lingo求解多目标规划__例题

合集下载

用lingo求解数学规划模型实例PPT课件

用lingo求解数学规划模型实例PPT课件

.
10
Objective value:
664.0000
V1 V2 V3 V4 V5 V6 V7 V8 W1 0 19 0 0 41 0 0 0 W2 1 0 0 32 0 0 0 0 W3 0 11 0 0 0 0 40 0 W4 0 0 0 0 0 5 0 38 W5 34 7 0 0 0 0 0 0 W6 0 0 22 0 0 27 3 0
销地总销量和:280
为产大于销的模型。
68
目标函数: min
cij xij
i1 j1
6
运往Bj的总运量: xij b j
i1
8
从Aj运出的总量: x ij a i
j1
对变量xij的限制: xij 0
.
9
68
min
cij xij
i1 j1
6
s.t: xij b j
i1
8
x ij a i
.
3
MON 开始上班的人数为 8.0000000 TUE 开始上班的人数为 2.0000000 WED 开始上班的人数为 0.0000000 THU 开始上班的人数为 6.0000000 FRI 开始上班的人数为 3.0000000 SAT 开始上班的人数为 3.0000000 SUN 开始上班的人数为 0.0000000
.
14
EQ1 EQ2 EQ3 EQ4 EQ5 EQ6 EQ7 EQ8 EQ9 AR1 0 0 0 0 0 0 0 0 1 AR2 0 0 0 1 0 0 0 0 0 AR3 0 0 0 0 0 1 0 0 0 AR4 0 0 0 0 1 0 0 0 0 AR5 1 0 0 0 0 0 0 0 0 AR6 0 0 0 0 0 0 1 0 0 AR7 0 0 0 0 0 0 0 1 0 AR8 0 0 1 0 0 0 0 0 0 AR9 0 1 0 0 0 0 0 0 0

用Lingo求解整数(0-1)规划模型

用Lingo求解整数(0-1)规划模型
要求:
1、建立数学模型, 2、用lingo循环语句编写程序.
上机作业题 人员安排问题
某城市的巡逻大队要求每天的各个时间段都有一
定数量的警员值班, 以便随时处理突发事件, 每人连续 工作6h, 中间不休息. 如表所示是一天8个班次所需值 班警员的人数情况统计:
班次
时间段
人数 班次
时间段
人数
1
6:00~9:00
例 4 求函数 z x 22 y 22 的最小值.
例 4 求函数 z x 22 y 22 的最小值.
解: 编写Lingo 程序如下:
min=(x+2)^2+(y-2)^2; @free(x); 求得结果: x=-2, y=2
二、Lingo 循环编程语句
(1) 集合的定义 包括如下参数: 1) 集合的名称.
12,8 3,0; enddata
!数据赋值;
max=@sum(bliang(i):a(i)*x(i)); !目标函数;
@for(yshu(j):@sum(bliang(i):x(i)*c(j,i))<=b(j));
!约束条件;
例6:人员选拔问题
队员号码 身高 / m 位置 队员号码 身高 / m 位置
例 2 用Lingo软件求解整数规划问题
min z 2 x1 5 x2 3 x3
4 x1 x2 x3 0
2
x1
4 x2
2 x3
2
x1
x2
x3
2
xi 0 且取整数, i 1, 2, 3
Lingo 程序:
min=2*x1+5*x2+3*x3; -4*x1-x2+x3>=0; -2*x1+4*x2-2*x3>=2; x1-x2+x3>=2; @gin(x1);@gin(x2);@gin(x3);

