Cu掺杂四硼酸锂微晶的水热合成及其热释光特性
微纳米铜粉的水热法制备及摩擦学性能研究

微纳米铜粉的水热法制备及摩擦学性能研究尹贻彬;邵鑫;刘坤坤;崔瑞婷【摘要】Uniform cupper micro-nanopowders were synthesized by the hydrothermal method with cupric nitrate trihydrate,ascorbic acid,sodium hydrate and ammonia water as raw materials.The influence of the reaction time on the morphology was discussed.Structures,morphology and friction performance of the as-synthesized samples were characterized by X-ray diffraction(XRD),SEM and friction testing machine.The results showed that the cupper powders have good wear-resistance performance.%以硝酸铜、氢氧化钠、氨水为原料,利用预先制备出的纳米氧化铜为模板,在水热条件下制备出了分散均匀、晶相纯净的微纳米铜粉末,研究了反应时间对产物形貌的影响,分别用XRD、SEM及摩擦磨损实验机表征制备样品的物相、形貌及摩擦学性能,结果表明制备出的微纳米铜粉末具有良好的抗磨性能.【期刊名称】《聊城大学学报(自然科学版)》【年(卷),期】2012(025)001【总页数】3页(P85-87)【关键词】微纳米铜粉;抗摩擦;水热法【作者】尹贻彬;邵鑫;刘坤坤;崔瑞婷【作者单位】聊城大学材料科学与工程学院,山东聊城252059;聊城大学材料科学与工程学院,山东聊城252059;聊城大学材料科学与工程学院,山东聊城252059;聊城大学材料科学与工程学院,山东聊城252059【正文语种】中文【中图分类】TQ12金属纳米粒子因其特有的表面效应、量子尺寸效应、小尺寸效应以及宏观量子隧道效应等导致其产生了许多独特的光、电、磁、热及催化等特性,在许多高新科技领域如陶瓷、化工、电子、光学、生物、医药等方面有广阔的应用前景和重要价值.近年来,国内外学者在纳米粒子作润滑油添加剂方面做了大量研究工作[1-7]. 纳米金属粒子的良好性能引起了科学家的极大兴趣,目前制备纳米金属粒子的研究方法包括反相微乳液法、水热法、化学还原法、物理气相沉积(PVD)、化学气相沉积(CVD)、电化学沉积、溶胶一凝胶过程、溶液的热分解和沉淀,模板法等化学方法,其中模板法因具有实验装置简单、操作容易、形态可控、适用面广等优点,近年来引起了人们的极大兴趣.纳米铜具有多种形貌,如球形、纺锤形、薄片形、椭球形、线形、棒形.其制备方法也比较多,如蒸发冷凝法、γ射线辐射-水热结晶联合法、机械化学法、溶胶-凝胶法、液相化学还原法、水热法、电解法、铵盐歧化法、等离子法、水雾化法等.如陈庆春[8]就以一种六元脂肪族醇还原CuSO4制得了铜纳米棒及铜纳米线,盘荣俊等[9]用KBH4及乙二醇还原剂制得了铜纳米颗粒.1 实验部分1.1 实验材料硝酸铜(Cu(NO3)2·3H2O,AR,天津大茂化学试剂厂),十二烷基硫酸钠(SDS,AR,天津市科密欧化学试剂有限公司),氨水(NH3·H2O,AR,烟台三和化学试剂有限公司),抗坏血酸,氢氧化钠(AR,天津市科密欧化学试剂有限公司).1.2 实验过程取2mmol硝酸铜溶解于40mL蒸馏水,搅拌中加入1:1(体积比)的氨水,使溶液由混浊变为透明的深蓝色,然后加入SDS.将0.16g氢氧化钠用10mL蒸馏水溶解,在搅拌中将氢氧化钠溶液缓慢加入硝酸铜溶液中,混合后的溶液继续搅拌5min后转移至带有聚四氟乙烯内衬的水热釜中在180℃保温4h,然后将混合液取出,在搅拌中加入适量抗坏血酸继续搅拌一定的时间,分别用蒸馏水和无水乙醇将产物洗涤,室温下空气中干燥24h,得到暗红色粉末待用.1.3 样品表征采用德国BRUKER D8ADVANCE X射线衍射仪对粉体的晶相组成进行分析.测试条件:加速电压为40kV,管电流100mA.采用日本JSM-6380LV扫描电镜观察不同的热处理工艺条件下获得粉体的显微形貌,测试加速电压20kV.2 结果与讨论2.1 XRD分析所得样品的XRD图谱如图1所示,从图中可以看出,微纳米铜粉在衍射角(2θ)为43.297°、50.433°和74.130°处显示出衍射强峰,这些衍射峰分别归属于金属铜(fcc)的(111)、(200)和(220)的晶面衍射.这些衍射峰很窄,说明金属铜是晶态的.另外,在图谱上除金属铜的衍射峰外没有其它物质的衍射峰出现,说明所制备的微纳米铜粉末纯度高.图1 样品XRD图谱图2 纳米氧化铜的SEM照片2.2 SEM分析直接从水热釜中取出离心洗涤所得样品的SEM图片如图2所示,从图中可以看出,水热法制备的微纳米氧化铜粒径均匀,形貌为椭球形,约200nm,可以作为纳米铜制备的模板使用.加入抗坏血酸后不同搅拌时间所得样品的形貌照片如图3所示,从图中可以看出,搅拌时间对产物形貌的影响不大,均得到了粒径小于100nm的铜粒子,搅拌时间6h所得样品的形貌最为均匀,说明反应时间的延长不利于纳米铜粒子的均匀形核.与图2相比较,微纳米铜粉尺寸比氧化铜要小的多,分散均匀.图3 微纳米铜粉的SEM (A:3hB:6h;C:9h;D:15h)2.3 摩擦性能测试铜粉超声分散在基质油中,摩擦学行为测试在MS2800四球摩擦磨损试验机上进行,除特殊注明外,长磨试验条件均为:负荷294N,转速1 450r/min,时间30min,室温.所用钢球为上海钢球厂生产的GCr15二级钢球,直径为12.17mm,硬度为HRC 59-61.摩擦因数μ与磨斑直径WSD值均为3次试验的平均值.表中显示,当纳米铜添加剂质量分数为3.0%时,其WSD最小,为液体石蜡的78.13%,随添加剂量的增加,WSD值逐渐降低,所制备的微纳米铜粉具有一定的抗磨能力.