(完整版)《雷达信号分析》ppt

合集下载

相控阵雷达ppt课件(2024版)

相控阵雷达ppt课件(2024版)
8
第五章 相控阵雷达
§5.1概述
相控阵: 相位可控的阵列。相控阵天线是由许多辐射单元排
列组成的,每个单元的馈电相位均可灵活控制,改变波 阵面。
相控阵的概念很明确、很简单,但它与其他许多技术 有关,研究较早,发展较慢。目前处于迅速发展、激烈 变化的时期。
9
相控阵采用的高技术:
计算机技术 固态技术 信号处理技术 光电子技术 新材料技术 以及器件、结构、工艺的发展
铁氧体(4段) 波导 图5.7铁氧体移相器
铁氧体移相器结构如图5.7。其中,铁氧体上的线圈未画出。利 用线圈对每段铁氧体独立充磁,改变各段磁化状态,从而改变波导 中的相位移。
速度慢、体积大、、功率大
移相的量化误差。
23
波束形成网络
波束形成分发射波束形成、接收波束形成, 一般指接收波束形成。
射频波束形成 中频波束形成 数字波束形成 多波束形成
线性调频扫描 非线性调频扫描
噪声
|f2-f1| |f2-f1|
B
分辨率 1/比特率
1/|f2-f1| 1/|f2-f1|
1/B
4
9.脉冲压缩原理:
设信号函数为s(t),对应的匹配滤波器的冲激响应为: h(t)=s*(t0-t) 经过匹配滤波器的输出信号y(t)为:
y(t) s(t) * h(t) s()s*( t t0)d
F Fa Fe
Fe(θ)称为阵元因子。
关于阵列天线的栅瓣
阵列因子图: 主瓣
栅瓣
栅瓣
-π/2
0
π/2
π
3π/2 2π
图5-2阵列因子图
15
主瓣
栅瓣
栅瓣
-π/2
0
π/2
π

雷达信号分析(第5章)线性调频脉冲信号分析

雷达信号分析(第5章)线性调频脉冲信号分析

1 d td = 2p df
æ p 2ö f ÷ ç f ÷ =ç ÷ ç ÷ K èK ø
线性调频脉冲信号的近似匹配滤波器特性
( f )
B / 2
B/ 2
td
f
T
B
f
H ( f )
td
f1
f2
f3
f4
f5
f6
0
f1 f 2 f 3 f 4 f 5 f 6
f
t
二、近似匹配滤波器的输出
输入信号的复包络为 : 近似匹配滤波器输出为:
t sin[pB t(1 - )] T pB t
10 8 6 4
BT 10
2 0
2
4
6
8 10
B归一化为1

压缩比:
D=
BT 50
2T T = = BT 1 1 2 B B
20 15 10 5
0
5
10
15
20
距离旁瓣:来因、影响

2、 t = 0
c(0, x ) = T sin(pxT ) pxT

B

A
C
Aቤተ መጻሕፍቲ ባይዱ

C
T
B
T

VA
VB
VC VA VB
VC
3、存在距离旁瓣 MSR=-13.2dB 旁瓣的坏处:
0

C
A B

掩盖小目标(广义分辨) 减小了系统动态范围
5.6 线性调频脉冲信号的处理
一、近似匹配滤波器的实现
BT > 30 时:
m (f ) = 1 æf ö ç ÷ ÷e rect ç ÷ ç èB ÷ ø K

现代雷达系统分析与设计第8章课件

现代雷达系统分析与设计第8章课件
第8章 雷达信号检测
➢ 8.1 基本检测过程 ➢ 8.2 雷达信号的最佳检测 ➢ 8.3 脉冲积累的检测性能 ➢ 8.4 二进制积累 ➢ 8.5 自动检测——恒虚警率处理 ➢ 8.6 计算检测性能的MATLAB程序
学习交流PPT
1
具有随机特性,在这种条件下发
现目标的问题属于信号检测的范
畴,而测定目标坐标则是参数估
第m个脉冲的回波为
学习交流PPT
56
是与s(t)不相关的加性白噪声。M
个脉冲进行相干积累处理得到的
信号为
(8.3.2)
z(t)中的总噪声功率等于其方
差,更准确的表示为
学习交流PPT
57

(8.3.4)
其中,
是单个脉冲噪
声功率,且每个周期噪声的功率
相等。当m≠l时,δml=0;当m =l时,δml=1。观察式(8.3.2)和
离会减小。因此,Tfa的选取依赖
于雷达的工作模式。
表征虚警的大小有时还用虚
警次数nfa,它表示在平均虚警时
间内所有可能出现的虚警总数。
Fehlner将ቤተ መጻሕፍቲ ባይዱ警次数定义为
学习交流PPT
(8.2.20)
37
电压VT的概率,即目标被检测到
的概率。根据式(8.2.9)的概率密
度函数,计算检测概率Pd为
(8.2.21)
其中对检测点两侧若干个距离单元分别求平均后送到选大值电路将两者之间的较大者作为噪声和干扰的估计值zcacfar在杂波边缘虚警增大是由于强杂波已到达检测门限而有一142学习交流ppt将检测点前后的参考单元分别平均估值并选用其中的较大值作为平均值估值输出这时可以解决虚警率增大的问题但杂波边缘信号检测能力的损失将相应增143学习交流ppt图827gocfar处理原理框图144学习交流ppt窗中出现多个空间邻近干扰目标引起的cacfar检测器检测性能下降的问题socfar处理原理框图如图828所示

