高中圆锥曲线经典题型归纳

合集下载

圆锥曲线大题题型归纳

圆锥曲线大题题型归纳

圆锥曲线大题题型归纳基本方法:1.待定系数法:求所设直线方程中的系数,求标准方程中的待定系数、、、、等等;a b c e p2.齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;3.韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。

要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根;4.点差法:弦中点问题,端点坐标设而不求。

也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式;5.距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题;基本思想:1.“常规求值”问题需要找等式,“求范围”问题需要找不等式;2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解;3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关;4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决;5.有些题思路易成,但难以实施。

这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;6.大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。

题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题例1、已知F1,F2为椭圆+=1的两个焦点,P在椭圆上,且∠F1 PF2=60°,则△F1 PF2的面积为多少?2100x264y点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。

变式1-1 已知分别是双曲线的左右焦点,是双曲线右支上的一点,且12,F F 223575x y -=P =120,求的面积。

12F PF ∠︒12F PF ∆处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明。

例3、(2014秋•市中区校级月考)已知椭圆C :(a >b >0),过焦点垂直于长轴的弦长为1,且221x y a b +=焦点与短轴两端点构成等边三角形.(I)求椭圆的方程;(Ⅱ)过点Q(-1,0)的直线l交椭圆于A,B两点,交直线x=-4于点E,判断λ+μ是否为定值,若是,计算出该定值;不是,说明理由点评:证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明变式3-1 (2012秋•沙坪坝区校级月考)已知椭圆 (a >b >0)的离心率为焦距为2.22221x y a b +=(1)求椭圆的方程;(2)过椭圆右焦点且垂直于x 轴的直线交椭圆于P ,Q 两点,C ,D 为椭圆上位于直线PQ 异侧的两个动点,满足∠CPQ=∠DPQ,求证:直线CD 的斜率为定值,并求出此定值.例4、过抛物线(>0)的焦点F 作任意一条直线分别交抛物线于A 、B 两点,如果(O 为原点)24y ax =a AOB ∆的面积是S ,求证:为定值。

高中数学圆锥曲线常考题型(含解析)

高中数学圆锥曲线常考题型(含解析)

(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。

高考复习圆锥曲线题型归纳整理

高考复习圆锥曲线题型归纳整理

高考复习圆锥曲线题型归纳整理一、求圆锥曲线方程求圆锥曲线方程分为五个类型,求解策略一般有以下几种:①几何分析+方程思想;②设而不求+韦达定理③定义+数形结合;④参数法+方程思想类型1——待定系数法待定系数法本质就是通过对几何特征进行分析,利用图形,结合圆锥曲线的定义与几何性质,分析图中已知量与未知量之间的关系,列出含有待定系数的方程,解出待定的系数即可。

例1.2014年全国Ⅱ卷(理科20)设F1、F2分别是椭圆C:x2a2+y2b2=1a>b>0的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.Ⅰ若直线MN的斜率为34,求C的离心率;Ⅱ若直线MN在y轴上的截距为2,且∣MN∣=5∣F1N∣,求a,b.类型2——相关点法求轨迹方程动点P(x,y)依赖与另一个动点Q(x0,y0)变化而变化,并且动点Q(x0,y0)又在另一个已知曲线上,则可先用x,y表示x0,y0,再将x0,y0代入已知曲线,可得到所求动点的轨迹方程。

例2、2017年全国Ⅱ卷(理科20)设O为坐标原点,动点M在椭圆C:x 22+y2=1上,过M作x轴的垂线,垂足为N,点P满足NP=2NM.(Ⅰ)求点P的轨迹方程;(Ⅱ)设点Q在直线x=−3上,且OP⋅PQ=1,证明:过点P且垂直于OQ的直线l过C的左焦点F.类型3——定义法求轨迹方程先根据条件确定动点的轨迹是某种已知曲线,再由曲线定义直接写出动点的轨迹方程。