表1 微纳米铜粉添加剂在液体石蜡中的摩擦学性能?3 结论在水热条件下,较短时间内,利用纳米氧化铜为前驱体,抗坏血酸为还原剂,制备出了粒径均匀的微纳米铜粉末,在液体石蜡基础油中,质量分数为3%的添加量能起到很好的抗磨作用.参考文献【相关文献】[1] Dong J,Chen G.A new concept-formation of permeating layers from nonactive antiwear addition[J].Lubr Eng,1994,50:17-22.[2] Tatasov S.Study of friction by nanocopper additives to motoroil[J].Wear,2002,252:63-69.[3]夏延秋,冯欣,冷曦,等.纳米级镍粉改善润滑油摩擦磨损性能的研究[J].沈阳工业大学学报,1999,21(2):101-103.[4]赵彦保,张治军,党鸿辛.锡纳米微粒的热性能研究[J].河南大学学报,2003,33(1):41-43.[5]胡泽善,王立光,黄令,等.纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能[J].摩擦学学报,2000,20(4):92-295.[6]党鸿辛,赵彦保,张治军.铋纳米微粒添加剂的摩擦学性能研究[J].摩擦学学报,2004,24(2):185-187.[7] Zhou Jing-fang,Zhang Zhi-jun,Wang Xiao-bo,et al.Investigation of the tribological behavior of oil soluble Cu nanoparticles as additive in liquid paraffin [J].Tribology,2000,20(2):123-126.[8]陈庆春.铜纳米棒和纳米线水热还原制备的条件选择[J].精细化工,2005,22(6):417-419.[9]盘荣俊,孙春桃,何宝林,等.溶剂稳定的铜纳米颗粒的制备[J].化学与生物工程,2006,23(11):13-15.。
超薄二维Au@BiVO_(4)纳米片光催化降解HPAM

超薄二维Au@BiVO 4纳米片光催化降解HPAM董泽坤1,李辉2,3,姚诗余4,刘轶1,鲁新2,刘汉军2(1.吉林大学化学学院,吉林长春130000;2.中国石油集团川庆钻探工程有限公司安全环保质量监督检测研究院,四川广汉618000;3.西华师范大学环境科学与工程学院,四川南充637009;4.吉林大学物理学院,吉林长春130000)[摘要]针对钻井废液中有机物难降解的难题,首先利用两相法制备了单斜晶相的超薄二维BiVO 4纳米片,然后利用光还原法在BiVO 4表面沉积Au 纳米粒子,制得超薄二维Au@BiVO 4纳米片,用于光催化降解聚丙烯酰胺(HPAM )。
考察了催化剂的制备条件、催化剂投加量、HPAM 初始浓度对光催化降解性能的影响,探究了其光催化降解HPAM 的机理。
结果表明,当n (Au )∶n (BiVO 4)为1∶100时,所得到的产品对HPAM 的光催化降解效果最好,其降解效果主要依靠催化剂在光照条件下产生·OH 来实现。
[关键词]两相法;Au@BiVO 4;光催化降解;聚丙烯酰胺[中图分类号]X703.1[文献标识码]A[文章编号]1005-829X (2021)09-0074-07Ultrathin two ⁃dimensional Au@BiVO 4nanosheetsfor photocatalytic degradation of polyacrylamideDong Zekun 1,Li Hui 2,3,Yao Shiyu 4,Liu Yi 1,Lu Xin 2,Liu Hanjun 2(1.College of Chemistry ,Jilin University ,Changchun 130000,China ;PC CCDE SafetyEnvironment Quality Surveillance &Inspection Research Institute ,Guanghan 618000,China ;3.College of Environmental Science and Engineering ,Southwest Normal University ,Nanchong 637009,China ;4.College of Physics ,Jilin University ,Changchun 130000,China )Abstract :Aiming the problem of organic compound hard degradation in drilling waste liquid ,two ⁃dimensional ultra ⁃thin BiVO 4nanosheets with monoclinic crystal phase were firstly prepared via a simple two ⁃phase method ,followedby the deposition of Au nanoparticles under the irradiation.The prepared nanosheets was used to photocatalytic degra ⁃dation of polyacrylamide (HPAM ).The effects of the preparation conditions ,the dosage of the photocatalyst and the initial concentration of the hydrolyzed polyacrylamide (HPAM )on the performance of the photocatalytic degradation