数据结构知识点总结
大学计算机表格知识点总结

大学计算机表格知识点总结表格是计算机科学中常用的数据结构和工具。
在大学的计算机课程中,学生通常会接触到使用表格进行数据处理和分析的任务。
本文将从基础概念、常用功能和高级应用三个方面总结大学计算机中的表格知识点。
一、基础概念1.表格的定义:表格是由行和列组成的二维数据结构,每个单元格可以存储一个数据项。
2.单元格:表格的最小单位,每个单元格可以存储文本、数字、日期等数据类型。
3.行和列:表格中的水平方向被称为行,垂直方向被称为列。
行和列的交叉点即单元格。
4.工作表:一个工作表通常包含多个表格,每个表格都可以存储独立的数据,通过选项卡可以在不同的表格之间切换。
5.单元格引用:通过指定行和列的索引,可以引用特定的单元格,例如A1表示第一行第一列的单元格。
二、常用功能1.数据输入:在表格中输入数据可以直接在单元格中键入,也可以通过复制粘贴、导入外部文件等方式导入数据。
2.数据格式化:可以对单元格中的数据进行格式化,如设置文本、数字、日期等的显示格式。
3.公式计算:表格可以进行简单的数学计算,通过在单元格中输入公式,并使用各种运算符和函数进行计算。
4.数据排序和筛选:表格可以按照特定的列或行进行排序,也可以通过设置筛选条件来筛选数据。
5.数据统计:表格可以进行基本的数据统计操作,如求和、平均值、最大值、最小值等。
6.数据图表:表格可以根据数据生成各种图表,如柱状图、折线图、饼图等,用于可视化数据。
三、高级应用1.数据透视表:数据透视表是一种高级的数据分析工具,可以对大量数据进行快速汇总和分析。
2.条件格式化:通过设置条件格式,可以根据数据的不同值自动对单元格进行着色,以便于数据的可视化分析。
3.宏:宏是一种自动化操作工具,可以录制用户的操作过程,并在以后重复执行相同的操作。
4.数据连接:可以将不同表格中的数据进行连接,实现数据的整合和共享。
5.数据保护:可以对表格进行密码保护,防止未经授权的用户对数据进行修改或删除。
线性表知识点总结

线性表知识点总结线性表是数据结构中最基本、最简单的数据结构之一,它在计算机科学和程序设计中有着广泛的应用。
接下来,让我们一起深入了解线性表的相关知识。
一、线性表的定义线性表是由零个或多个数据元素组成的有限序列。
其中,每个数据元素的类型相同,并且在逻辑上是线性排列的。
也就是说,除了第一个元素外,每个元素都有且仅有一个直接前驱;除了最后一个元素外,每个元素都有且仅有一个直接后继。
例如,一个整数序列 10, 20, 30, 40, 50 就是一个线性表。
在这个序列中,10 是第一个元素,没有前驱;50 是最后一个元素,没有后继;而 20 的前驱是 10,后继是 30 。
二、线性表的特点1、元素个数有限:线性表中的元素个数是确定的,不能是无限的。
2、元素具有相同的数据类型:这使得对线性表的操作可以统一进行,方便编程实现。
3、元素之间的顺序是线性的:元素按照一定的顺序排列,每个元素都有确定的前驱和后继关系(除了首元素和尾元素)。
三、线性表的存储结构线性表有两种常见的存储结构:顺序存储结构和链式存储结构。
1、顺序存储结构顺序存储结构是指用一组地址连续的存储单元依次存储线性表中的数据元素。
在顺序存储结构中,逻辑上相邻的元素在物理位置上也相邻。
优点:(1)可以随机访问表中的任意元素,时间复杂度为 O(1)。
(2)存储密度高,不需要额外的指针来表示元素之间的关系。
缺点:(1)插入和删除操作需要移动大量元素,时间复杂度为 O(n)。
(2)存储空间大小需要预先分配,如果分配过大,会造成空间浪费;如果分配过小,可能导致溢出。
2、链式存储结构链式存储结构是通过指针将各个数据元素链接起来存储。