例3、2016年全国Ⅰ卷(理科20)设圆x2+y2+2x−15=0的圆心为A,直线l过点B1,0且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.Ⅰ证明∣EA∣+∣EB∣为定值,并写出点E的轨迹方程;Ⅱ设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A 交于P,Q两点,求四边形MPNQ面积的取值范围.类型4——参数法求曲线方程当动点P(x,y)坐标之间的关系较探寻时,可考虑x,y之间用同一个变量表示,得到参数方程,再消去参数即可,但要注意参数的取值范围。

(完整版)圆锥曲线大题题型归纳,推荐文档

(完整版)圆锥曲线大题题型归纳,推荐文档

精心整理圆锥曲线大题题型归纳基本方法:1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等; 2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。

要注4. 5. 1.2.3无关;45“转化”的经验;6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。

题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题例1、 已知F 1,F 2为椭圆2100x +264y =1的两个焦点,P 在椭圆上,且∠F 1PF 2=60°,则△F 1PF 2的面积为多少?点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。

变式1、已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且12F PF ∠=120︒,求12F PF ∆的面积。

变式2、已知F 1,F 2为椭圆2221100x y b +=(0<b <10)的左、右焦点,P 是椭圆上一点.(1)求|PF 1|?|PF 2|的最大值; (2)若∠F 1PF 2=60°且△F 1PF 2的面积为6433,求b 的值 题型二过定点、定值问题例2.(淄博市2017届高三3月模拟考试)已知椭圆C :22221(0)x y a b a b+=>>经过点3(1,),离心率为3,点A 为椭圆C 的右顶点,直线l 与椭圆相交于不同于点A 的两个点1122(,),(,)P x y Q x y . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)当0AP AQ •=u u u r u u u r时,求OPQ ∆面积的最大值;(Ⅲ)若直线l 的斜率为2,求证:OPQ ∆的外接圆恒过一个异于点A 的定点.处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明。

圆锥曲线问题在高考的常见题型及解题技巧

圆锥曲线问题在高考的常见题型及解题技巧

圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线作为高等数学中的重要内容,在高考中常常出现,并且是考察学生数学运算能力和理解能力的重要方面。

圆锥曲线问题在高考中的常见题型有:直线与圆锥曲线的交点问题、圆锥曲线的参数方程问题、圆锥曲线的性质和应用问题等。

下面我们来一一介绍这些常见题型的解题技巧。

一、直线与圆锥曲线的交点问题这是圆锥曲线问题中最常见的一个题型,题目通常要求求出直线与圆锥曲线的交点坐标。

解题技巧如下:1. 分析题目给出的直线和圆锥曲线,确定直线方程和圆锥曲线方程;2. 将直线方程代入圆锥曲线方程中,解方程得出交点坐标;3. 特别要注意,当圆锥曲线为椭圆或双曲线时,有两个交点,需要分别求解;4. 当圆锥曲线为抛物线时,还需要注意直线的位置与抛物线的开口方向。

二、圆锥曲线的参数方程问题圆锥曲线的参数方程问题通常考查学生对参数方程的理解和应用能力,解答这类问题的关键在于用参数代换替换变量。

解题技巧如下:1. 给出的圆锥曲线通常可以用参数方程表示,将已知的参数方程代入题目求解;2. 注意参数方程的参数范围,有时需要根据范围重新调整参数;3. 对于给出的参数方程,需要将参数代换替换变量,进而得出答案。

三、圆锥曲线的性质和应用问题圆锥曲线的性质和应用问题通常要求学生掌握圆锥曲线的基本性质,以及如何应用这些性质解决实际问题。

解题技巧如下:1. 需要牢记圆锥曲线的基本性质,例如椭圆的焦点、双曲线的渐近线等;2. 掌握各种类型圆锥曲线的标准方程和参数方程;3. 对于应用问题,需要在掌握了基本性质的前提下,将问题转化为数学模型,进而解决。