雷达信号分析与处理第一章第二章

雷达信号分析与处理第一章第二章

了解雷达发射的信号形式对雷达测量精度、分 辨力及抗干扰能力等性能的影响; 掌握利用模糊函数进行雷达信号的分析方法和 对雷达信号进行匹配处理的方法;


为研究各种新型雷达信号和分析雷达系统性能 打下理论基础。
2
第一部分 信号分析与处理基础 (复数表示、信号相关、匹配滤波)--- 基础

第二部分 雷达测量精度、分辨力及模糊函数 (测距测速精度、距离速度分辨力、模糊函数及 其性质)--- 工具
R( f ) s(t ) cos(2 ft )dt


I ( f ) s(t )sin(2 ft )dt


实信号频谱的实部是偶函数,虚部是奇函数,因此
S ( f ) R( f ) jI ( f ) R( f ) jI ( f ) S ( f )

[性质6] 调制特性 说明调制信号的频谱是原信号(非调制信号)频谱在频域上向正负频率方向 各搬移频率 后的两个频谱之和的一半,也就是说,信号的调制过程就是把 原信号的频率平移 的过程。

s(t ) cos(2 f 0t )
1 S ( f f0 ) S ( f f0 ) 2
S ( f ) s(t )e


j 2 ft
dt
s(t ) S ( f )e j 2 ft df


S(W) 或 S(f) 存在的充分条件是 s(t) 绝对可积,即



s(t )dt
13
在雷达工程术语中,时间函数 s(t)称为雷达信号的时间波形,频率函数 S(W) 或 S(f) 称为雷达信号的频谱密度或频谱。
BGM-109陆攻型导弹
SA-15 空射对地巡航导弹

《雷达回波识别分析》课件

《雷达回波识别分析》课件

03
雷达回波分析应用
天气预报
天气预报是雷达回波分析的重要应用领域之一。通过分析雷 达回波数据,气象学家可以监测和预测天气系统的移动、发 展和消亡,从而为公众提供准确的天气预报和预警信息。
雷达回波分析可以帮助气象学家识别降水系统,如暴雨、冰 雹、龙卷风等,并预测其可能的影响范围和强度。这有助于 提前采取措施,减少灾害损失。
,需要深入研究其传播规律和特性。
多模式、多频段雷达数据融合算法
02
多模式、多频段雷达数据的融合需要发展高效、可靠的算法和
技术,以提高数据融合的准确性和实时性。
雷达回波信号处理和目标识别技术
03
雷达回波信号处理和目标识别技术是雷达回波技术的核心,需
要不断研究和改进,以提高其准确性和可靠性。
雷达回波技术未来发展方向
带宽和存储空间。
03
复原处理
对失真或损坏的回波信号进行 复原,提高信号的可识别性。
雷达回波特征提取
03
幅度特征
频率特征
波形特征
提取回波信号的幅度信息,如峰值、平均 值、方差等,用于描述目标的大小和强度 。
分析回波信号的频率成分,提取出与目标 特性相关的频率特征,如多普勒频移。
描述回波信号的波形形状,如周期、相位 、波形变化等,用于区分不同类型目标。
雷达回波模式识别算法
01
02
03
统计模式识别
基于统计学原理,对提取 的特征进行分类和识别, 如支持向量机、朴素贝叶 斯等。
神经网络模式识别
利用神经网络的自学习能 力,对回波信号进行分类 和识别,如卷积神经网络 、循环神经网络等。
模糊模式识别
利用模糊逻辑和模糊集合 理论,对回波信号进行分 类和识别,如模糊K近邻 、模糊聚类等。

第2部分雷达信号频率的测量-PPT课件

第2部分雷达信号频率的测量-PPT课件
第2 章 雷达信号频率的测量
2.1 2.2 2.3 2.4 概述 频率搜索接收机 比相法瞬时测频接收机 信道化接收机
2 .1
概述
要点: l 重要性 l 主要技术指标 l 技术分类 1.重要性 载波频率是雷达的基本、重要特征,具有相对稳 定性,使信号分选、识别、干扰的基本依据。
2.主要技术指标
1) 测频时间 定义:从信号到达至测频输出所需时间,是确定 或随机的。 要求:瞬时测频,即在雷达脉冲持续时间内完成 载波频率测量。 重要性:直接影响侦察系统的截获概率和截获时 间。
f
1.微波鉴相器
1) 简单微波鉴相器原理如图
功率 分配 延时 线 相加 器 检波 器
鉴相输出信号: T是延迟线的延迟时间。
2 U 2 kA 1 cos T 0
微波鉴相器用于实现信号的自相关运算,因此需要考虑 以下条件: •相干的基本条件: T • 否则不能进行相关运算。 单值测量条件:
测频时间(续)
• 频域截获概率: 即频率搜索概率,单个脉冲的频率搜索概率定义为
P IF1 f r f 2 f1
fr ―― 测频接收机瞬时带宽, f2-f1 是测频范围,即侦察频 率范围 • 截获时间: 达到给定的截获概率所需的时间,如果采用瞬时测频接 收机,则单个脉冲的截获时间为
tIF T tth 1 r
. .
m2
第一本振组 第二本振组
纯信道化接收机工作原理(续)
第一分路器: 第一中放带宽: 第一中频频率: 第一本振组: 第二分路器 : 第二中放带宽 : 第二中频频率: 第二本振组 :
f f f m r 1 2 1 1
m1
f f f j 0 . 5 f , j 0 , m 1 L 1 j 1 i 1 r 1 1

