学题是否是“难题”无法客观地判断.实际上一道数学题是“难者不会,会者不难”,因而“高一数学课本中所有的难题”不能构成集合.(2)能构成集合,其中的元素是某班级16岁以下的学生.(3)因为未规定大个子的标准,所以(3)不能组成集合.(4)由于(4)中的对象具备确定性,因此,能构成集合.)(3)个元素,则实数(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.活动探究:讲解例2的过程中,可以设计如下问题引导学生:针对例2(1):①自然数中是否含有0?②小于10的自然数有哪些?③如何用列举法表示小于10的所有自然数组成的集合?针对例2(2):①解一元二次方程的方法有哪些?分别是什么?②方程x2=x的解是什么?③如何用列举法表示方程x2=x的所有实数根组成的集合?针对例2(3):①如何判断一个数是否为质数(即质数的定义是什么)?②1~20以内的质数有哪些?③如何用列举法表示由1~20以内的所有质数组成的集合?在用列举法表示集合的过程中,应让学生先明确集合中的元素,再把元素写入“{}”内,并用逗号隔开.解:(1)小于10的自然数有0,1,2,3,4,5,6,7,8,9,设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9};(2)方程x2=x的两个实根为x1=0,x2=1,设方程x2=x的所有实数根组成的集合为B,那么B={0,1};(3)1~20以内的质数有2,3,5,7,11,13,17,19,设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.点评:本题主要考查了集合表示法中的列举法,通过本题的教学可以体会利用集合表示(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.活动探究:讲解例3的过程中,可以设计如下问题引导学生:针对例3(1)——列举法①方程x2-2=0的解是什么?②如何用列举法表示方程x2-2=0的所有实数根组成的集合?针对例3(1)——描述法①描述法的定义是什么?②所求集合中元素有几个共同特征?分别是什么?③如何用描述法表示所求集合?针对例3(2)——列举法①大于10小于20的所有整数有哪些?②由大于10小于20的所有整数组成的集合用列举法如何表示?针对例3(2)——描述法①所求集合中元素有几个共同特征?分别是什么?②如何用描述法表示所求集合?解:(1)设方程x2-2=0的实数根为x,并且满足x2-2=0,因此,用描述法表示为A ={x∈R|x2-2=0};方程x2-2=0的两个实根为x1=-2,x2=2,因此,用列举法表示为A={-2,2}.(2)设大于10小于20的整数为x,它满足条件x∈Z且10<x<20,因此,用描述法表示为B={x∈Z|10<x<20};大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为{11,12,13,14,15,16,17,18,19}.点评:例2和例3是通过“问题引导”的方式,使学生逐步逼近答案的过程.在此过程中,既帮助学生理清了解答问题的基本思路,又使得列举法和描述法在实例中得到进一步的巩固.课后练习1,2.【补充练习】1.考查下列对象能否构成集合:(1)著名的数学家;(2)某校2013年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体.答案:(1)(2)(5)(6)不能组成集合,(3)(4)能组成集合.2.用适当的符号填空:(1)0__________N,5__________N,16__________N;(2)-12__________Q,π__________Q,e__________∁R Q(e是个无理数);(3)2-3+2+3=__________{x|x=a+6b,a∈Q,b∈Q}.答案:(1)∈∉∈(2)∈∉∈(3)∈3.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,求实数m的值.解:∵2∈A,∴m=2或m2-3m+2=2.若m=2,则m2-3m+2=0,不符合集合中元素的互异性,舍去.若m2-3m+2=2,求得m=0或3.m=0不合题意,舍去.∴m只能取3.4.用适当方法表示下列集合:(1)函数y=ax2+bx+c(a≠0)的图象上所有点的集合;(2)一次函数y=x+3与y=-2x+6的图象的交点组成的集合;(3)不等式x -3>2的解集;(4)自然数中不大于10的质数集.答案:(1)描述法:{(x ,y )|y =ax 2+bx +c ,x ∈R ,a ≠0}.