以上就是圆锥曲线问题在高考中的常见题型及解题技巧,希望对大家备战高考有所帮助。

在复习期间,建议大家多做练习题,加深对圆锥曲线知识的理解,提高解题能力。

多思考,灵活运用各种解题技巧,相信大家一定能在高考中取得好成绩!。

(完整版)圆锥曲线常见题型及答案

(完整版)圆锥曲线常见题型及答案

圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。

此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。

此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。

圆锥曲线题型总结:圆锥曲线常考结论题型汇总【自己整理全面】

高考数学专题突破:圆锥曲线二级结论课题1:22a b ±结论一:若直线AB 与圆锥曲线相交于A ,B 两点,M 为AB 的中点,则由点差法可推导得以下结论。

椭圆12222=+b y a x )0(>>b a 22AB a k b k OM-=• 12222=+b x a y )0(>>b a 22AB b a k -=•OMk 双曲线)0,0(12222>>=-b a b y a x 22AB a k b k OM=• )0,0(12222>>=-b a bx a y 22AB ba k =•OMk 抛物线)0(22>=p px y M py k AB =)0(22>-=p px yMp y -k AB = )0(22>=p py xp Mx k AB =)0(22>-=p py xpMx -k AB = 【2014江西理】过点M (1,1)作斜率为﹣21的直线与椭圆C :+=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 . 【答案】22 【解析】解法一:设A (x 1,y 1),B (x 2,y 2),则,,∵过点M (1,1)作斜率为﹣21的直线与椭圆C :+=1(a >b >0)相交于A ,B 两点,M 是线段AB 的中点,∴两式相减可得,∴a=b ,∴=b ,∴e==22. 解法二:由22AB a -k b k OM =•,即121-•=- 22a b ,22a b = 21,e=22a-1b =22【2013新课标1理10】已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 【答案】D【解析】设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②①-②,得1212121222=0x x x x y y y y a b(+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E 的方程为22=1189x y +.故选D. 【2010新课标理12】已知双曲线E 的中心为原点,P (3,0)是E 的焦点,过P 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (﹣12,﹣15),则E 的方程式为( ) A .B .C .D .【答案】B【解析】由已知条件易得直线l 的斜率为k=k PN =1, 设双曲线方程为,A (x 1,y 1),B (x 2,y 2),则有,两式相减并结合x 1+x 2=﹣24,y 1+y 2=﹣30得=,从而==1即4b 2=5a 2,又a 2+b 2=9,解得a 2=4,b 2=5。

圆锥曲线10类大题梳理(解析版)

圆锥曲线大题梳理考情分析圆锥曲线问题是高考的热点问题之一,多数情况在倒数第二题出现,难度为中高档题型。

纵观近几年高考试卷,圆锥曲线的大题主要有以下几种类型:已知过定点的直线与圆锥曲线相交于不同两点,求直线方程或斜率、多边形面积或面积最值、证明直线过定点或点在定直线上等。