实验三运用Lindo与Lingo解规划问题

实验三运用Lindo与Lingo解规划问题

运用Lindo 与Lingo 解规划问题【实验目的】1.了解Lindo 与Lingo 的基本使用方法。

2.熟悉掌握运用Lindo 与Lingo 求解规划问题。

【实验内容】(一) 运用Lindo 求解规划问题Lindo 示例1:线性规划问题1212121127264..5012848031000,0Max z x x s t x x x x x x x =++≤+≤≤≥≥在Lindo 环境下,打开一个新文件,直接输入: max 72x1+64x2 st2) x1+x2<50 3) 12x1+8x2<480 4) 3x1<100 end说明: ①第1行是目标函数,2),3),4)是为了标示各约束条件,便于从输出结果中查找相应信息.②每行行尾不用标点符号,程序最后以"end"结束. ③Lindo 中已规定所有决策变量均为非负.④乘号省略,式中不能有括号,右端不能有数学符号. ⑤符号,≤≥与<,>等效. Lindo 示例2:整数规划问题123123123123123234..1.535600280250400600000,0,0,,Max z x x x s t x x x x x x x x x x x x =++++≤++≤≥≥≥均为整数对应的程序是:max 2x1+3x2+4x3 st1.5x1+3x2+5x3<600 280x1+250x2+400x3<60000 end gin 3说明: 最后一行 "gin 3"是说明"3个变量均为整数". Lindo 示例3:0-1变量规划问题123123123111222333123123234..1.53560028025040060000801000801000801000,,,,Max z x x x s t x x x x x x y x y y x y y x y x x x y y y =++++≤++≤≤≤≤≤≤≤均为整数均为0-1变量对应的程序是:max 2x1+3x2+4x3st1.5x1+3x2+5x3<600 280x1+250x2+400x3<60000 x1-1000y1<0 x1-80y1>0 x2-1000y2<0 x2-80y2>0 x3-1000y3<0 x3-80y3>0 end gin 3 int y1 int y2 int y3说明: 最后3行是说明"123,,y y y 均为0-1变量". (二) 运用Lingo 求解规划问题Lingo 示例:非线性规划问题11211222123111221221121122212312231234.8() 5.6()(1086)..5001000015000.50.500.40.60(500)0(500)00,,500Max z x x x x x x x s t x x x x x x x x x x x x x x x x x x x x x =+++-+++≤++≤≤≤-≥-≥=++-=-=≤≤在Lingo 环境下,打开一个新文件,直接输入: Model:max=4.8*x11+4.8*x21+5.6*x12+5.6*x22-10*x1-8*x2-6*x3; x11+x12<x+500; x21+x22<1000; 0.5*x11-0.5*x21>0; 0.4*x12-0.6*x22>0; x=x1+x2+x3; (x1-500)*x2=0; (x2-500)*x3=0; x1<500; x2<500; x3<500; end说明: ①程序以"Model:"开始,每行最后加";",并以"end "结束.②乘号*不能省略,符号,≤≥与<,>等效. ③式中可有括号,右端可有数学符号. ④Lingo 中已规定所有决策变量均为非负.作业1: 用Lingo 或Lindo 软件求6.4中提出的线性规划模型. 作业2:用Lingo 软件求非线性规划模型123123123123112233234..1.53560028025040060000,,(80)0(80)0(80)0.Max z x x x s t x x x x x x x x x x x x x x x =++++≤++≤≥-≥-≥-≥0作业3:分别用Lindo 或Lingo 软件对下题进行求解某广告公司想在电视、广播上做宣传广告,其目的是争(1)受广告影响的女顾客数超过200万;(2)电视广告的费用不超过45万元;(3)电视广告白天至少播出4次,最佳时段至少播出2次;(4)通过网络媒体、杂志做广告各自要重复5到8次。

lingo实现 建立选课策略多目标模型

lingo实现 建立选课策略多目标模型

数学模型实验—实验报告9一、实验项目:选课策略模型建立和求解二、实验目的和要求a.根据题目要求建立优化模型b.通过Lingo软件求解模型三、实验内容1.根据教材4.4节内容建立选课策略多目标模型。