(2)描述法:⎩⎨⎧ (x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =x +3y =-2x +6=⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x =1y =4. 列举法:{(1,4)}.(3)描述法:{x |x >5}(4)列举法:{2,3,5,7}.拓展提升问题1:设集合P ={x -y ,x +y ,xy },Q ={x 2+y 2,x 2-y 2,0},若P =Q ,求x ,y 的值及集合P ,Q .活动探究:首先,应让学生思考两个数集相等的条件——集合中的元素分别对应相等;然后,再引导学生讨论:本题中集合P ,Q 对应相等时,其元素可能出现的几种情况,并根据讨论的结果进行计算;最后,应当指导学生自主探究,应用集合中元素的性质检验所求结果是否符合要求.解:∵P =Q 且0∈Q ,∴0∈P .若x +y =0或x -y =0,则x 2-y 2=0,从而Q ={x 2+y 2,0,0},与集合中元素的互异性矛盾,∴x +y ≠0且x -y ≠0;若xy =0,则x =0或y =0.当y =0时,P ={x ,x,0},与集合中元素的互异性矛盾,∴y ≠0;当x =0时,P ={-y ,y,0},Q ={y 2,-y 2,0},由P =Q 得⎩⎪⎨⎪⎧ -y =y 2,y =-y 2,y ≠0, ① 或⎩⎪⎨⎪⎧ -y =-y 2,y =y 2,y ≠0.②由①得y =-1,由②得y =1,∴⎩⎪⎨⎪⎧ x =0,y =-1或⎩⎪⎨⎪⎧x =0,y =1, 此时P =Q ={1,-1,0}.点评:本题综合性地考查了两数集相等的条件、集合中元素的性质以及学生的运算能力和分类讨论能力.问题2:已知集合A ={x |ax 2-3x +2=0},若A 中的元素至多只有一个,求a 的取值范围.活动探究:讨论关于x 的方程ax 2-3x +2=0实数根的情况,从中确定a 的取值范围,依题意,方程有一个实数根或两个相等的实数根或无实数根.解:(1)a =0时,原方程为-3x +2=0,x =23,符合题意. (2)a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98. ∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根. 综合(1)(2),知a =0或a ≥98. 点评:“a =0”这种情况最容易被忽视,只有在“a ≠0”的条件下,方程ax 2-3x +2=0才是一元二次方程,才能用判别式Δ解决问题.问题3:设S ={x |x =m +2n ,m ,n ∈Z }.(1)若a ∈Z ,则a 是否是集合S 中的元素?(2)对S中的任意两个x1,x2,则x1+x2,x1·x2是否属于S?活动探究:针对问题(1)——首先引导学生仔细观察集合S中元素的共同特征与构成方式;然后,再引导学生思考题中所给的元素a能否表示成m+2n的形式;如果能,m和n 分别是多少,如果不能,请说明理由;最后小结,判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.针对问题(2)——首先引导学生将x1,x2分别表示出来,再引导大家根据正确的表示结果,推断x1+x2,x1·x2是否是集合S中的元素.解:(1)a是集合S中的元素,a=a+2×0∈S.(2)不妨设x1=m+2n,x2=p+2q,m,n,p,q∈Z.则x1+x2=(m+2n)+(p+2q)=(m+p)+2(n+q),m,n,p,q∈Z.∴x1+x2∈S;x1·x2=(m+2n)·(p+2q)=(mp+2nq)+2(mq+np),m,n,p,q∈Z.∴x1·x2∈S.综上,x1+x2,x1·x2都属于S.点评:本题考查集合的描述法以及元素与集合间的关系.课堂小结本节学习了:(1)集合的含义;(2)集合中元素的性质;(3)元素与集合的关系;(4)集合的表示方法.课后作业习题1.1A组3,4.设计感想本节教学设计是以数学课程标准的要求为指导,结合生活中的一些实例,重视引导学生积极思考,主动参与到教学中,体现了学生的主体地位.同时结合高考的要求适当拓展了教材,使学生的发散性思维得到拓展,最大限度地挖掘了学生的学习潜力,真正做到了对教材的“活学活用”.备课资料集合论的诞生集合论是德国著名数学家康托尔于19世纪末创立的.17世纪,数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.19世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.康托尔把无穷集这一词汇引入数学.