大学物理第6章真空中的静电场课后习题及答案
大学物理A1习题册参考答案-第5-6章

A1r 2r ab1、 下列几个叙述中哪一个是正确的?A 、电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向;B 、在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;C 、场强方向可由E =F/q 定出,其中q 为试验电荷的电量,q 可正可负; D 、以上说法都不正确。
[ ] 1. C解释:A 答案点电荷可能有正负;B 答案场强是矢量2、 关于高斯定理的理解有下面几种说法,其中正确的是 A 、如果高斯面内无电荷,则高斯面上E处处为零; B 、如果高斯面上E处处不为零,则该面内必无电荷;C 、如果高斯面内有净电荷,则通过该面的电通量必不为零;D 、如果高斯面上E处处为零,则该面内必无电荷。
[ ] 2. C解释:A 答案通量为零不一定场强为零;D 答案考虑等量异号电荷,可以使得处处为零。
3、 在静电场中,下列说法中哪一个是正确的?A 、带正电荷的导体,其电势一定是正值;B 、等势面上各点的场强一定相等;C 、场强为零处,电势也一定为零;D 、场强相等处,电势梯度矢量一定相等。
[ ] 3. D解释:A 答案电势是个相对值,要参考零电势的选择。
4、 如图所示,在电荷为Q -的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点,a 、b 两点距离点电荷A 的距离分别为1r 和2r ,则移动过程中电场力做的功为 A 、012114Q r r πε⎛⎫-- ⎪⎝⎭; B 、012114qQ r r πε⎛⎫- ⎪⎝⎭;C 、012114qQ r r πε⎛⎫-- ⎪⎝⎭; D 、()0214qQ r r πε-- [ ]4. C解释:电场力做功等于电势能差,注意正负号。
5、 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 [ ](A) (B) (C) (D) 5. D解释:由高斯定理依次求出各部分场强即可。
大学物理 第六章 静电场

-
开始, E’< E0 ,导体内部场强不为零,自由电子继续运动,E’ 增大。到E’= E0 即导体内部的场强为零,此时导体内没有电荷 作定向运动,导体处于静电平衡状态。
3 3、静电平衡条件 用电场表示 •导体内部任一点的电场强度为零; •导体表面处的电场强度,与导体的 表面垂直。 3 3、静电平衡条件
U AB
qd E d oS
②
球形电容器
+q R1 R2 o
解:两极板间电场
q E 2 4 o r
板间电势差
( R1 r R2 )
-q 讨论:①当R2 → 时,
U 12
电容
R2
R1
q 1 1 ( ) E dl
4 o R1 R2
C 4 o R1 ,
E表 表面
E内= 0
等 势 面
用电势表示: •导体是个等势体; •导体表面是等势面。 对于导体内部的任何两点A和B
U AB
对于导体表面上的两点A和B
B E dl 0
A
U AB
B Et dl 0
A
E dl
A
B
二、静电平衡时导体上电荷的分布
例1:两块平行放置的面积为S 的金属板,各带电量Q1、 Q2 ,
板距与板的线度相比很小。求:
① 静电平衡时, 金属 板电荷的分布和周围电
Q1
Q2
场的分布。
②若把第二块金属 板接地,以上结果如何?
1
EI
2
S
3
EII
4
S
EIII
解: 电荷守恒
( 1 2 ) s Q1 ( 3 4 ) s Q2 i i 高斯定理 2 o
《大学物理aⅰ》静电场中的导体和电介质习题、答案及解法(.6.4)

静电场中的导体和电解质习题、答案及解法一.选择题1.一个不带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为a 处放一点电荷q +,如图1所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为 [ D ] (A )aq 02πε; (B )0 ;(C )Rq 04πε-; (D )⎪⎭⎫ ⎝⎛-R a q 1140πε。
参考答案:)11(4)11(440020Ra q a R q dl Rq Edl V RaRa-=--===⎰⎰πεπεπε 2.三块互相平行的导体板之间的距离21d d 和比板面积线度小得多,如果122d d =外面二板用导线连接,中间板上带电。
设左右两面上电荷面密度分别为21σσ和,如图2所示,则21σσ为(A )1 ; (B )2 ; (C )3 ;(D )4 。
[ B ]解:相连的两个导体板电势相等2211d E d E =,所以202101d d εσεσ= 1221d d =σσ 3.一均匀带电球体如图所示,总电荷为Q +,其外部同心地罩一内、外半径分别为1r ,2r 的金属球壳。