目标一:课程数最少;目标二:学分最多,1)课程数最少前提下,学分最多模型.即在选修6门课的条件下使得总学分尽可能的多,这样应在原规划问题中增加约束条件x1+x2+x3+x4+x5+x6+x7+x8+x9=6;2)引入权重将两目标转化为单目标模型一般的,将权重记为λ1,λ2,且令λ1+ λ2=1, 0≤λ1,λ2≤1,则0—1规划模型的新目标为 min Y= λ1Z-λ2W2. 编写lingo程序求解:1)以课程数最少为单目标的优化模型(注意xi为0-1变量)min x1+x2+x3+x4+x5+x6+x7+x8+x9x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@BIN(X1);@BIN(X2);@BIN(X3);@BIN(X4);@BIN(X5);@BIN(X6);@BIN(X7);@BIN(X8);@BIN(X9);运行结果如下:Global optimal solution found.Objective value: 6.000000Objective bound: 6.000000Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 1.000000X2 1.000000 1.000000X3 1.000000 1.000000X4 0.000000 1.000000X5 0.000000 1.000000X6 1.000000 1.000000X7 1.000000 1.000000X8 0.000000 1.000000X9 1.000000 1.000000Row Slack or Surplus Dual Price1 6.000000 -1.0000002 1.000000 0.0000003 0.000000 0.0000004 1.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 2.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.0000002)求解以上方法建立的多目标模型,并调整权重值,观察模型结果的变化。

LINGO--目标规划

LINGO--目标规划
2011年 2011年8月28日9时38分 28日 38分
2.对应于第二优先等级, d1+= 2.对应于第二优先等级,将d1+=0作为约束 对应于第二优先等级 条件,建立线性规划问题: 条件,建立线性规划问题: min z = d 2−
10 x1 + 15 x 2 + d 1− − d 1+ = 40 x1 + x 2 + d 2− − d 2+ = 10 s.t . + d1 = 0 x 1 , x 2 , d − , d + ≥ 0 , j = 1, 2 j j
min=d2_; 10*x1+15*x2+d1_-d1=40; x1+x2+d2_-d2=10; d1=0;
2011年 2011年8月28日9时38分 28日 38分
运行结果
Global optimal solution found. Objective value: Total solver iterations: Variable Value D2_ 6.000000 X1 4.000000 X2 0.000000 D1_ 0.000000 D1 0.000000 D2 0.000000
min z = d
− 3 − 1 + 1
10 x1 + 15 x2 + d − d = 40 − + d d x1 + x2 + − 2 − + 2 = 10 x2 + d 3 − d 3 = 7 s.t . + − d1 = 0, d 2 = 6 − + x1 , x2 , d j , d j ≥ 0, j = 1, 2, 3

实验八 目标规划求解

实验八 目标规划求解
有三个目标分别赋于 p1 , p 2 , p 3 优先因子,则
min z p 1 d 1 p 2 ( d 2 d 2 ) p 3 d 3 2 x 1 x 2 11 x1 x 2 d 1 d 1 0 x 1 2 x 2 d 3 d 3 10 8 x 1 10 x 2 d 3 d 3 62 x , x , d , d 0 , i 1, 2 , 3 i 1 2 i
以上模型的LINGO程序为:
• • • • • Min=100*d1_+10*(d2+d2_)+d3_; 2*x1+3*x2<=24; -x1+x2+d1_-d1=0; 3*x1+2*x2+d2_-d2=26; 4*x1+3*x2+d3_-d3=30;
如果决策变量是整数,则程序为:
• • • • • • Min=100*d1_+10*(d2+d2_)+d3_; 2*x1+3*x2<=24; -x1+x2+d1_-d1=0; 3*x1+2*x2+d2_-d2=26; 4*x1+3*x2+d3_-d3=30; @gin(x1);@gin(x2);
目标规划
• 实验内容:
• 目标规划的模型建立 • 目标规划的LINGO解法。
目标函数的一般形式为 min z f d , d ,据不同情 况有三种具体形式: min z f d d (1).要求恰好达到目标值: min z f d (2).要求不超过目标值: (3).要求不少于目标值: min z f d

运用Lingo进行线性规划求解(实例)

运用Lingo进行线性规划求解(实例)
!注:集表达式:名称/成员/:属性 名称(初始集):属性
♂返回
定 义 数 据
data:!定义数据 c=3 5 4; b=1500 800 2000; a=2 3 0 0 2 4 3 2 5; Enddata
!注:数据的大小与集合定义中一致, 分量中间用空格或逗号分开,数据 结束后用分号;
♂返回
调 用 函 数
♂返回
结 果
Global optimal solution found at iteration: 3 Objective value: 2675.000 Variable Value Reduced Cost C( 1) 3.000000 0.000000 C( 2) 5.000000 0.000000 C( 3) 4.000000 0.000000 X( 1) 375.0000 0.000000 X( 2) 250.0000 0.000000 X( 3) 75.00000 0.000000
LinDo/LinGo软件
LinDo
输入模型 求解 点击求解按钮 结果