对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子.“我们把全体自然数组成的集合简称作自然数集,用字母N来表示.”学过集合的所有人应该对这句话不会感到陌生.但在接受这句话时我们根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作.在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释.无限永远处在构造中,永远完成不了,是潜在的,而不是实在的.这种关于无穷的观念在数学上被称为潜无限.18世纪数学王子高斯就持这种观点.由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是不足为怪的.然而康托尔并未就此止步,他以前所未有的方式,继续正面探讨无穷.他提出用一一对应准则来比较无穷集元素的个数.他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势.由于一个无穷集可以与它的真子集建立一一对应关系——也就是说无穷集可以与它的真子集等势,即具有相同的个数.这与传统观念“全体大于部分”相矛盾.而康托尔认为这恰恰是无穷集的特征.在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集.又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集.后来当他又证明了实数集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集.但出乎意料的是,他在1873年证明了实数集的势大于自然数集.有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”.然而集合论前后经历二十余年,最终获得了世界公认.在1900年第二次国际数学家大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等.而这一切都是与康托尔的开拓性工作分不开的.因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结.“它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献.”。
高中数学集合知识点总结
高中数学必修1知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①列举法:把集合中的元素一一列举出来,写在大括号内表示集合.②描述法:{x |x 具有的性质},其中x 为集合的代表元素. ③图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅2()UA A U=例1、判断下列关系是否正确(1){}{}a a⊆;(2){}{}1,2,33,2,1=;(3){}0∅⊄;(4){}00∈;(5){}0∅∈;(6){}0∅=;(7){}0,1,2∅⊄;(8){}{}15x x⊄≤例2、已知集合M满足{}{}1,21,2,3,4,5M⊆⊆,则这样的集合M有多少个?例3、设{}{}2230,10A x x xB x ax=--==-=,若B A⊆,求实数a。
例4、已知{}{}22,,,2,2,M a b N a b==,且M N=,求,a b的值。
【志鸿全优设计】高中数学 第一章1.1.1 集合的含义与表示讲解与例题 新人教A版必修1
1.1.1 集合的含义与表示 1.集合的含义 (1)元素与集合的定义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素. 示例:小于5的自然数组成集合,可以记为B,它的元素是0,1,2,3,4;方程x2-x=0的实数解组成集合,可以记为A,它的元素是0,1. 谈重点 对集合的理解 (1)集合的概念是一种描述性说明,因为集合是数学中最原始的、不加定义的概念,这与我们初中学过的点、直线等概念一样,都是用描述性语言表述的. (2)注意组成集合的对象的广泛性,凡是看得见的、摸得着的、想得到的任何事物都可以作为组成集合的对象. (3)集合是一个整体,已暗含“所有”“全部”“全体”的含义.因此一些对象一旦组成了集合,那么这个集合就是这些对象的全体,而非个别对象. (2)集合中元素的特征 元素的特征 理解
确定性 给定的集合,它的元素必须是确定的.也就是说,给定一个集合,那么任何一个元素是否在这个集合中就确定了,我们把这个性质称为集合元素的确定性.
互异性 一个给定集合中的元素是互不相同的.也就是说,集合中的元素是不能重复出现的,我们把这个性质称为集合元素的互异性.