设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势分别为[ B ] (A )204r q πε,0 ; (B )0,204r q πε ;(C )0,rq 04πε ; (D )0,0 。
1r 2r OPQ+q+aOR 1d 2σ2d 1σ参考答案:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-∞-==∙+∙=∙=⎰⎰⎰⎰∞∞∞2020201411441222r Q rQdr r Q ld E l d E ld E U r r r rpp πεπεπε4.带电导体达到静电平衡时,其正确结论是 [ D ] (A ) 导体表面上曲率半径小处电荷密度较小; (B ) 表面曲率较小处电势较高; (C ) 导体内部任一点电势都为零;(D ) 导体内任一点与其表面上任一点的电势差等于零。
中国地质大学(武汉)大学物理习题集答案

σ
dS = rd ϕ Rd θ
2
= R sinθdθdϕ
它在球心产生的场强
θ
dE σ sin θ d θ d ϕ = 4πε 0
Rdθ
dq σ dS dE = 2 = 2 4πε 0 R 4πε 0 R
由对称性分析可知
Ex = ∫ dEx = 0 Ey = ∫ dEy = 0
E = ∫ dEz = ∫ dEcosθ
∫ E ⋅ dS = 4πr E =
2 s
q内
1.0 ×10−8 E2 = = 9 ×109 × (2) ) 2 2 4πε 0 r2 (0.2)
ε0
(1) E1 = 0
q1
q2
q1
= 2.25 × 10 3 v / m q1 + q 2 (1.0 + 1.5) ×10−8 2 (3) E 3 = = 9 ×109 × = 9 × 10 v / m 2 4πε 0 r32 (0.5) E不是 的连续函数 在两个球面处有跃变 不是r的连续函数 不是 的连续函数, 在两个球面处有跃变.
dS = 2π rRd θ
x = R cosθ dq = σds
方向沿z 方向沿 轴负向
λ 1-10半径为R的带电细园环,线电荷密度 = λ0 cosϕ , 半径为R的带电细园环, 半径为 为常数, 轴夹角, λ 0 为常数, 为半径R与x轴夹角,如图所示,求 轴夹角 如图所示, Y 圆环中心处的电场强度。 圆环中心处的电场强度。
1-4 等值同号的两个点电荷 间距为 ,求其连线中垂 等值同号的两个点电荷. 间距为2l, 面上场强最大处到两电荷连线中点的距离. 面上场强最大处到两电荷连线中点的距离 y 解: E = 2 E
大学物理第9章《真空中的静电场》习题解答

dE = k
dq λ ds λ = = dϕ 2 2 r 4πε 0 R 4πε 0 R
R1
R2
∞
=
B 点的电势为
ρ ( R22 − R12 ) . 2ε 0
∞
∞
U B = ∫ E ⋅ d l = ∫ Ed r
rB rB
R2
=
rB
∫
3 ρ ( R2 − R13 ) ρ R13 dr (r − 2 )dr + ∫ 3ε 0 r 2 3ε 0 r R2
∞
ρ R13 2 2 = (3 R2 − rB − 2 ) . 6ε 0 rB
4 3 V = π ( R2 − R13 ) 3
包含的电量为 q = ρV 根据高斯定理得可得球壳外的场强为
E=
A 点的电势为
3 q ρ ( R2 − R13 ) ,(R2≦r) = 4πε 0 r 2 3ε 0 r 2
∞
∞
U A = ∫ E ⋅ dl = ∫ Edr
rA rA
3 ρ ( R2 − R13 ) ρ R13 dr = ∫ 0dr + ∫ ( r − 2 )dr + ∫ 3ε 0 r 2 3ε 0 r R2 rA R1
b/2
∫
−σ = ln(b / 2 + a − x ) 2πε 0 =
b/2
−b / 2
σ b ln(1 + ) 2πε 0 a
同济大学物理大作业解答4至6章答案

第四章(一) 振动学基础解答一、选择题1.D 2.B 3.C 4.C 5.B 6.B 7.D 8.B二、填空题1.振动系统自身的性质;π2秒内的的振动次数;振动系统运动的初始条件;表示振动的幅度或振动的强度;表征计时零点的振动状态。
2.;cm 2 ;4s ;1-s 2π ;π23 )232cos(02.0ππ+t ;m )232s i n (01.0πππ+-t -1s m ⋅;)232cos(201.02πππ+-t -2s m ⋅; ππ或33.0.158 m ; 0.5 s ; 2π4.)41cos(02.0ππ+t m ; )43c o s (02.0ππ+t m5.π326.8T , T 83 7.ππ232或-8.合力的大小与位移成正比,方向与位移方向相反; 0d d 222=+x tx ω三、计算题1.解:(1) s 638.084.922,s84.9258.0251-======πωπωT mk(2) m/s 17.03sin02.084.9sin ,30-=⨯⨯-=-==πϕωπϕA v (3) )384.9cos(02.0)cos(πϕω+=+=t t A x m2.解:(1))32cos(3πππϕ-=-=t T A x (2)0=a ϕ,2πϕ=b(3)作振幅矢量图,得到: 6233T Tt a ===ππωπ125223T Tt b =⎪⎭⎫⎝⎛=πππ+3.解:木块下移时,恢复力 )1(22xgL gxLf -=-=水ρmk =ω , 由(1)式知 2gL k =所以,木块做简谐运动。