每个节点包含数据域和指针域,数据域用于存储数据元素的值,指针域用于指向下一个节点的地址。
优点:(1)插入和删除操作不需要移动大量元素,只需修改指针,时间复杂度为 O(1)。
(2)存储空间可以动态分配,不会造成空间浪费或溢出。
缺点:(1)不能随机访问,只能通过指针顺序访问,时间复杂度为O(n)。
考研《数据结构》复习知识点归纳

《数据结构》复习重点知识点归纳一.数据结构的章节结构及重点构成数据结构学科的章节划分基本上为:概论,线性表,栈和队列,串,多维数组和广义表,树和二叉树,图,查找,内排,外排,文件,动态存储分配。
对于绝大多数的学校而言,“外排,文件,动态存储分配”三章基本上是不考的,在大多数高校的计算机本科教学过程中,这三章也是基本上不作讲授的。
所以,大家在这三章上可以不必花费过多的精力,只要知道基本的概念即可。
但是,对于报考名校特别是该校又有在试卷中对这三章进行过考核的历史,那么这部分朋友就要留意这三章了。
按照以上我们给出的章节以及对后三章的介绍,数据结构的章节比重大致为:·概论:内容很少,概念简单,分数大多只有几分,有的学校甚至不考。
·线性表:基础章节,必考内容之一。
考题多数为基本概念题,名校考题中,鲜有大型算法设计题,如果有,也是与其它章节内容相结合。
·栈和队列:基础章节,容易出基本概念题,必考内容之一。
而栈常与其它章节配合考查,也常与递归等概念相联系进行考查。
·串:基础章节,概念较为简单。
专门针对于此章的大型算法设计题很少,较常见的是根据KMP进行算法分析。
·多维数组及广义表:基础章节,基于数组的算法题也是常见的,分数比例波动较大,是出题的“可选单元”或“侯补单元”。
一般如果要出题,多数不会作为大题出。
数组常与“查找,排序”等章节结合来作为大题考查。
·树和二叉树:重点难点章节,各校必考章节。
各校在此章出题的不同之处在于,是否在本章中出一到两道大的算法设计题。
通过对多所学校的试卷分析,绝大多数学校在本章都曾有过出大型算法设计题的历史。
·图:重点难点章节,名校尤爱考。
如果作为重点来考,则多出现于分析与设计题型当中,可与树一章共同构成算法设计大题的题型设计。
·查找:重点难点章节,概念较多,联系较为紧密,容易混淆。
出题时可以作为分析型题目给出,在基本概念型题目中也较为常见。
考研数据结构图的必背算法及知识点

考研数据结构图的必背算法及知识点Prepared on 22 November 20201.最小生成树:无向连通图的所有生成树中有一棵边的权值总和最小的生成树问题背景:假设要在n个城市之间建立通信联络网,则连通n个城市只需要n—1条线路。
这时,自然会考虑这样一个问题,如何在最节省经费的前提下建立这个通信网。
在每两个城市之间都可以设置一条线路,相应地都要付出一定的经济代价。
n个城市之间,最多可能设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少呢分析问题(建立模型):可以用连通网来表示n个城市以及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价。
对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。
即无向连通图的生成树不是唯一的。
连通图的一次遍历所经过的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可能得到不同的生成树。
图G5无向连通图的生成树为(a)、(b)和(c)图所示:G5G5的三棵生成树:可以证明,对于有n个顶点的无向连通图,无论其生成树的形态如何,所有生成树中都有且仅有n-1条边。