无序性 集合中的元素是没有顺序的.也就是说,集合中的元素没有前后之分,我们把这个性质称为集合元素的无序性. 释疑点 判断一组对象能否构成一个集合的方法 判断一组对象能否构成一个集合,其关键是看该组对象是否满足确定性.如果该组对象满足确定性,就可以组成集合;否则,就不能组成集合. 【例1-1】下列所给的对象能构成集合的是__________. (1)所有正三角形; (2)新课标人教A版数学必修1课本上的所有难题; (3)比较接近1的正整数全体; (4)某校高一年级的16岁以下的学生; (5)平面直角坐标系内到原点的距离等于1的点的集合; (6)参加伦敦奥运会的年轻运动员; (7)a,b,a,c. 解析:
高中数学必修一必修二知识点总结
高中数学 必修1知识点 第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅). (6)子集、真子集、集合相等名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n −个真子集,有21n −个非空子集,它有22n −非空真子集.(8)交集、并集、补集 名称记号意义性质示意图交集A B{|,x x A ∈且}x B ∈ (1)AA A = (2)A ∅=∅ (3)AB A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ AB B ⊇BA补集U A{|,}x x U x A ∈∉且1()U A A =∅ 2()U AA U =逻辑语言1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
人教版高中必修一 111 《集合的含义与表示》 课件
新知探索
例题讲解
例1、用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程x²=x的所有实数根组成的集合; (3 ) 小于100的所有奇数.
注意:由于元素具有无序性, 集合A还有其它列举方法哦,
动手试一试吧!
【解析】(1)设小于10的所有自然数组成的集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}.
为__-_1_. (3)若A= {x²+x-6=0},则3___∉_____A.
巩固练习
3、判断下列说法是否正确:
(1) {x2,3x+2,5x3-x}即{5x3-x,x2,3x+2} .
(2) 若4x=3,则 x N. (3) 若x Q,则 x R .
(4)若X∈N,则x∈N+.
( √) (√ ) (×) (× )
巩固练习
4、已知集合A={x | ax2+4x+4=0,x∈R,a∈R}只有一个元素, 求a的值和这个元素.
解析:当a=0时,x=-1; 当a≠ 0 时,由于集合只有一个元素,所以 =0,则x=-2.
拓展应用
5、设A是由满足不等式x<6的自然数组成的集合,a∈A且3a∈A,求a的值.
解析:因为a∈A且3a∈A, a<6,
合是不么定义呢的?那概你么念能,,举集数一合学些的家有很含难关义回集是答合什。 一的天例,子他吗看到?牧民正在向羊圈里赶羊,
等到牧民把羊全赶进羊圈并关好门,数学家 突然灵机一动,兴奋地告诉牧民:“这就是 集合”。
新知探索
探究1 集合的含义
观察下面例子,它们有什么共同特征? (1)1~20以内的所有偶数; (2)我国古代四大发明 (3)所有的长方形; (4)到直线的距离等于定长d的所有的点; (5)方程x²+3x-2=0的所有实数根; (6)我国从2001~2018年的15年内所发射的所有卫星。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ruize 第1课时 集合的含义
知识点一 集合的含义 1.元素:一般地,我们把研究对象统称为元素. 2.集合:把一些元素组成的总体叫做集合. 3.元素与集合的符号表示
表示 元素:通常用小写拉丁字母a,b,c,…表示.集合:通常用大写拉丁字母A,B,C,…表示. 1.集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么.集合中的元素可以是点,也可以是一些人或一些物. 知识点二 集合中元素的特征与集合相等 1.集合中元素的特征 特征 含义
确定性
集合中的元素是确定的,即给定一个集合,任何元素在不在
这个集合里是确定的.它是判断一组对象是否构成集合的标准 互异性 给定一个集合,其中任何两个元素都是不同的,也就是说,在同一个集合中,同一个元素不能重复出现 无序性 集合中的元素无先后顺序之分
2.集合相等 只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.例如,集合{-1,1}与集合 {1,-1}是相等的. 知识点三 元素与集合的关系
关系 语言描述 记法 示例 a属于集合A a是集合 A中的元素 a∈A 若A表示由“世界四大
洋”组成的集合,则太平洋∈A,长江∉A a不属于集合A a不是集合
A中的元素 a∉A
2.对元素和集合之间关系的两点说明 ruize (1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果. (2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.