即可
♂返回
输 入 模 型
!注释内容,可用中文 !目标函数:最大-max,最小-min,大小写不分 max 3 x1+5 x2+4 x3 !约束,以subject to开始 subject to 2 x1+3 x2<=1500 2 x2+4 x3<=800 3 x1+2 x2 +5 x3<=2000 end
注意与LinDo的区别
目标函数中加ຫໍສະໝຸດ 号变量与系数之间用“*” Model:-end可省略


♂返回
LinGo 模 式

Lingo目标规划模型

Lingo目标规划模型

一样。由此可以得到相应的目标
规划模型。
第14页/共56页
目标规划的一般模型
目标规划模型的一般数学表达式为:
q
l
min z
Pk
(wkj
d
j
wkjd
j
);
k 1
j 1
n
s. t.
aij x j (, )bi , i 1,2,, m,
j 1
n
cij x j
d
i
d
i
gi ,i
1,2,, l,
之间的差异,令
d
d
---- 超出目标的差值,称为正偏差变d量 ---- 未达到目标的差值,称为负偏差变量
其中
d

d至 少有一个为0
约定如下:
当实际值超过目标值时,有 d 0, d 0;
当实际值未达到目标值时,有 当实际值与目标值一致时,有
d 0, d 0; d 0, d 0.
第16页/共56页
例8.4 用算法8.1求解例8. 3
解 因为每个单目标问题都是一个线性规划问题, 因此可以采用LINDO软件进行求解。按照算法8.1和 例8.3目标规划模型编写单个的线性规划求解程序。 求第一级目标企业利润最大,列出LINDO程序。 程序名:exam0804a.ltx
MIN DMINUS1
力求使利润指标不低于1500元 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2 设备A为贵重设备,严格禁止超时使用 设备C可以适当加班,但要控制;设备B既要求充分利用,又尽可 能不加班,在重要性上,设备B是设备C的3倍
从上述问题可以看出,仅用线性规划方法是不够的,需要 借助于目标规划的方法进行建模求解
j 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二:目标规划一、实验目的目标规划是由线性规划发展演变而来的,线性规划考虑的是只有一个目标函数的问题,而实际问题中往往需要考虑多个目标函数,这些目标不仅有主次关系,而且有的还相互矛盾。

这些问题用线性规划求解就比较困难,因而提出了目标规划。

熟悉目标规划模型的建立,求解过程及结果分析。

二、目标规划的一般模型设)...2,1(n j x j =是目标规划的决策变量,共有m 个约束是国刚性约束,可能是等式约束,也可能是不等式约束。

设有l 个柔性目标约束,其目标规划约束的偏差是),...,2,1(,l i d d i i =-+。

设有q 个优先级别,分别为q p p p ,...,21。

在同一个优先级k p 中,有不同的权重,分别记为),...,2,1(,l j w w kj kj =-+。

因此目标规划模型的一般数学表达式为:min ∑∑=++--=+=l j j kj j kj q k k d w d w p z 11);(s.t. ,,...2,1,),(1m i b x an j i j ij =≥=≤∑= .,...2,1,0,,,...,2,1,,,...2,1,1l i d d n x o x l i g d d x c i i j i nj i i j ij =≥=≥==-++-=+-∑ 三、实验设备及分组实验在计算机中心机房进行,使用微型电子计算机,每人一机(一组)。

四、实验容及步骤1、打开LINGO ,并利用系统菜单和向导在E 盘创建一个项目。

目录和项目名推荐使用学生自己的学号。

2、以此题为例,建立数学模型,并用说明语句进行说明,增强程序的可读性。

例2.1:某工厂生产Ⅰ、Ⅱ两种产品,需要用到A ,B ,C 三种设备,已知有关数据见下表。

企业的经营目标不仅仅是利润,还需要考虑多个方面:(1) 力求使利润不低于1500元;(2) 考虑到市场需求,Ⅰ、Ⅱ两种产品的产量比应尽量保持1:2;(3) 设备A 为贵重设备,严格禁止超时使用;(4) 设备C 可以适当加班,但要控制;设备B 即要求充分利用,又尽可能不加班。