最小生成树的定义:如果无向连通图是一个网,那么,它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小生成树,简称为最小生成树。
最小生成树的性质:假设N=(V,{E})是个连通网,U是顶点集合V的一个非空子集,若(u,v)是个一条具有最小权值(代价)的边,其中,则必存在一棵包含边(u,v)的最小生成树。
解决方案:两种常用的构造最小生成树的算法:普里姆(Prim)和克鲁斯卡尔(Kruskal)。
他们都利用了最小生成树的性质1.普里姆(Prim)算法:有线到点,适合边稠密。
时间复杂度O(N^2)假设G=(V,E)为连通图,其中V为网图中所有顶点的集合,E为网图中所有带权边的集合。
数据结构教程李春葆第4版知识点习题答案

第1章绪论知识点归纳一、数据结构概述1.数据结构的定义(1)基本概念数据是描述客观事物的数和字符的集合,是计算机能操作的对象的总称,也是计算机处理信息的某种特定的符号表示形式。
(2)相关术语① 数据元素数据元素又称元素、节点、顶点、记录等。
数据元素是数据的基本单位。
有时候,一个数据元素可以由若干个数据项组成。
② 数据项数据项又称字段或域,它是具有独立含义的最小数据单位。
③ 数据对象数据对象是性质相同的数据元素的集合,它是数据的子集。
(3)数据结构的内容① 数据元素之间的逻辑关系,即数据的逻辑结构,它是数据结构在用户面前呈现的形式。
② 数据元素及其关系在计算机存储器中的存储方式,即数据的存储结构,又称数据的物理结构。
③ 施加在数据上的操作,即数据的运算。
(4)逻辑结构数据的逻辑结构是从逻辑关系(主要是指数据元素的相邻关系)上描述数据的,它与数据的存储无关,是独立于计算机的。
因此,数据的逻辑结构可以看作是从具体问题抽象出来的数学模型。
(5)存储结构数据的存储结构是逻辑结构用计算机语言的实现或在计算机中的表示(又称映像),也就是逻辑结构在计算机中的存储方式,它是依赖于计算机语言的。
一般只在高级语言(例如C/C++语言)的层次上讨论存储结构。
数据的运算最终需在对应的存储结构上用算法实现。
总之,数据结构是一门讨论“描述现实世界实体的数学模型(通常为非数值计算)及其之上的运算在计算机中如何表示和实现”的学科。
(6)数据结构的表示对于一种数据结构,其逻辑结构总是惟一的,但它可能对应多种存储结构,并且在不同的存储结构中,同一运算的实现过程可能不同。
描述数据结构通常采用二元组表示:B=(D,R)其中,B是一种数据结构,它由数据元素的集合D和D上二元关系的集合R组成,即:D={d i | 1≤i≤n,n≥0}R={r j | 1≤j≤m,m≥0}其中d i表示集合D中的第i个数据元素(或节点),n为D中数据元素的个数,特别地,若n=0,则D 是一个空集。
(完整word版)大学数据结构期末知识点重点总结(考试专用)

第一章概论1。
数据结构描述的是按照一定逻辑关系组织起来的待处理数据元素的表示及相关操作,涉及数据的逻辑结构、存储结构和运算2。
数据的逻辑结构是从具体问题抽象出来的数学模型,反映了事物的组成结构及事物之间的逻辑关系可以用一组数据(结点集合K)以及这些数据之间的一组二元关系(关系集合R)来表示:(K, R)结点集K是由有限个结点组成的集合,每一个结点代表一个数据或一组有明确结构的数据关系集R是定义在集合K上的一组关系,其中每个关系r(r∈R)都是K×K上的二元关系3.数据类型a。
基本数据类型整数类型(integer)、实数类型(real)、布尔类型(boolean)、字符类型(char)、指针类型(pointer)b。
复合数据类型复合类型是由基本数据类型组合而成的数据类型;复合数据类型本身,又可参与定义结构更为复杂的结点类型4.数据结构的分类:线性结构(一对一)、树型结构(一对多)、图结构(多对多)5。