知识点四 常用数集及符号表示 常用数集的字母表示 常用数集 简称 记法 全体非负整数的集合 非负整数集(或自然数集) N
所有正整数的集合 正整数集 N*或N+
全体整数的集合 整数集 Z
全体有理数的集合 有理数集 Q
全体实数的集合 实数集 R
3.准确认识集合的含义 (1)集合的概念是一种描述性说明,因为集合是数学中最原始的、不加定义的概念,这与我们初中学过的点、直线等概念一样,都是用描述性语言表述的. (2)集合含义中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或一些抽象的符号等,都可以看作“对象”,即集合中的元素.
[小试身手] 1.判断(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( ) (2)新课标数学人教A版必修1课本上的所有难题能组成集合.( ) (3)一个集合中可以找到两个相同的元素.( ) -=答案=-:(1)√ (2)× (3)× 2.下列各项中,不能组成集合的是( ) A.所有的正数 B.所有的老人 C.不等于0的数 D.我国古代四大发明 ruize 解析:“老人”无明确的标准,对于某个人是否“老”无法客观地判断,因此“所有的老人”不能构成集合,故选B. -=答案=-:B 3.已知集合A由x<1的数构成,则有( ) A.3∈A B.1∈A C.0∈A D.-1∉A 解析:很明显3,1不满足不等式,而0,-1满足不等式. -=答案=-:C 4.下列三个命题:①集合N中最小的数是1;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2.其中正确命题的个数是( ) A.0 B.1 C.2 D.3
解析:根据自然数的特点,显然①③不正确.②中若a=32,则
-a∉N且a∉N,显然②不正确. -=答案=-:A
类型一 集合的概念 例1 下列对象能构成集合的是( ) A.高一年级全体较胖的学生 B.sin 30°,sin 45°,cos 60°,1 C.全体很大的自然数 D.平面内到△ABC三个顶点距离相等的所有点 【解析】 由于较胖与很大没有一个确定的标准,因此A,C不能构成集合;B中由于sin 30°=cos 60°不满足互异性;D满足集合的三要素,因此选D. 【-=答案=-】 D 构成集合的元素具有确定性.
方法归纳, 判断一组对象组成集合的依据 判断给定的对象能不能构成集合,关键在于能否找到一个明确的
标准,对于任何一个对象,都能确定它是不是给定集合的元素.
跟踪训练1 下列各项中,不可以组成集合的是( ) ruize A.所有的负数 B.等于2的数 C.接近于0的数 D.不等于0的偶数 解析:由于接近于0的数没有一个确定的标准,因此C中的对象不能构成集合.故选C. -=答案=-:C
C中元素不确定. 类型二 元素与集合的关系 例2 (1)下列关系中,正确的有( )
①12∈R;②2∉Q;③|-3|∈N;④|-3|∈Q. A.1个 B.2个 C.3个 D.4个 (2)满足“a∈A且4-a∈A,a∈N且4-a∈N”,有且只有2个元素的集合A的个数是( ) A.0 B.1 C.2 D.3
【解析】 (1)12是实数,2是无理数,|-3|=3是非负整数,|-
3|=3是无理数.因此,①②③正确,④错误. (2)∵a∈A且4-a∈A,a∈N且4-a∈N,若a=0,则4-a=4,此时A={0,4}满足要求;若a=1,则4-a=3,此时A={1,3}满足要求;若a=2,则4-a=2,此时A={2}不满足要求.故有且只有2个元素的集合A有2个,故选C. 【-=答案=-】 (1)C (2)C a分类处理: ①a=0,a=1,a=2; ②a=3,a=4还讨论吗?