在重要性上,设备C 是设备B 的3倍。

此题中只有设备A 是刚性约束,其余都是柔性约束。

首先,最重要的指标是企业的利润,将它的优先级列为第一级;其次是Ⅰ、Ⅱ两种产品的产量保持1:2的比例,列为第二级;再次,设备B 、C 的工作时间要有所控制,列为第三级。

在第三级中,设备B 的重要性是设备C 的3倍,因此它们的权重不一样,设备B 的系数是设备C 的3倍。

该计划问题可用数学模型表示为:目标函数 min )33()(433322211++-+--+++++=d d d p d d p d p z 满足约束条件 2122x x + 12≤15003002001121=-+++-d d x x022221=-+-+-d d x x14x 1633=-++-d d 155442=-++-d d x3,2,1,0,,,21=≥+-i d d x x i iLINGO程序为:model:sets:!集合定义部分(从“sets:”开始,到“endsets”结束):定义集合变量及其元素(含义类似数组的下标)和属性(含义类似于数组)。

level/1..3/:p,z,goal;!level说明的是目标规划的优先级,有三个变量p,z,和goal。

其中p表示优先级,goal表示相应优先级时的最优目标值。

!“1 ..3”的意思是从1到3的所有整数。

!基本集合的定义格式为:setname[/member_ list/][:attribute_list];其中setname为定义的集合名,member_list为元素列表,attribute_list为属性列表。

在“[]”中的容,表示是可选的项,即该项可以有也可以没有。

variable/1..2/:x;!x为决策变量向量。

h_con_num/1..1/:b;!在目标规划中,约束有两类。

一类是对资源有严格限制的,同线性规划的处理相同,用严格的等式或者不等式约束来处理,称此约束为刚性约束(hard constraint)。

b表示的是刚性约束的资源向量。

s_con_num/1..4/:g,dplus,dminus;!另一类约束是可以不严格限制的,连同原线性规划的目标,构成柔性约束(soft constraint)。

g表示的是柔性约束的资源向量,dplus,dminus是偏差变量。

在目标规划中,用偏差变量(deviational variables)来表示实际值与目标值之间的差异,dplus为超出目标的差值,称为正偏差变量,dminus为未达到目标的差值,称为负偏差变量。

h_cons(h_con_num,variable):A;!刚性约束的价值向量。

s_cons(s_con_num,variable):c;!柔性约束的价值向量。

obj(level,s_con_num):wplus,wminus;!柔性约束在不同优先级下的权重。

endsetsdata:!数据输入部分(从“data:”开始,到“enddata”结束):作用在于对集合的属性(数组)输入必要的常数数据。

p=? ? ?;!常数列表中的数据之间可以用“,”或者“空格”或者“回车”分开。

如果想在运行时才对参数赋值,可以在数据段使用输入语句,但这仅用于对单个变量赋值,而不能用于属性变量(数值)。

输入语句格式为“变量名=?;”。

goal=? ? 0;b=12;g=1500 0 16 15;a=2 2;c=200 300 2 -1 4 0 0 5;!LINGO中的数据是按列赋值的,而不是按行赋值的。

wplus=0 0 0 00 1 0 00 0 3 1;wminus=1 0 0 00 1 0 00 0 3 0;enddatamin=sum(level:p*z);!目标函数(“min=”后面所接的表达式)是用求和函数“sum(集合下标:关于集合属性的表达式)”的方式定义的。

这个函数的功能是对语句中冒号“:”后面的表达式,按照“:”前面的集合指定的下标(元素)进行求和。

这里“sum”相当于求和符号“∑”。

for(level(i):z(i)=sum(s_con_num(j):wplus(i,j)*dplus(j))+sum(s_con_num(j):wminus(i,j)*dminus(j)));!约束是用循环函数“for(集合(下标):关于集合的属性的约束关系)”的方式定义的。