四种基本存储映射方法:顺序、链接、索引、散列6。
算法的特性:通用性、有效性、确定性、有穷性7.算法分析:目的是从解决同一个问题的不同算法中选择比较适合的一种,或者对原始算法进行改造、加工、使其优化8.渐进算法分析a.大Ο分析法:上限,表明最坏情况b.Ω分析法:下限,表明最好情况c.Θ分析法:当上限和下限相同时,表明平均情况第二章线性表1.线性结构的基本特征a.集合中必存在唯一的一个“第一元素”b。
集合中必存在唯一的一个“最后元素"c.除最后元素之外,均有唯一的后继d。
除第一元素之外,均有唯一的前驱2.线性结构的基本特点:均匀性、有序性3。
顺序表a.主要特性:元素的类型相同;元素顺序地存储在连续存储空间中,每一个元素唯一的索引值;使用常数作为向量长度b。
线性表中任意元素的存储位置:Loc(ki)= Loc(k0)+ i * L(设每个元素需占用L个存储单元)c. 线性表的优缺点:优点:逻辑结构与存储结构一致;属于随机存取方式,即查找每个元素所花时间基本一样缺点:空间难以扩充d.检索:ASL=【Ο(1)】e。
数据结构二叉树知识点总结

数据结构⼆叉树知识点总结术语1. 节点的度:⼀个节点含有的⼦树的个数称为该节点的度;2. 叶节点或终端节点:度为零的节点;3. ⾮终端节点或分⽀节点:度不为零的节点;4. ⽗亲节点或⽗节点:若⼀个节点含有⼦节点,则这个节点称为其⼦节点的⽗节点;5. 兄弟节点:具有相同⽗节点的节点互称为兄弟节点;6. 节点的层次:从根开始定义起,根为第1层,根的⼦节点为第2层,以此类推;7. 树的⾼度或深度:树中节点的最⼤层次;8. 堂兄弟节点:⽗节点在同⼀层的节点互为堂兄弟;9. 节点的祖先:从根到该节点所经分⽀上的所有节点;10. 孙:以某节点为根的⼦树中任⼀节点都称为该节点的⼦孙。
11. 森林:由m(m>=0)棵互不相交的树的集合称为森林;12. 满⼆叉树:⼀棵深度为k,且有2^k-1 (2的k次⽅减⼀)个节点称之为满⼆叉树13. 完全⼆叉树:完全⼆叉树是由满⼆叉树⽽引出来的。
对于深度为K的,有n个结点的⼆叉树,当且仅当其每⼀个结点都与深度为K的满⼆叉树中编号从1⾄n的结点⼀⼀对应时称之为完全⼆叉树。
叶节点只能出现在最下层和次下层,并且最下⾯⼀层的结点都集中在该层最左边的若⼲位置的⼆叉树⼆叉树的性质1.在⾮空⼆叉树中,第i层的结点总数不超过2^(i-1),i>=1;2.深度为h的⼆叉树最多有2^h-1个结点(h>=1),最少有h个结点;3.对于任意⼀棵⼆叉树,如果其叶结点数为N0,⽽度数为2的结点总数为N2,则N0=N2+1;4.具有n个结点的完全⼆叉树的深度为K =[log2n」+1(取下整数)5.有N个结点的完全⼆叉树各结点如果⽤顺序⽅式存储,则结点之间有如下关系:若I为结点编号则如果I>1,则其⽗结点的编号为I/2;6.完全⼆叉树,如果2*I<=N,则其左⼉⼦(即左⼦树的根结点)的编号为2*I;若2*I>N,则⽆左⼉⼦;如果2*I+1<=N,则其右⼉⼦的结点编号为2*I+1;若2*I+1>N,则⽆右⼉⼦。
《数据结构之图》相关知识点总结

第5章图●图的定义①图由顶点集V和边集E组成,记为G=(V,E),V(G)是图G中顶点的有穷非空集合,E(G)是图G中顶点之间变得关系集合,|V|表示顶点个数,也称图的阶,|E|表示边数(线性表和树都可以是空的,但图可以只有一个顶点没有边)②有向图:弧是顶点的有序对,记为<v,w>,v,w是顶点,v是弧尾,w是弧头,从顶点v到顶点w的弧。
无向图:边是顶点的无序对,记为(v,w)③简单图:一个图满足:不存在重复边;不存在顶点到自身的边。
多重图相对于简单图定义④完全图:无向图中,任意两顶点之间存在边,称为完全无向图。