各种类型问题结构上具有一定的特征,解答方法也有一定的规律可循。

热点题型突破题型一:最值问题1(2024·安徽合肥·统考一模)已知抛物线C:x2=2py(p>0)的焦点为F 0,1,过点F的直线l与C交于A,B两点,过A,B作C的切线l1,l2,交于点M,且l1,l2与x轴分别交于点D,E.(1)求证:DE= MF;d1d(2)设点P是C上异于A,B的一点,P到直线l1,l2,l的距离分别为d1,d2,d,求2d2的最小值.【思路分析】(1)利用导函数的几何意义求得直线l1,l2的表达式,得出D,E,M三点的坐标,联立直线l与抛物线方程根据韦达定理得出 DE= MF;d1d2d2k=221+1≥2,可求出d d12d2(2)利用点到直线距离公式可求得【规范解答的最小值.】(1)因为抛物线C的焦点为F 0,1,所以p=2,即C的方程为:x2=4y,如下图所示:设点A x 1,y 1,B x 2,y 2,由题意可知直线l 的斜率一定存在,设l :y =kx +1 ,=y =联立 x kx 2 y 4+1得x 2-4kx -4=0,所以x 1+x 2=4k ,x 1x 2=-4.11由x 2=4y ,得y =4x 2,y =2x ,所以l 1:y -y 1=x 1 x -x 1,即y =x 122x -x 14.2令y =0,得x =x 12x12,即D ,0 ,同理l 2:y =x 222x -x 24x22,且E ,0 ,1 1所以 DE =2 x 1-x 2=2 x 1+x 22-4x 1x 2=2k 2+1.x 122x 14x 22x -x -2x 24由y =y ==2y ,得 x =-k1,即M 2k ,-1 .所以 MF =4k 2+4=2 k 2+1,故 DE = MF .(2)设点P x 0,y 0,结合(1)知l 1:y -y 1=x12x -x 1,即l 1:2x 1x -4y -x 2=101因为x 2=4y 1,x 2=4y 00,所以d 1=4y -x 022x 1x 01-24x 1+16=0-2x 0-x 21 2x 1x42x 1+16x =1-x 0222x 1+4.同理可得d 2=x 2-x 022x 2+24,所以d 1d 2=x x 10- 222x 1+4-x ⋅2x 0222x 2+4x =1-2x 0x +x 21 + 0x x 22x 42x 122+4x + 1x 222 +16-4=kx -0+4 x 022k 322+1.又d =y kx 0+01-k 2+12=x 04kx 0+1-+k 21 4kx 0+2=x 04-4k 2+1,d 1所以d 2d 2-4=kx 0 -04+x 2232+k 2116⋅k 2+1 -2x 04kx 0 +42k =221+1≥2.当且仅当k =0时,等号成立;d21即直线l 斜率为0时,d 1d 2取最小值2;求最值及问题常用的两种方法:(1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决;(2)代数法:题中所给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值,求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等。

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型一、解圆锥曲线问题常用的八种方法:1.直线的交点法:利用直线与圆锥曲线的交点来解题,求出直线与曲线的交点坐标,从而得到问题的解。