efficiency were studied.The mechanism of photocatalytic degradation of HPAM was investigated as well.The results showed that Au@BiVO 4nanosheets exhibited the highest photocatalytic efficiency for HPAM degradation when the molar ratio of Au to BiVO 4was 1∶100.And the photocatalytic degradation mechanism is mainly depended on the ·OH.Key words :two ⁃phase method ;Au@BiVO 4;photocatalytic degradation ;polyacrylamide [基金项目]国家自然科学基金项目(51803070);川庆钻探工程公司资助项目(CQ2020B-41-1-7)油气勘探过程中产生的液态废弃物主要来源于钻井过程中报废的水基与油基钻井液等〔1-2〕。
固体化学复习题及答案

第一章绪论1、固体化学的研究内容是什么?基本内容包括:固体物质的合成,固体的组成和结构,固相中的化学反应,固体中的缺陷,固体表面化学,固体的性质与新材料等。
固体化学主要是研究固体物质(包括材料)的合成、反应、组成和性能及相关现象、规律和原因的科学。
固体化学的研究内容十分广泛。
它与固体物理及其他许多学科相互交叉渗透,因此很难给出明确的,全面的研究范围。
它着重于研究固态物质(包括单晶、多晶、玻璃、陶瓷、薄膜、超微粒子等)的合成、反应、组成、结构和各种宏观和微观性质。
2、假如你是从事无机材料方面的研究者,你的研究成果可以在哪些国内外期刊上投稿,试列举出其中的20种期刊。
《中国稀土学报》《功能材料》《无机材料学报》《无机化学学报》《人工晶体学学报》《硅酸盐通报》《材料科学与工艺》《SCI》《材料科学技术学报(英文版)》《材料工程》《材料导报》《纳米科技》《Chemistry of Materials》《Crystal Growth & Design》《Inorganic Chemistry》《ACS Nano》《NANO letter》《Solar energy materials and solar cells》《Rare Earth Bulletin 》《Journal of Applied Crystallography 》《Journal of the Energy Institute 》《半导体学报》《玻璃与搪瓷》《无机硅化合物》《材料研究学报》;(10)《crystal growth and disign》;(11)《internatianal journal of inorganic materials》;(12)《inorganic materials 》;(13)《crystal research and techonolgy》;(14);《journal of crystal growth 》;(15)《inorganic chemistry》;(16)《advanced founctional materials》;(17)《chemistry of materials》;(18)《japanese new materials》;(19)《journal of materials chemistry》;(20)《advanced materials》。
微波水热合成纳米尖晶石Li4Ti5O12

微波水热合成纳米尖晶石Li4Ti5O12作为锂离子电池的负极材料摘要:通过微波水热法合成纳米花状结构和纳米尖晶石型的Li4Ti5O12并煅烧。
通过用扫描电子显微镜、透射电子显微镜、X-射线粉末衍射和循环伏安法来表现Li4Ti5O12的性能。
纳米花和纳米结构的Li4Ti5O12的第一周期放电容量分别为176.7和109.8毫安每克,并在电流速率为1.1C,100次循环后,保持138.4和91.7毫安每克的可逆容量。
由于纳米花结构比纳米粒子结构的Li4Ti5O12表具有更大的比表面积和较短的Li+扩散途径,因此前者比后者表现出更好的性能。
该制备过程简单、快速,因此在锂离子电池的应用中表现出广泛的应用前景。
1.引言:锂离子电池是最发达的能量便携式设备的存储系统,电动车和混合动力电动汽车很大程度上归因于他们的高能量密度和循环寿命长[1-4]。
目前,石墨烯作为阳极材料,被广泛用于商业锂离子电池,但它在需要宽电容的电动汽车行业受到了限制。
最近,尖晶石型Li4Ti5O12由于其独特的优势,作为一个有前途的阳极(负极)材料引起了人们的兴趣[4-20]。
其不同寻常的高功率电池的潜力,促进了这项研究的进行[21-24]。
尖晶石型的Li4Ti5O12的工作电压大约是1.55V,避免了传统的固体电解质界面的形成(例如:之前的石墨材料),由于高库伦效率的作用,作为电解质未暴露在强烈的高还原电位[18]。
此外,具有零应变特性的尖晶石结构Li4Ti5O12在充电和放电过程中具有良好的结构稳定性和可逆性[19]。
此外,在Li4Ti5O12中Li+的高移动性为锂离子电池提供了良好的速率,这是可取的牵引应用[20]。
近年来,一直在致力于研究通过做空电子和锂离子的扩散路径,进而提高充放电率的纳米尖晶石结构的Li4Ti5O12。
尖晶石型Li4Ti5O12纳米材料具有不同的形态,通过溶剂热[25]和水热[26-29]的方法,已经成功的合成了纳米管[25,26],纳米线[27,28],和纳米多孔微球[29]等结构。
三维混核Cu(Ⅰ)-Tb(Ⅲ)配位化合物的溶剂热合成、晶体结构和荧光性质

其 进 行 了元 素 分 析 、R及 X 射 线 衍 射 法 表 征 。晶体 结 构 研 究 表 明 : 合 物 1属 于 三 斜 晶 系 p I 一 配 i空 间群 。配合 物 1 由配 体 异 烟 是
.