N个顶点的无向完全图有n(n-1)/2条边。
在有向图中,任意两顶点之间存在方向相反的两条弧,称为有向完全图,N 个顶点的有向完全图有n(n-1)条边。
⑤连通图:在无向图中任意两顶点都是连通的。
无向图中的极大连通子图称为连通分量。
极大要求连通子图包含其所有的边和顶点,极小连通子图既要保持图连通,又要保持边数最少⑥在有向图中任意两顶点v,w,存在从顶点v到顶点w和从顶点w到顶点v两条路径,这种图称为强连通图。
有向图的极大强连通子图称为有向图的强连通分量。
⑦生成树:①包含图中所有顶点n,②生成树有n-1条边, ③任意两点连通。
对生成树而言,砍去一条边变成非连通图,加上一条边形成一个回路。
在非连通图中,连通分量的生成树构成了非连通图的生成森林。
⑧顶点的度:以该顶点为端点的边的数目。
无向图的全部顶点的度之和等于边数的两倍。
有向图的度等于出度和入度之和,入度是以该顶点为终点的有向边的数目,出度是以该顶点为起点的有向边的数目。
有向图的全部顶点的入度之和和出度之和相等且等于边数。
⑨图中每条边可以标上具有某种含义的数值,该数值称为边的权值。
带有权值的图称为网。
○10对于无向图G=(V, {E}),如果边(v,v’)∈E,则称顶点v,v’互为邻接点,即v,v’相邻接。
边(v,v’)依附于顶点v 和v’,或者说边(v, v’)与顶点v 和v’相关联。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构知识点总结
数据结构是一种组织数据的方式,它能够使程序员更有效地操作和管理数据。
数据结构的基本概念包括结构,抽象和算法。
数据结构的具体实现方法可以是链表、堆栈、队列等数据结构,也可以是基于树的数据结构,如二叉树、AVL树、红黑树和B树等。
二、数据结构的应用
数据结构有多种应用,可以应用于存储管理、搜索以及排序等。
存储管理方面,数据结构可以对存储空间进行有效管理;搜索方面,数据结构可以提高搜索效率,比如二叉搜索树、树状数组等;排序方面,一些时间复杂度较低的排序算法比如快速排序、堆排序等均可以借助数据结构实现。
三、数据结构的实现
数据结构的实现方法多种多样,可以借助多种方法实现某种数据结构,比如一种数据结构可以借助数组和链表实现,另一种数据结构也可以借助二叉树实现。
数据结构的实现也可以是利用固定的内存来实现,也可以借助动态分配内存的方式实现。
四、常见的数据结构
1、线性数据结构:线性数据结构是由一组具有特定结构的数据元素组成的一维排列,像数组、链表、栈、队列等都属于线性数据结构。
2、非线性数据结构:非线性数据结构不是一维排列,而是由多个元素之间存在复杂的逻辑关系和网络结构组成的结构,像图、树等
都属于非线性数据结构。
五、数据结构的抽象
数据结构的抽象是数据结构的一个重要概念,它是抽象出了物理存储单元和相关操作之间的逻辑关系,以描述数据结构本身,不涉及具体的物理实现。
六、数据结构的算法
数据结构的算法是指创建、实现、维护和控制数据结构的一种操作。
它是根据数据抽象和操作抽象设计出来的算法,是数据结构的基础。
常见的数据结构算法有查找算法、排序算法、图算法、字符串匹配算法、索引算法、树算法和图形算法等。
七、数据结构的性能分析
数据结构的性能分析是指对某种数据结构性能进行分析和评估,以便更好地改善和优化该数据结构。
可以比较不同数据结构之间的性能,以及不同操作之间的性能,从而决定更好的数据结构,提高操作的效率。
总结
本文总结了数据结构的基本概念、应用、实现方法、常见数据结构、抽象、算法以及性能分析。
数据结构的应用范围十分广泛,可以提高程序员操作和管理数据的效率,提升数据处理速度,为程序设计、开发和改进提供重要帮助。