该方法适用于直线与圆锥曲线有交点的情况。

2.过顶点的直线法:通过过顶点的直线与圆锥曲线的交点性质来解题。

一般情况下,过顶点的直线与圆锥曲线有两个交点,利用这两个交点可以得到问题的解。

3.平行线法:对于平行线与圆锥曲线的交点性质进行分析,可以得到问题的解。

一般情况下,平行线与圆锥曲线有两个交点,通过求解这两个交点可以得到问题的解。

4.切线法:利用切线与圆锥曲线的交点性质来解题。

一般情况下,切线与圆锥曲线有一个交点,通过求解这个交点可以得到问题的解。

5.对称法:通过对称性质,将圆锥曲线转化为标准形式或特殊形式,从而简化问题的求解过程。

6.几何平均法:利用几何平均的性质,将圆锥曲线的方程进行变换,从而得到问题的解。

7.参数方程法:通过给定的参数方程,求解参数,从而得到与曲线相关的问题的解。

8.解析几何法:通过解析几何的方法,将问题抽象为代数方程,从而求解问题。

二、解圆锥曲线问题常规题型:1.已知曲线方程,求曲线的性质:如给定椭圆的方程,求椭圆的长短轴、焦点、离心率等。

2.已知曲线性质,求曲线方程:如给定一个椭圆的长短轴、焦点、离心率等,求椭圆的方程。

3.已知曲线方程和一个点,判断该点是否在曲线上:如给定一个椭圆的方程和一个点P,判断点P是否在椭圆上。

4.已知曲线方程和一个直线,判断该直线是否与曲线有交点:如给定一个椭圆的方程和一条直线L,判断直线L是否与椭圆有交点。

5.已知曲线方程和一个点,求该点到曲线的距离:如给定一个椭圆的方程和一个点P,求点P到椭圆的距离。

6.已知曲线方程和一个点,求该点在曲线上的切线方程:如给定一个椭圆的方程和一个点P,求点P在椭圆上的切线方程。

7.已知曲线方程和两个点,求该曲线上两点之间的弧长:如给定一个椭圆的方程和两个点A、B,求椭圆上从点A到点B的弧长。

解析几何圆锥曲线的经典题型

解析几何圆锥曲线的经典题型
解析几何中的圆锥曲线是高考数学中的重点和难点之一。

以下是解析几何中圆锥曲线的经典题型及解析:
1. 定点问题
题目给出圆锥曲线上的一个点,通过该点的坐标和曲线的方程,求出满足条件的参数值。

解题思路:将点的坐标代入曲线方程,通过解方程或方程组来求解参数。

2. 范围问题
题目给出曲线上某个点的坐标范围,要求确定参数的范围。

解题思路:利用曲线的性质和已知条件,通过不等式或不等式组的求解来确定参数的范围。

3. 最值问题
题目要求求出圆锥曲线上的某一点的坐标或某一线段的长度,使其达到最大或最小值。

解题思路:利用曲线的性质和已知条件,通过求导数或使用基本不等式来确定最值。

4. 轨迹问题
题目要求确定满足某种条件的点的轨迹。

解题思路:通过建立轨迹方程,将轨迹问题转化为求圆锥曲线方程的问题。

5. 对称问题
题目要求确定满足某种对称条件的点的坐标。

解题思路:根据对称性质,列出方程组或不等式组求解。

6. 综合问题
题目将圆锥曲线与其他数学知识(如向量、数列、不等式等)结合在一起进行考查。

解题思路:首先明确各部分的联系,然后利用相关性质和公式求解。

7. 实际应用题
题目结合实际背景,考查圆锥曲线的应用。

解题思路:分析实际问题的需求,建立数学模型,再利用圆锥曲线的性质和公式求解。

掌握这些经典题型及其解题思路,对于理解和掌握解析几何中的圆锥曲线非常重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本方法:点差法适用类型:出现弦中点和斜率的关系已知椭圆C :22233b y x =+,过右焦点F 且斜率为1的直线交椭圆C 于A ,B 两点,N 为弦AB 的中点,求直线ON (O 为坐标原点)的斜率K ON 。

解:设00(,)N x y ,设11(,)A x y ,22(,)B x y ,将其带入椭圆C 得:22211222223333x y b x y b ⎧+=⎪⎨+=⎪⎩①②①减②,并整理,得:12121212()()3()()x x x x y y y y +-=-+- 进一步整理:012012111333ON AB y x x k x y y k -==-=-=--题型:求轨迹方程类型:弦中点型曲线E :2212516x y +=,过点Q (2,1)的E 弦的中点的轨迹方程。

解:设直线与椭圆交与1122(,),(,)G x y H x y 两点,中点为00(,)S x y由点差法可得:弦的斜率01212121201616()25()25x y y x x k x x y y y -+==-=--+, 由00(,)S x y ,Q (2,1)两点可得弦的斜率为0012y k x -=-, 所以0000116225y x k x y -==--, 化简可得中点的轨迹方程为:22162532250x y x y +--=.练习:已知直线l 过椭圆E:2222x y +=的右焦点F ,且与E 相交于,P Q 两点.设1()2OR OP OQ =+(O 为原点),求点R 的轨迹方程 答案:2220x y x +-=类型:动点型在直角坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点P 向y 轴作垂线段PP ′,P ′为垂足.求线段PP ′中点M 的轨迹C 的方程。

解:设M (x ,y ),P (x 1,y 1),则).,0(1y P '则有:44,2,222211111=+⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧+==y x y y x x y y y x x 代入即得轨迹C 的方程为.1422=+y x练习设12,F F 分别是椭圆C :22143x y +=的左右焦点,K 是椭圆C 上的动点,求线段1KF 的中点B 的轨迹方程。

解:221()1324y x ++=练习:已知)0,3(-P ,点R 在y 轴上,点Q 在x 的正半轴上,点M 在直线RQ 上,且0=⋅RM PR MQ RM 23,-=.当R 在y 轴上移动时,求M 点轨迹C答案:x y 42=类型:动线交点型设向量(0,2),(1,0)a b ==,过定点(0,2)A -,以a b λ+方向向量的直线与经过点(0,2)B ,以向量2b a λ-为方向向量的直线相交于点P ,其中R λ∈,求点P 的轨迹C 的方程。