酰 胺 吡 啶 基 异 酞 酸连 接 而 成 的三 维 二 重 贯 穿 结 构 。 荧光 测试 研 究 表 明配 合 物 1具 有 典 型 的 稀 土铽 离子 绿 色 荧 光 。
c r o y ru st o n c wo o he bⅢ) o sit D lnh nd i a e tu tr . h n te 2 ly r r a b x lgo p o c n e t rtre T ( in no 2 a ta ie b— y rsrcu e T e h D a e sae t l
V 23 81 ) m , = , 4 3 u bNO 3 = 3 71 , e 1 7 ・m- = .3 mm~ 0 O= 3 0Ri 00 12 = . ( n 。Z 2 C3 7 T 2 62 M ̄1 8 . D = . 0g c 3 3 8 3 6 HC , 7 9 5 , 0 ) 1 6 , .2 , =
DE NG — a g Z Yi n HAO L - a g C F iF n HEN Ma — h n nS e g
ZHANG Chu . n Hua KUANG iZ} NI Xu Da. l i E e
(e aoao ucin ra o ea iMa r sfHegagN r l U i r t K yL b r r o n t a Ogn m t l t i t y fF o l c e a o nyn oma nv sy l e i, C lg Hu a rvne D p r et ce ir n t r s c n e H ny n, n 20 8 C ia oeeo n nPoic, eat n h ms yadMa i i , eg ag Hua 4 10 , hn ) l f m o f t ea S e l c n
CsPbBr_(3)Si_(3)N_(4)复合材料制备及发光性能

第42卷㊀第6期2021年6月发㊀光㊀学㊀报CHINESE JOURNAL OF LUMINESCENCEVol.42No.6June,2021文章编号:1000-7032(2021)06-0829-09㊀㊀收稿日期:2021-03-11;修订日期:2021-03-24㊀㊀基金项目:国家自然科学基金(51962005);江西省自然科学基金(20192BAB206010);江西省井冈市青年学者奖励计划([2018]82)资助项目Supported by National Natural Science Foundation of China (51962005);Natural Science Foundation of Jiangxi Province (20192BAB206010);Award Program of Youth Jinggang Scholars program in Jiangxi Province([2018]82)CsPbBr 3/Si 3N 4复合材料制备及发光性能徐范范1,2,3,聂文东1,2,3,尧利钦1,2,3,何盛安1,2,3,陈㊀广1,2,3,叶信宇1,2,3,4∗(1.江西理工大学材料化学冶金学部,江西赣州㊀341000;㊀2.江西理工大学稀土学院,江西赣州㊀341000;3.国家离子型稀土资源高效开发利用工程技术研究中心,江西赣州㊀341000;4.江西省稀土发光材料与器件重点实验室,江西赣州㊀341000)摘要:近年来,钙钛矿量子点CsPb X 3(X =Cl,Br,I)稳定性较差的问题引起了广泛关注㊂本文在室温下合成了稳定的CsPbBr 3/Si 3N 4绿色荧光粉并将其应用于白光发光二极管(WLEDs)㊂通过X 射线衍射(XRD)㊁扫描电子显微镜(SEM)㊁能谱仪(EDS)㊁激发和发射光谱(PL㊁PLE)等分析测试手段对CsPbBr 3量子点和CsPbBr 3/Si 3N 4荧光粉的结构㊁形貌㊁元素组成及光谱特性等进行了分析对比㊂实验结果表明,CsPbBr 3/Si 3N 4绿色荧光粉的热稳定性㊁水稳定性㊁色稳定性均得到了显著提升㊂80ħ时CsPbBr 3/Si 3N 4荧光粉的发光强度能保持初始发光强度的87.4%,水中浸没120min 后发光强度能保持初始发光强度的75.5%㊂CsPbBr 3/Si 3N 4复合材料的量子效率则由CsPbBr 3量子点粉体的15.4%提升至35.4%㊂将CsPbBr 3/Si 3N 4复合材料与K 2SiF 6ʒMn 4+红色荧光粉㊁InGaN 基蓝光LED 芯片封装制得的WLED 器件色域为113.4%NTSC,流明效率达49.4lm /W㊂关㊀键㊀词:钙钛矿量子点;绿色荧光粉;稳定性中图分类号:O482.31㊀㊀㊀文献标识码:A㊀㊀㊀DOI :10.37188/CJL.20210085Preparation and Luminescent Properties of CsPbBr 3/Si 3N 4CompositeXU Fan-fan 1,2,3,NIE Wen-dong 1,2,3,YAO Li-qin 1,2,3,HE Sheng-an 1,2,3,CHEN Guang 1,2,3,YE Xin-yu 1,2,3,4∗(1.Faculty of Materials ,Metallurgy and Chemistry ,Jiangxi University of Science and Technology ,Ganzhou 341000,China ;2.School of Rare Earth ,Jiangxi University of Science and Technology ,Ganzhou 341000,China ;3.Key Laboratory of Rare Earth