在水中的木块未受压而处于平衡时 a gL mg 2水ρ= ,于是可求得ag aL gLm k ===22水ρω ga T πωπ22==振幅:a b A -=4.解:(1)两个同方向、同频率简谐运动的合振动仍为简谐运动,且合振动的频率与分振动的频率相同,即121s 3-===ωωω合振动振幅A 和初相0ϕ为 ()cm 52cos 43243cos 22221212221=⨯⨯++=++=πϕϕ-A A A A A︒==+︒+︒=++=--13.5334tg 24cos 3cos024sin 3sin0tgcos cos sin sin tg11-2211221110ππϕϕϕϕϕA A A A即0ϕ在第一象限内。
西工大 大学物理学习题册答案

第一章 真空中的静电场一、选择题 1.C ;2.B ;3.C ;4.B ;5.B ;6.C ;7.E ;8.AD ; 9.B ;10.BD 二、填空题 1.30281R qb επ;由圆心指向缺口。
2. 0εq;21Φ<Φ。
3. 均匀带电薄球壳。
4. 12210h h E E --ε;312C/m 1021.2-⨯。
5. N/C 100;2-9C/m 10.858⨯。
6. V 135-;V 45。
7.R Q q U q E 0006πε=;00=∞C U q ;R Q q U q CE 0006πε-=;RQq U q E 0006πε=∞。
8.41220R x q+πε; 2322)(41R x qx πε+; R22; N/C 4333620=Rπεq。
9. 有源场;无旋场(或保守场)。
三、问答题答:E 电场强度从力的角度描述电场的性质,矢量场分布;U 从能和功的角度描述电场的性质,标量场。
E 与U 的关系为: U E grad -= ,⎰∞⋅=ad l E U a使用叠加原理计算电场强度,注意先将各个场源产生的电场强度分解到各坐标轴,然后再叠加。
使用叠加原理计算电势,要注意电势零点的选择。
四、计算与证明题:1.证:(1) CD BC AB E E E E++=根据对称性分布,两段直导线AB 和CD 在O 点产生的电场强度大小相等,方向相反,则0=+CD AB E E。
在半圆形BC 上取电荷元d l ,则l q d d λ=,相应的在O 点产生d E 为 204d d alE πελ=由于对称分布分析可知0=x E ,设d E 和y 轴夹角为θ,且有θd d a l =θθελθελd cos 4πcos 4πd d 020y aa l E ==a a E y 02202πd cos 4πελθθελππ==⎰- j a εE 02πλ=∴ 得证(2)半圆形BC 在O 点产生的电势为:aεlU 014πd d λ=, ⎰==aεl a εU π0014πd 4πλπλ带电导线AB 或CD 在O 点产生的电势为:l l 024πd dU ελ=, ⎰==aal dl U 2022ln 44ππελελ总电势:)2ln 2π(4π2021+=+=ελU U U 得证 2.解:①取高斯面为同心球面,由高斯定理:∑⎰⎰===⋅q r E dS E S d E SS214επ ,得当r ≤R 时,)( 4πππ34π3430133333R r RQrE QR r r R Q r q <=⇒===∑ερ 当r >R 时 )( 4π1π4202022R r rQE Q r E Q q >=⇒=⇒=∑εε ② 选无穷远为势能零点。
大学物理 第6章 静电场中的导体和电介质(小结)

Q Q
静电能:
We A
Vdq
0
4
0
qdq
0
R
Q
2
8 0 R
当Q不变时,使R增大到R’=2R时,We’=We / 2 ;可见, 当R增大时,静电能减小,说明电场力对外作正功, 即帮助汽泡增大;从受力情况看,肥皂泡上每个电荷 元都受到其他电荷的电场力作用,力的方向沿半径向 外,半径增大时,电场力作正功,电场能减小。
4 0 r 4 0 r r 为该点到球心的距离. (2)球内(无论是空心与实心)的场强E=0, (内无电荷);电势不为零,等于球面上的电势。 (3)求E和V时,要将形成场的所有电荷都考虑 到,然后求矢量(E)和或代数和(V)。
2
E
及
V
例题5 有一带正电的肥皂泡,吹大到使它的半径为原 来的2 倍,问静电能有什么变化?电荷的存在对吹泡 有帮助还是有妨碍?