解:设(,)P x y ∵(0,2),(1,0)a b ==,∴(0,2)(1,0)(,2)a b λλλ+=+=,2(1,0)2(0,2)(1,4)b a λλλ-=-=-, 过定点(0,2)A -,以a b λ+方向向量的直线方程为:2(2)0x y λ-+=, 过定点(0,2)P ,以2b a λ-方向向量的直线方程为:420x y λ+-=, 联立消去λ得:2284x y +=∴求点P 的轨迹C 的方程为2284x y +=.在△ABC 中AC =,B 是椭圆22154x y +=在x 轴上方的顶点,l 是双曲线222x y -=-位于x 轴下方的准线,当AC 在直线l 上运动时,求△ABC 外接圆的圆心P 的轨迹E 的方程。

解:易知点(0,2),B 直线l 方程是1y =-AC ∴=且AC 在直线l 上运动。

可设(1),(1),A m C m -+-则AC 的垂直平分线方程为x m = ①AB 的垂直平分线方程为12y x -=- ② P 是△ABC 的外接圆圆心,∴点P 的坐标(,)x y 满足方程①和②。

由①和②联立消去m 得26x y =,故圆心P 的轨迹E 的方程为26x y =题型:动态定值问题类型:存在性问题双曲线C :2213y x -=的左右焦点分别为12F F 、,直线l 过点2F 且与双曲线C 交于P 、Q 两点。

设点(, 0)M m ,问:是否存在实数m ,使得直线l 绕点2F 无论怎样转动,都有0MP MQ ⋅=成立?若存在,求出实数m 的值;若不存在,请说明理由.解:当直线l 的斜率不存在时,易知(2,3),(2,3)P Q -,计算得(1,0)M -; 当直线l 的斜率存在时,设直线l 方程为(2)y k x =-,与双曲线方程联立消y 得0344)3(2222=++--k x k x k , 设11(,)P x y 、22(,)Q x y ,则2122212243433k x x k k x x k ⎧+=⎪⎪-⎨+⎪=⎪-⎩∴1212()()MP MQ x m x m y y ⋅=--+212122222121222222222()()(2)(2)(1)(2)()4(1)(43)4(2)433x m x m k x x k x x k m x x m k k k k k m m k k k =--+--=+-+++++++=-++-- 2223(45)3m k m k -+=+-. 假设存在实数m ,使得0MP MQ ⋅=,故得2223(1)(45)0m k m m -+--=恒成立,∴2210450m m m ⎧-=⎪⎨--=⎪⎩, 解得 1.m =-∴当1m =-时,0MP MQ ⋅=.,综上,存在1m =-,使得0MP MQ ⋅=. 练习抛物线E :24(0)y x x =>,焦点F ,过点F 作两条互相垂直的曲线E 的弦AB 、CD ,设AB 、CD 的中点分别为N M ,.问:直线MN 是否过某一定点?若经过,求出该定点;不经过,请说明理由。

解:R (3,0).类型:恒成立问题设圆M 过A (0,2),且圆心M 在曲线C :24x y =上,EG 是圆M 在x 轴上截得的弦,试探究当M 运动时,弦长EG 是否为定值?为什么?解:设圆的圆心为(,)M a b ,∵圆M 过A (0,2),∴圆的方程为2222()()(2)x a y b a b -+-=+-.令0y =得:22440x ax b -+-=.设圆与x 轴的两交点分别为1(,0)x ,2(,0)x ,不妨设12x x >,由求根公式得1x =,222a x =.∴12x x -=又∵点(,)M a b 在抛物线24x y =上,∴24a b =,∴124x x -==,即EG =4. ∴当M 运动时,弦长EG 为定值4.练习如图,已知椭圆12822=+y x ,点M (2,1),平行于OM 的直线l 在y 轴上的截距为m (m ≠0),l 交椭圆于A 、B 两个不同点。