方法归纳 判断元素和集合关系的两种方法 (1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否给出即可.此时应首先明确集合是由哪些元素构成的. (2)推理法:对于某些不便直接表示的集合,判断元素与集合的ruize 关系时,只要判断该元素是否满足集合中元素所具有的特征即可.此时应首先明确已知集合的元素具有什么属性,即该集合中元素要符合哪种表达式或满足哪些条件.,
跟踪训练2 下列说法正确的是( ) A.0∉N B.2∈Q C.π∉R D.4∈Z 解析:A.N为自然数集,0是自然数,故本选项错误;B.2是无理数,Q是有理数集合,2∉Q,故本选项错误;C.π是实数,即π∈R,故本选项错误;D.4=2,2是正整数,则4∈Z,故本选项正确.故选D. -=答案=-:D
N自然数集;Z整数集;Q有理数集;R实数集. 类型三 集合元素的特性 例3 已知集合A含有两个元素a-3和2a-1,若-3∈A,试求实数a的值. 【解析】 因为-3∈A,A={a-3,2a-1},所以a-3=-3或2a-1=-3. 若a-3=-3,则a=0,此时集合A={-3,-1},符合题意. 若2a-1=-3,则a=-1,此时集合A={-4,-3},符合题意. 综上可知,满足题意的实数a的值为0或-1.
首先根据-3∈A,求a的所有可能取值,然后根据元素的互异性逐个检验,最后确定实数a的值.
方法归纳 由集合中元素的特性求解字母取值(范围)的步骤 ruize 跟踪训练3 (1)若集合M中的三个元素是△ABC的三边长,则△ABC一定不是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 (2)已知集合A含有两个元素a和a2,若1∈A,则实数a的值为________. 解析:(1)由集合中元素的互异性可知,集合中的任何两个元素都不相同,故选D.
(2)若1∈A,则a=1或a2=1,即a=±1. 当a=1时,集合A有重复元素.所以a≠1;当a=-1时,集合A含有两个元素1,-1,符合元素的互异性,所以a=-1. -=答案=-:(1)D (2)-1
由元素互异性知边不能相等.
[基础巩固](25分钟,60分) 一、选择题(每小题5分,共25分) 1.下列能构成集合的是( ) A.中央电视台著名节目主持人 B.我市跑得快的汽车 C.上海市所有的中学生 D.香港的高楼 解析:A,B,D中研究的对象不确定,因此不能构成集合. -=答案=-:C 2.由形如x=3k+1,k∈Z的数组成集合A,则下列表示正确的是( ) A.-1∈A B.-11∈A ruize C.15∈A D.32∈A 解析:-11=3×(-4)+1,故选B. -=答案=-:B 3.已知集合A中元素x满足-5≤x≤5,且x∈N*,则必有( ) A.-1∈A B.0∈A C.3∈A D.1∈A 解析:x∈N*,且-5≤x≤5,所以x=1,2.所以1∈A.
-=答案=-:D 4.设A是方程x2-ax-5=0的解集,且-5∈A,则实数a的值为( ) A.-4 B.4 C.1 D.-1 解析:因为-5∈A,所以(-5)2-a×(-5)-5=0,所以a=-4.
故选A. -=答案=-:A 5.若以集合A的四个元素a、b、c、d为边长构成一个四边形,则这个四边形可能是( ) A.梯形 B.平行四边形 C.菱形 D.矩形 解析:由集合中元素互异性可知,a,b,c,d互不相等,从而四边形中没有边长相等的边. -=答案=-:A 二、填空题(每小题5分,共15分) 6.判断下列说法正确的是________. (1)某个单位里的年轻人组成一个集合;
(2)1,32,64,-12,12这些数组成的集合含有五个元素; (3)由a,b,c组成的集合与由b,a,c组成的集合是同一个集合; (4)方程(x-3)(x-2)2=0的解组成的集合有3个元素. 解析:(1)不正确.因为“年轻人”没有明确的标准,不具有确定性,不能组成集合.
(2)不正确.根据互异性知,这个集合是由三个元素1,32,12组成
的.