Luminescence Materials and Devices of Jiangxi Province ,Ganzhou 341000,China ;4.China National Engineering Research Center for Ionic Rare Earth ,Ganzhou 341000,China )∗Corresponding Author ,E-mail :xinyye @Abstract :In recent years,the poor stability of perovskite quantum dots CsPb X 3(X =Cl,Br,I)has attracted extensive attention.In this paper,we synthesized stable CsPbBr 3/Si 3N 4green phosphors at room temperature and applied to white light emitting diodes(WLEDs).The structure,morphology,element composition and luminescent properties of CsPbBr 3and CsPbBr 3/Si 3N 4phosphors were in-vestigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),energy dispersive spectrometer(EDS),excitation and emission spectra(PL,PLE).The thermal stability,water andcolor stability of CsPbBr 3/Si 3N 4green phosphor were obviously improved.The emission intensity of CsPbBr 3/Si 3N 4phosphor can maintain 87.4%of the initial emission intensity at 80ħ,and main-tain 75.5%of the initial emission intensity after being immersed in deionized water for 120min.The quantum efficiency of CsPbBr 3/Si 3N 4composite is increased from 15.4%of CsPbBr 3quantum830㊀发㊀㊀光㊀㊀学㊀㊀报第42卷dots powder to35.4%.By packing the CsPbBr3/Si3N4phosphor with K2SiF6ʒMn4+red phosphor and InGaN based blue LED chip,the color gamut of the WLED device is113.4%NTSC and the lu-minous efficiency is49.4lm/W.Key words:perovskite quantum dots;green phosphor;stability1㊀引㊀㊀言近年来,全无机钙钛矿量子点(Perovskite quantum dots,PQDs)由于量子效率高㊁色纯度高㊁半峰宽窄㊁发射光谱可调等优势[1-5]成为了研究的热点,已经成功地应用在发光二极管(LEDs)㊁太阳能电池㊁激光以及光电探测器等方面[6-10]㊂但是,目前全无机钙钛矿量子点本身还存在的一些问题阻碍了其应用的进一步发展㊂首先,由于本身固有的离子属性,导致其稳定性较差,在氧气㊁极性溶剂㊁光㊁热等恶劣环境中,量子点会分解进而导致荧光猝灭[11-14]㊂其次,量子点胶体溶液拥有很高的量子效率,但是粉末形式的量子点会发生严重的荧光猝灭行为[15-16],而实际应用中更倾向于荧光粉体的使用,因此,提高粉体的量子效率是很有必要的㊂将CsPb X3(X=Cl,Br,I)PQDs与稳定性高的材料结合制成复合材料是一种提高稳定性行之有效的方法㊂He等[17]报道了利用多孔氮化硼纳米纤维(BNNFs)作为载体保护CsPbBr3PQDs不受外界环境的影响,所制备的CsPbBr3/BNNF复合材料在空气环境中具有优异的光稳定性和长期贮存稳定性㊂此外,CsPbBr3/BNNF复合材料还表现氨响应行为,即在氨气中光致发光强度明显降低,在氮气中处理后光致发光恢复㊂有机-无机杂化钙钛矿CH3NH3PbI3同样具有这样的氨响应行为,但是它的响应行为是不可逆的㊂而氨气处理3h后,CsPbBr3/BNNF仍可在氮气处理后恢复㊂Qiu等[18]采用一锅原位法在剥离的二维六方氮化硼(h-BN)纳米片上直接生长均匀的钙钛矿纳米晶㊂这种复合材料具有良好的导热性,并能及时散热,因此表现出优异的热稳定性,在120ħ时光致发光强度仍然可以保持初始发光强度的80%(约为纯钙钛矿纳米晶的6倍)㊂上面两种策略都使用传统的热注入法合成复合材料,且前处理要几小时,甚至30h,操作复杂,耗能耗时㊂Li等[19]首次利用h-BN纳米片在室温下通过简单的非均相成核-生长过程合成稳定的CsPbBr3 PQDs㊂由于二维纳米片比表面积大且存在丰富的介孔,因此立方CsPbBr3PQDs可以附着在h-BN纳米片表面㊂h-BN纳米片独特的二维结构和优异的导热性使h-BN/CsPbBr3PQDs纳米复合材料的湿度稳定性和热稳定性显著增强㊂这种方法由于是在室温下制备,不仅节能而且操作方便,但相比前面两种样品来说,热稳定性还不能让人十分满意㊂Yoon等合成了CsPbBr3/PSZ(聚硅氮烷)复合荧光粉,复合后量子点的表面缺陷被钝化,并形成一层阻挡层,保持高量子效率(PLQY)的同时提高了量子点的稳定性[20],但整个合成过程成本高且耗时㊂前期研究表明,氮化硅晶片可被用来做MAPb