解(1)设q2 、 q3为外球壳内、外 层所带电荷。 由高斯定理可得:
R2 R1 D C B A 0
R3
q 2 q1
2 3
10
8
C
q2 q3 q
q3 4 3 10
8
q1
C
q2
q3
(2)各点的场强和电势 B点: q1 由高斯定理得: E B 2 4 0 rB
VB
q1 4 0 rB
q1 4 0 rB
q2 4 0 rB
q2 4 0 R 2
q3 4 0 rB
q3 4 0 R 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε 故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q a q '=︒εε故 q q 33-=' (2)与三角形边长无关。
3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε根据电荷分布的对称性知,0==z y E E23220)(41 cos R x xdqdE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹角。
⎰+=23220)(4dq R x xE x πεR Oλ1λ2lxy z232210)(24R x Rx+⋅=πλπε232201)(2R x xR +=ελ 下面求直线段受到的电场力。
在直线段上取dx dq 2λ=,dq 受到的电场力大小为dq E dF x =dx R x xR 2322021)(2+=ελλ 方向沿x 轴正方向。
直线段受到的电场力大小为⎰=dF F dx R x xR l ⎰+=02322021)(ελλ2 ()⎥⎦⎤⎢⎣⎡+-=2/12202111R l R R ελλ2 方向沿x 轴正方向。
4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。
求: (1)圆心处O 点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。
解:(1)在半圆环上取ϕλλRd l dq ==d ,它在O 点产生场强大小为20π4R dq dE ε=ϕελd R0π4= ,方向沿半径向外根据电荷分布的对称性知,0=y Eϕϕελϕd RdE dE x sin π4sin 0==R d R E x 000π2sin π4ελϕϕελπ==⎰故 RE E x 0π2ελ==,方向沿x 轴正向。
(2)当将此带电半圆环弯成一个整圆后,由电荷分布的对称性可知,圆心处电场强度为零。
5.如图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度。
解:建立图示坐标系。
在均匀带电细直杆上取dx Lqdx dq ==λ,dq 在P 点产生的场强大小为202044x dxx dq dE πελπε==,方向沿x 轴负方向。
故 P 点场强大小为 ⎰⎰+==L d dP xdxdE E 204πελ ()L d d q+π=04ε方向沿x 轴负方向。
6. 一半径为R 的均匀带电半球面,其电荷面密度为σ,求球心处电场强度的大小。
解:建立图示坐标系。
将均匀带电半球面看成许多均匀带电细圆环,应用场强叠加原理求解。
在半球面上取宽度为dl 的细圆环,其带电量rdl dS dq πσσ2⋅=⋅=θθπσd R sin 22⋅=, dq 在O 点产生场强大小为(参见教材中均匀带电圆环轴线上的场强公式)23220)(4r x xdq dE +=πε ,方向沿x 轴负方向利用几何关系,θcos R x =,θsin R r =统一积分变量,得23220)(4r x xdqdE +=πεθθπσθπεd R R R sin 2cos 41230⋅= θθθεσd cos sin 20= 因为所有的细圆环在在O 点产生的场强方向均沿为x 轴负方向,所以球心处电场强度的大小为⎰=dE E θθθεσπd cos sin 22/0⎰=4εσ=方向沿x 轴负方向。
7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ,如图所示。
试求通过小孔中心O 并与平面垂直的直线上各点的场强。
解:应用补偿法和场强叠加原理求解。
若把半径为R 的圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平面等效为一个完整的“无限大”带电平面和一个电荷面密度为σσ-='的半径为R 的带电圆盘,由场强叠加原理知,P 点的场强等效于“无限大”带电平面和带电圆盘在该处产生的场强的矢量和。
“无限大”带电平面在P 点产生的场强大小为L12εσ=E ,方向沿x 轴正方向 半径为R 、电荷面密度σσ-='的圆盘在P 点产生的场强大小为(参见教材中均匀带电圆盘轴线上的场强公式)022εσ=E )1(22xR x +-,方向沿x 轴负方向故 P 点的场强大小为220212xR xE E E +=-=εσ方向沿x 轴正方向。