求证直线MA 、MB 与x 轴始终围成一个等腰三角形.解:设直线MA 、MB 的斜率分别为k 1,k 2,只需证明k 1+k 2=0即可.m x y l +=∴21的方程为:. ∴0422128212222=-++∴⎪⎪⎩⎪⎪⎨⎧=++=m mx x y x m x y , 设1122(,),(,)A x y B x y ,则12121211,22y y k k x x --==-- 且212122,24x x m x x m +=-=-∴12122112121211(1)(2)(1)(2)22(2)(2)y y y x y x k k x x x x ----+--+=+=---- )2)(2()1(4)2)(2(42)2)(2()1(4))(2()2)(2()2)(121()2)(121(212212*********------+-=----+++=----++--+=x x m m m m x x m x x m x x x x x m x x m x2212242444=0(2)(2)m m m m x x --+-+=--∴120k k +=,故直线MA 、MB 与x 轴始终围成一个等腰三角形.过双曲线2233y x -=的上支上一点P 作双曲线的切线交两条渐近线分别于点,A B .求证:OA OB ⋅为定值。

解:2类型:能够转化为直线垂直的特殊几何问题(矩形问题)过点Q (-2,0)作直线l 与曲线C :.1422=+y x 交于A 、B 两点,设N 是过点4(,0)17-,且以(0,1)a =为方向向量的直线上一动点,满足ON OA OB =+(O 为坐标原点),问是否存在这样的直线l ,使得四边形OANB 为矩形?若存在,求出直线l 的方程;若不存在,说明理由.解: 当直线l 的斜率不存在时,与椭圆无交点,不符合题意.所以设直线l 的方程为y = k (x +2),与椭圆交于A (x 1,y 1)、B (x 2,y 2)两点,N 点所在直线方程为.0174=+x 由.0444)4()2(14222222=-+++⎪⎩⎪⎨⎧+==+k x k x k x k y y x 得由△= .34,0)44)(4(4162224≤∴≥-+-k k k k 即.332332≤≤-k .4)1(4,4422212221k k x x k k x x +-=+-=+,OB OA ON += 即OB AN =,∴四边形OANB 为平行四边形假设存在矩形OANB ,则0=⋅OB OA ,即02121=+y y x x , 即04)(2)1(2212212=++++k x x k x x k ,于是有0441622=+-k k ,得.21±=k 检验:设17444),,(2221000-=+-=+=+=k k x x x OB OA ON y x N 得由,即点N 在直线174-=x 上. ∴存在直线l 使四边形OANB 为矩形,直线l 的方程为).2(21+±=x y(三点共圆问题)设直线1:+=kx y l 与双曲线.112422=-y x 交于不同的两点A 、B ,是否存在实数k ,使得以线段AB 为直径的圆经过点D (0,-2)?若存在,求出k 的值,若不存在,说明理由.解:设A 、B 点的坐标分别为),(11y x 、),(22y x ,由⎪⎩⎪⎨⎧=-+=1124122y x kx y 得,0132)3(22=---kx x k 221221313,32kx x k k x x --=-=+∴, ∵AB 与双曲线交于两点,∴△>0,即,0)13)(3(4422>---k k 解得.213213<<-k∵若以AB 为直径的圆过D (0,-2),则AD ⊥BD ,∴1-=⋅BD AD k k ,即1222211-=+⋅+x y x y , ∴12121212(2)(2)0(3)(3)0,y y x x kx kx x x +++=⇒+++= ∴)12.(09323)313)(1(09)(3)1(22221212分=+-⋅+--+⇒=++++kkk k k x x k x x k 解得)213,213(414,872-∈±=∴=k k ,故满足题意的k 值存在,且k 值为414±.题型:动态最值问题类型:转化为函数关系,并通过交点情形找出限定范围设过(1,0)E 的直线l 与曲线C :2284x y +=交于两个不同点M 、N ,求EM EN ⋅的取值范围。

相关文档
最新文档