X3纳米片的载体应用在激光上[21],受此启发,本文尝试在室温下合成稳定的CsPbBr3/Si3N4复合粉体材料,探索CsPbBr3/Si3N4复合材料的发光性质㊁稳定性以及在白光LED上的应用㊂应用XRD㊁SEM㊁EDS㊁PL㊁PLE等技术手段对合成的CsPbBr3/Si3N4荧光粉的晶相㊁微观结构㊁形貌㊁光谱特性等进行了测试表征㊂结果表明,CsPbBr3/ Si3N4荧光粉具有优异的热稳定性和水稳定性,同时,CsPbBr3/Si3N4荧光粉的量子效率可由CsPb-Br3PQDs粉体的15.4%提高至35.4%㊂2㊀实㊀㊀验2.1㊀样品制备2.1.1㊀CsPbBr3PQDs粉末制备作为实验对比的CsPbBr3PQDs均为粉末状态㊂取0.384g乙酸铯(CH3COOCs)和0.758g 乙酸铅(Pb(CH3COO)2)溶解于5mL乙酸溶液中得到前驱体溶液Q㊂将20mL氯苯㊁1.5mL油酸㊁1mL油胺㊁0.1mL33%醋酸溴化氢溶液加入试管中搅拌,快速注入0.2mL上述前驱体溶液Q,搅拌约10s后离心,倒出上清液,沉淀用20mL 乙酸乙酯洗涤,40ħ真空下干燥8h后即得到了CsPbBr3PQDs粉末㊂㊀第6期徐范范,等:CsPbBr3/Si3N4复合材料制备及发光性能831㊀2.1.2㊀CsPbBr3/Si3N4荧光粉的制备将20mL氯苯㊁1.5mL油酸㊁1mL油胺㊁0.1mL33%醋酸溴化氢溶液㊁0.1g Si3N4加入试管中搅拌后加入0.2mL上述前驱体溶液Q,快速搅拌后离心,然后将沉淀在40ħ真空下干燥30min即得到了CsPbBr3/Si3N4绿色荧光粉㊂乙酸铅(AR)㊁乙酸(AR)购买自广东西陇科技有限公司,乙酸铯(99%)㊁氯苯(99%)㊁油酸(AR)㊁油胺(90%)㊁Si3N4(99.9%)购买自上海阿拉丁生化科技有限公司,33%醋酸溴化氢溶液购买自百灵威科技有限公司㊂2.2㊀样品表征采用荷兰PA Nalytical公司生产的X Pert Pro 型粉末X射线衍射仪对CsPbBr3/Si3N4绿色荧光粉进行X射线粉末衍射测试,其辐射源为Cu靶(Cu Kα,λ=0.154187nm)㊂FEI公司生产的配备有电子散射能谱仪的MLA650F型扫描电镜用于获得样品的形貌信息㊂样品的吸收光谱通过PERKINELMER公司生产的内置150mm直径积分球的Lambda950紫外分光光度计测得㊂样品的室温激发㊁发射光谱采用F-7000(日本日立公司)型荧光光谱仪测试㊂通过日本爱发科株式会社生产的PHI5000VersaProbeⅡ型号的X光电子能谱仪(XPS)获得XPS谱㊂通过EX-1000(杭州远方光电公司)型光谱仪获得变温光谱㊂采用日本SHIMADZU公司RAffinity-21型号的光谱仪获得红外光谱㊂采用配备积分球的爱丁堡FLS980获得荧光粉的量子效率㊂在爱丁堡FLS980荧光分光光度计上测定了荧光衰减曲线㊂3㊀结果与讨论3.1㊀CsPbBr3/Si3N4绿色荧光粉的结构与形貌图1给出了CsPbBr3PQDs㊁CsPbBr3/Si3N4复合材料的XRD谱图,从图中可以看出,复合前CsPbBr3PQDs粉末的XRD与JCPDS54-0752标准卡片相匹配,CsPbBr3/Si3N4复合材料中检测到CsPbBr3的最强衍射峰(30.4ʎ)㊂CsPbBr3/Si3N4荧光粉的主要衍射峰都与Si3N4(JCPDS No.41-0360)相吻合,说明已成功合成CsPbBr3/Si3N4复合材料㊂CsPbBr3PQDs衍射峰较弱的原因是复合材料中量子点的相对含量较少,这与文献中报道的其他纳米复合材料的结果类似㊂荧光粉的形貌会对其实际应用产生重要的影702兹/(°)Intensity/a.u.20103040506080JCPDS54鄄0752CsPbBr3CsPbBr3JCPDS41鄄0360Si3N4CsPbBr3/Si3N4图1㊀CsPbBr3/Si3N4复合材料的XRD图Fig.1㊀XRD pattern of CsPbBr3/Si3N4composite 响㊂图2(a)~(b)给出了CsPbBr3/Si3N4荧光粉的SEM图㊁TEM图,从图中可以看出CsPbBr3 PQDs附着在Si3N4上㊂图2(c)是CsPbBr3/Si3N4荧光粉的高分辨透射电镜(HRTEM),计算得出晶面间距为0.42nm,这与CsPbBr3PQDs的(110)晶面间距相匹配,表明制得的物质是CsPbBr3/ Si3N4荧光粉㊂图2(d)是CsPbBr3/Si3N4荧光粉的EDS能谱图,可以得出Cs㊁Pb㊁Br㊁Si及N的含量分别是0.09%㊁0.08%㊁0.26%㊁59.34%和40.24%,表明荧光粉中主体物质组成是Si3N4,而Cs㊁Pb㊁Br元素比例约为1ʒ1ʒ3,表明附着的物质是CsPb-Br3PQDs㊂500nm(d)50001000001500020000500006000040000300002000010000d=0.42nmCsPb Pb BrBrCsNSiEnergy/keVIntensity/(kcounts)图2㊀(a)~(c)CsPbBr3/Si3N4荧光粉的SEM㊁TEM㊁HR-TEM;(d)EDS能谱图㊂Fig.2㊀(a)-(c)SEM,TEM,HRTEM of CsPbBr3/Si3N4 phosphor.