8. (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电场强度通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电场强度通量是多少解:(1)由高斯定理0d εq S E s⎰=⋅ϖϖ求解。
立方体六个面,当q 在立方体中心时,每个面上电通量相等,所以通过各面电通量为6εq e =Φ (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则通过边长a 2的正方形各面的电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ,如果它包含q 所在顶点,则0=Φe 。
1σ9. 两个无限大的平行平面都均匀带电,电荷的面密度分别为和2σ,试求空间各处场强。
解:如图所示,电荷面密度为1σ的平面产生的场强大小为12εσ=E ,方向垂直于该平面指向外侧电荷面密度为2σ的平面产生的场强大小为ρ2σ1σ22εσ=E ,方向垂直于该平面指向外侧 由场强叠加原理得两面之间,)(2121021σσε-=-=E E E ,方向垂直于平面向右 1σ面左侧,)(2121021σσε+=+=E E E ,方向垂直于平面向左 2σ面右侧,)(2121021σσε+=+=E E E ,方向垂直于平面向右 10. 如图所示,一球壳体的内外半径分别为1R 和2R ,电荷均匀地分布在壳体内,电荷体密度为ρ(0>ρ)。
试求各区域的电场强度分布。
解:电场具有球对称分布,以r 为半径作同心球面为高斯面。
由高斯定理∑⎰=⋅iSqS d E 01ερρ得i q r E ∑=⋅0214επ当1R r <时,0=∑i q ,所以 0=E当21R r R <<时,)3434(313R r q i ππρ-=∑,所以 203133)(r R r E ερ-=当2R r >时,)3434(3132R R q i ππρ-=∑,所以2031323)(r R R E ερ-=11. 有两个均匀带电的同心带电球面,半径分别为1R 和2R (12R R >),若大球面的面电荷密度为σ,且大球面外的电场强度为零。
求:(1)小球面上的面电荷密度;(2)大球面内各点的电场强度。
解:(1)电场具有球对称分布,以r 为半径作同心球面为高斯面。
由高斯定理∑⎰=⋅iSqS d E 01ερρ得i q r E ∑=⋅0214επ当2R r >时,0=E ,0442122=⋅'+⋅=∑R R q i πσπσ,所以σσ212)R R (-=' (2)当1R r <时,0=∑i q ,所以 0=E当21R r R <<时,222144R R q i πσπσ-=⋅'=∑,所以22)εσr R E (-= 负号表示场强方向沿径向指向球心。
12. 一厚度为d 的无限大的带电平板,平板内均匀带电,其体电荷密度为ρ,求板内外的场强。
解:电场分布具有面对称性,取同轴闭合圆柱面为高斯面,圆柱面与平板垂直,设两底面圆到平板中心的距离均为x ,底面圆的面积为S ∆。
由高斯定理∑⎰=⋅iSqS d E 01ερρ得=⋅⎰SS d E ρρi q S E S E ∑=+∆⋅+∆⋅010ε 当2dx <时(平板内部),S x q i ∆⋅⋅=∑2ρ,所以 0ερx E =当2dx >(平板外部),S d q i ∆⋅⋅=∑ρ,所以 02ερdE =13. 半径为R 的无限长直圆柱体均匀带电,体电荷密度为ρ,求其场强分布。
解:电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为l ,底面圆半径为r ,应用高斯定理求解。
i Sq rl E S E ∑=⋅=⋅⎰01π2d εϖϖ (1) 当R r <时,l r qi2πρ⋅=∑,所以2ερrE =(2) 当R r >时,l R qi2πρ⋅=∑,所以rR E 022ερ=14.一半径为R 的均匀带电圆盘,电荷面密度为σ,设无穷远处为电势零点,求圆盘中心O 点的电势。
解:取半径为r 、dr 的细圆环rdr dS dq πσσ2⋅==,则dq 在O 点产生的电势为024εσπεdrrdq dV ==圆盘中心O 点的电势为dr dV V R⎰⎰==002εσ02εσR = 15. 真空中两个半径都为R 的共轴圆环,相距为l 。
两圆环均匀带电,电荷线密度分别是λ+和λ-。
取两环的轴线为x 轴,坐标原点O 离两环中心的距离均为2l,如图所示。
求x 轴上任一点的电势。
设无穷远处为电势零点。
解:在右边带电圆环上取dq ,它在x 轴上任一点P 产生的的电势为220)2/(4Rl x dqdV +-=πε右边带电圆环在P 产生的的电势为⎰⎰+-==+dq Rl x dV V 220)2/(41πε220)2/(2Rl x R+-=ελ同理,左边带电圆环在P 产生的电势为220)2/(2Rl x RV ++-=-ελ由电势叠加原理知,P 的电势为02ελR V V V =+=-+-+-22)2/(1(R l x ))2/(122Rl x ++16. 真空中一半径为R 的球形区域内均匀分布着体电荷密度为ρ的正电荷,该区域内a 点离球心的距离为R 31,b 点离球心的距离为R 32。