意思是对冒号“:”前面的集合的每个元素(下标),冒号“:”后面的约束关系式都要成立。

for(h_con_num(i):sum(variable(j):a(i,j)*x(j))<=b(i));for(s_con_num(i):sum(variable(j):c(i,j)*x(j))+dminus(i)-dplus(i)=g(i););for(level(i)|i#lt#size(level):bnd(0,z(i),goal(i));!限制0〈=z(i)〈=goal(i));!这个限制条件与集合之间有一个“|”分开,称为过滤条件。

限制条件“i#lt#size(level)”是一个逻辑表达式,意思是i〈size(level)。

#lt#是逻辑运算符号,意思是“小于”;size(level)表示集合level元素的个数。

End3、下面开始用LINGO中的图标或者Solve命令编译模型,当程序运行时,会出现一个对话框,如图2.1。

在作第一级目标计算时,p(1),p(2),p(3)分别输入1,0,0,goal (1)和goal(2)输入两个较大的值(例如100000),表明这两项约束不起作用。

运行状态窗口如图2.2,相应信息含义见实验一表1.1。

图2.1 LINGO的实时参数窗口图2.2:LINGO运行状态窗口计算结果如下:Global optimal solution found.Objective value: 0.000000Total solver iterations: 1Variable Value Reduced CostP( 1) 1.000000 0.000000P( 2) 0.000000 0.000000P( 3) 0.000000 0.000000Z( 1) 0.000000 0.000000Z( 2) 5.000000 0.000000Z( 3) 58.00000 0.000000GOAL( 1) 100000.0 0.000000GOAL( 2) 1000000. 0.000000GOAL( 3) 0.000000 0.000000X( 1) 0.000000 0.000000X( 2) 5.000000 0.000000B( 1) 12.00000 0.000000G( 1) 1500.000 0.000000G( 2) 0.000000 0.000000G( 3) 16.00000 0.000000G( 4) 15.00000 0.000000DPLUS( 1) 0.000000 0.000000DPLUS( 3) 0.000000 0.000000DPLUS( 4) 10.00000 0.000000 DMINUS( 1) 0.000000 1.000000 DMINUS( 2) 5.000000 0.000000 DMINUS( 3) 16.00000 0.000000 DMINUS( 4) 0.000000 0.000000 A( 1, 1) 2.000000 0.000000A( 1, 2) 2.000000 0.000000C( 1, 1) 200.0000 0.000000C( 1, 2) 300.0000 0.000000C( 2, 1) 2.000000 0.000000C( 2, 2) -1.000000 0.000000C( 3, 1) 4.000000 0.000000C( 3, 2) 0.000000 0.000000C( 4, 1) 0.000000 0.000000C( 4, 2) 5.000000 0.000000 WPLUS( 1, 1) 0.000000 0.000000 WPLUS( 1, 2) 0.000000 0.000000 WPLUS( 1, 3) 0.000000 0.000000 WPLUS( 1, 4) 0.000000 0.000000 WPLUS( 2, 1) 0.000000 0.000000 WPLUS( 2, 2) 1.000000 0.000000 WPLUS( 2, 3) 0.000000 0.000000 WPLUS( 2, 4) 0.000000 0.000000 WPLUS( 3, 1) 0.000000 0.000000 WPLUS( 3, 2) 0.000000 0.000000 WPLUS( 3, 3) 3.000000 0.000000 WPLUS( 3, 4) 1.000000 0.000000 WMINUS( 1, 1) 1.000000 0.000000 WMINUS( 1, 2) 0.000000 0.000000 WMINUS( 1, 3) 0.000000 0.000000 WMINUS( 1, 4) 0.000000 0.000000 WMINUS( 2, 1) 0.000000 0.000000 WMINUS( 2, 2) 1.000000 0.000000 WMINUS( 2, 3) 0.000000 0.000000 WMINUS( 2, 4) 0.000000 0.000000 WMINUS( 3, 1) 0.000000 0.000000 WMINUS( 3, 2) 0.000000 0.000000 WMINUS( 3, 3) 3.000000 0.000000 WMINUS( 3, 4) 0.000000 0.000000Row Slack or Surplus Dual Price1 0.000000 -1.0000003 0.000000 0.0000004 0.000000 0.0000005 2.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.000000第一级的最优偏差为0,进行第二级计算。

相关文档
最新文档