(d)EDS spectrum.3.2㊀CsPbBr3/Si3N4绿色荧光粉的光学性能图3(a)给出了加入不同量Si3N4制得的CsPbBr3/Si3N4的发射光谱,从图中可以看出,随着Si3N4加入量的增加,发光强度先上升后下降,在832㊀发㊀㊀光㊀㊀学㊀㊀报第42卷加入0.1g 时达到最大㊂图3(b)给出了CsPbBr 3/Si 3N 4绿色荧光粉的吸收㊁光致发光光谱㊂从图中可以看出,CsPbBr 3/Si 3N 4绿色荧光粉在500nm处表现出带边吸收㊂在365nm 激发下,CsPbBr 3/575姿/nmI n t e n s i t y /a .u .5505255004750.05g 0.1g 0.075g 0.15g(a )600姿/nmI n t e n s i t y /a .u .550500450400(c )350E RE SI SCsPbBr CsPbBr /Si N 600姿/nmI n t e n s i t y /a .u .550500(b )450CsPbBr CsPbBr /Si N Emission Absorption图3㊀(a)加入不同量的Si 3N 4制得的CsPbBr 3/Si 3N 4荧光粉的发射光谱;(b)CsPbBr 3/Si 3N 4荧光粉的吸收光谱(黑色虚线),365nm 波长激发下CsPbBr 3/Si 3N 4荧光粉的发射光谱(红色实线);(c)CsPb-Br 3/Si 3N 4荧光粉的量子效率图,插图:365nm 波长激发下CsPbBr 3与CsPbBr 3/Si 3N 4荧光粉的图片㊂Fig.3㊀(a)Emission spectra of CsPbBr 3/Si 3N 4phosphorsprepared by adding different amounts of Si 3N 4.(b)Absorption spectrum(black dotted line)and emis-sion spectrum (red solid line)of CsPbBr 3/Si 3N 4phosphor excited at 365nm.(c)Quantum efficiency of CsPbBr 3/Si 3N 4phosphor,inset:the picture of CsPbBr 3and CsPbBr 3/Si 3N 4phosphor excited at 365nm wavelength.Si 3N 4复合材料在513.4nm 处表现出最强发射,半峰宽约为20nm,这归因于CsPbBr 3PQDs 的带边发射㊂量子效率是评价发光材料的重要参数,在室温下我们用涂有硫酸钡的积分球测量了CsPb-Br 3/Si 3N 4绿色荧光粉的量子效率㊂图3(c)给出了CsPbBr 3/Si 3N 4绿色荧光粉在450nm 激发下的量子效率测试结果,通常用ηint 表示量子效率,ηint 可通过公式(1)计算得出:ηint =ʏISʏE R-ʏES,(1)I S 代表CsPbBr 3/Si 3N 4荧光粉的发射强度,E R 和E S 分别是积分球中有荧光粉和没有荧光粉时激发光的激发光谱㊂利用公式(1)计算得出在450nm 激发下CsPbBr 3/Si 3N 4荧光粉的量子效率为35.4%,相同的条件下CsPbBr 3PQDs 粉末的量子效率为15.4%㊂因此,利用Si 3N 4与CsPbBr 3PQDs 复合达到了提升CsPbBr 3PQDs 粉体量子效率的目的㊂插图是365nm 激发下,CsPbBr 3PQDs 粉末与CsPbBr 3/Si 3N 4荧光粉的图片,可以看出CsPbBr 3/Si 3N 4荧光粉有强烈的绿光发射㊂图4(a)中给出了CsPbBr 3PQDs 和CsPbBr 3/Si 3N 4荧光粉的XPS 谱,可以看出,CsPbBr 3/Si 3N 4荧光粉的XPS 谱中有Cs㊁Pb㊁Br㊁Si 及N 的特征峰,其中Cs㊁Pb㊁Br 的特征信号较弱的原因是CsPbBr 3PQDs 的相对含量较少,这与前面EDS 测试结果相符㊂同时,从图4(b)~(c)可以发现,CsPbBr 3/Si 3N 4中的Br 和Pb 的结合能都降低,表明量子点表面的缺陷被钝化[22-23]㊂365nm 激发下,CsPbBr 3/Si 3N 4荧光粉的荧光衰减曲线及拟合曲线如图5(a)所示,通过公式(2)将衰减曲线拟合成双指数函数:I (t )=A 1e -tτ1+A 2e -tτ2,(2)A 1和A 2表示拟合常数,I (t )表示发光强度,τ1和τ2表示双指数分量的衰减时间,t 为时间㊂平均寿命τave 由下列公式计算得出:τave=A 1τ21+A 2τ22A 1τ1+A 2τ2,(3)CsPbBr 3/Si 3N 4荧光粉的平均发光寿命τave 为75.5ns㊂相比于CsPbBr 3PQDs 的平均发光寿命38.7ns,复合之后的荧光寿命更长,其原因可能是CsPbBr 3PQDs 的非辐射跃迁被限制㊂㊀第6期徐范范,等:CsPbBr 3/Si 3N 4复合材料制备及发光性能833㊀1200Binding energy /eVI n t e n s i t y /a .u .CsPbBr 3CsPbBr 3@Si 3N 4Cs 3dCs 3dN 1sSi 2p Pb 4fBr 3dBr 3dPb 4f1000800600400200(a )60Binding energy /eVI n t e n s i t y /a .u .CsPbBr 3CsPbBr 3@Si 3N 4(b )Br 3d626466687072747678130ν/cm -1I n t e n s i t y /a .u .CsPbBr 3CsPbBr 3@Si 3N 4(c )Pb 4f135140145150155图4㊀XPS 谱㊂(a)CsPbBr 3和CsPbBr 3/Si 3N 4荧光粉;(b)Br 3d;(c)Pb 4f㊂Fig.4㊀XPS spectra of CsPbBr 3PQDs and CsPbBr 3/Si 3N 4phosphor(a),Br 3d(b)and Pb 4f(c).100400t /nsI n t e n s i t y /a .u .