雷达信号分析与处理第一章第二章

雷达信号分析与处理第一章第二章

s(t) S ( f )e j2 ftdf
S(W) 或 S(f) 存在的充分条件是 s(t) 绝对可积,即 s(t)dt
雷达信号分析与处1理3
第二章 雷达信号与线性处理系 统
在雷达工程术语中,时间函数 s(t)称为雷达信号的时间波形,频率函数 S(W) 或 S(f) 称为雷达信号的频谱密度或频谱。
s(t) S( f ) 表示信号s(t) 和其频谱S(f)
复数表示
s(t) s1(t) js2 (t) S( f ) R( f ) jI ( f )
e j2 ft cos(2 ft) j sin(2 ft)
s1(t)
R( f ) cos(2 ft) I ( f )sin(2 ft)df
雷达信号分析与处理6
第一章 绪论
雷达发明之前的防空:盲人雷达;光学测距仪
1935年,英国皇家物理研究所的沃森.瓦特博士进行无线电科学考察 荧光屏上的亮点 载重汽车上的第一台雷达 东海岸对空警戒雷达网
雷达信号分析与处理7
第一章 绪论
二 、雷达测量原理
Radar-- Radio detection and ranging(无线电探测和测距)
测距 测高 测速
三、雷达与通信信号区别 1电磁波频率;
3天线方向性;
5信号处理;
2传输目的; 4主要考虑方面;
雷达信号分析与处理8
第一章 绪论
1.2 研究雷达信号的目的和意义
一、雷达所面临的问题 四大威胁 电子干扰 (干扰机:压制式、欺骗式)
徘徊者EA-6B
低空突防(巡航导弹)
咆哮者EF-18G
新型运8电子干扰机
第一章 绪论
二、新型雷达 1.低截获概率雷达; 2.超宽带雷达; 3.稀疏布阵雷达; 4.无源雷达; 5.双/多基地雷达; 6.星载毫米波雷达; 7.雷达组网; 8.多域融合探测系统

电子对抗原理--雷达系统结构-信号处理 ppt课件

电子对抗原理--雷达系统结构-信号处理  ppt课件

Pi max D(dB) 10lg Pi min
式中 Pi max 为接收机不发生过载允许输入的最大信 号功率,Pi min 为最小可检测信号功率。
接收机增益
接收机增益指输出信号功率与输入信号 功率之比,如下式所示:

po G pi
式中 po 、pi 分别为输出信号功率和输入 信号功率。
接收机增益控制
CLK
10MHz OSC 8xRocketIO
SPI
串行 FLASH
FPGA
TMS320C6748B ZCEA4 456MHz
IO
FPGA
FPGA
XC6SLX150T FGG676
XC6VLX240T-1FFG1156I
EMIF IO
XC6VLX240T-1FFG1156I
IO EMIF
TMS320C6748B ZCEA4 456MHz
雷达面临的威胁及对抗措施



电子干扰 反辐射武器: 反辐射导弹、反辐射无人驾驶飞机 超低空飞行器: 具有掠地、掠海能力的低空、超低空飞机和巡航 导弹 隐身飞行器: 隐身飞机、隐身无人机、隐身巡航导弹、隐身舰 船等,雷达散射面积比常规兵器小20~30dB
雷达对抗措施
低截获概率: 低截获概率雷达(伪随机信号,降低发射功率)、 双(多)基地雷达 波形捷变、频率捷变、极化捷变、超低副瓣 超宽带(UWB)雷达、毫米波雷达 对抗电子干扰:空域滤波、副瓣对消、副瓣逆影 对抗反辐射武器: 控制开关机时间、使用雷达诱饵、双(多)基地雷 达 对抗超低空飞行器: 机载雷达、气球载雷达、毫米波雷达等 对抗隐身飞行器: 米波雷达、 双(多)基地雷达
接收机噪声



雷达接收机噪声的来源主要分为两种: 内部噪声 外部噪声 内部噪声主要由接收机中的馈线、放电保护器、 高频放大器或混频器等产生。接收机内部噪声 在时间上是连续的,而振幅和相位是随机的, 通常称为“起伏噪声”。 外部噪声是由雷达天线进入接收机的各种人为 干扰、天电干扰、工业干扰、宇宙干扰和天线 热噪声等,其中以天线热噪声影响最大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档