(a )子=75.5nsCsPbBr 3@Si 3N 4Fitting curve200030050060010002500ν/cm -1T r a n s m i t t a n c e /%(b )CsPbBr 3CsPbBr 3@Si 3N 41500200030004000Si —N —Si COO -C —H3500图5㊀(a)CsPbBr 3/Si 3N 4荧光粉的衰减曲线及拟合曲线;(b)CsPbBr 3PQDs 和CsPbBr 3/Si 3N 4荧光粉的傅立叶红外变换光谱㊂Fig.5㊀(a)Decay curve and fitting curve of CsPbBr 3/Si 3N 4phosphor.(b)Fourier transform spectrum of CsPbBr 3PQDs andCsPbBr 3/Si 3N 4phosphor.图5(b)给出了CsPbBr 3PQDs 与CsPbBr 3/Si 3N 4荧光粉的傅里叶红外变换光谱㊂从CsPb-Br 3/Si 3N 4荧光粉的红外光谱中可以看出,在826cm -1处有强烈的吸收峰,这归属于Si N Si 振动峰;同时在1448cm -1和2990cm -1处有强烈的吸收峰,分别是C H 和COO -的振动峰,这两个峰归属于CsPbBr 3PQDs 表面的油酸油胺配体,可以看做是CsPbBr 3PQDs 的特征吸收峰㊂因此,CsPbBr 3/Si 3N 4荧光粉中既有Si N 振动峰,又有CsPbBr 3PQDs 的特征吸收峰,进一步证明我们成功地合成了CsPbBr 3/Si 3N 4荧光粉㊂3.3㊀CsPbBr 3/Si 3N 4荧光粉的稳定性测试一般来说,在WLEDs 照明应用中,由于In-GaN 基蓝色LED 芯片的工作温度可以达到100ħ以上,因此有必要对荧光粉的温度依赖性发光行为进行评估㊂而CsPbBr 3PQDs 粉末的热稳定性较差是一直存在的问题,有待解决㊂图6(a)给出了在365nm 激发下CsPbBr 3/Si 3N 4荧光粉在30~120ħ范围内的温度依赖性发射光谱,在整个升温过程中可以看到发射强度逐渐降低,发射带有略微红移,可能是加热导致量子点聚集㊁粒径变大的原因㊂插图给出了相同条件下CsPbBr 3PQDs 粉末与CsPbBr 3/Si 3N 4荧光粉在30~120ħ温度范围内的归一化发射强度对比图㊂CsPbBr 3PQDs 粉末与CsPbBr 3/Si 3N 4荧光粉都显示下降的趋势,只是CsPbBr 3PQDs 粉末下降的速率很快,80ħ时发光强度仅有初始发光强度的31.2%,而CsPb-Br 3/Si 3N 4荧光粉80ħ仍有原发光强度的87.4%㊂因此,CsPbBr 3/Si 3N 4荧光粉具有良好的热稳定性㊂由于对水汽的极其敏感性,CsPbBr 3PQDs 的耐水性也是应用中的一个重要指标㊂因此,在实验中分别将0.1g CsPbBr 3PQDs 粉末和CsPbBr 3/Si 3N 4荧光粉浸于2.5mL 去离子水中进行浸水老化试验来评价CsPbBr 3/Si 3N 4荧光粉的耐水性㊂从图6(b)可以发现,随着浸水时间从10min 增加到120min,CsPbBr 3/Si 3N 4荧光粉的发光强度逐渐降低,插图给出了CsPbBr 3PQDs 粉末与CsPbBr 3/Si 3N 4荧光粉归一化的最强发射对比图及365nm834㊀发㊀㊀光㊀㊀学㊀㊀报第42卷450姿/nm I n t e n s i t y /a .u .5005506000.40.60.81.01.20.20I n t e n s i t y /a .u .20608010012030℃40℃50℃60℃70℃80℃90℃100℃110℃120℃T /℃40(a )450姿/nmI n t e n s i t y /a .u .5005255750.40.60.81.01.20.20I n t e n s i t y /a .u .0200min 10min 20min 30min 40min 50min 60min 120min10(b )47555030405060t /min450姿/nmI n t e n s i t y /a .u .5006000.50.60.81.01.10.4I n t e n s i t y /a .u .030d 1d 2d 3d 4d 5d 6d 7d1(c )5504578t /d0.90.30.762t /d姿/n m26(d )522520518514512510524516CsPbBr 3/Si 3N 420.4nm 20.18nm 514.6nm513.4nm10-15437821.521.022.020.520.019.519.018.518.0F W H M /n mt /d姿/n m26(e )53853653453052854053230.46nm 27.48nm529.8nm 10-15437830.530.031.029.529.028.528.027.527.0F W H M /n m526CsPbBr 3531.4nm-1图6㊀(a)30~120ħ范围内,CsPbBr 3/Si 3N 4荧光粉的变温光谱,插图为CsPbBr 3PQDs 粉末与CsPbBr 3/Si 3N 4荧光粉归一化的发射强度对比;(b)不同浸水时间下,CsPbBr 3/Si 3N 4荧光粉的发射光谱,插图为CsPbBr 3PQDs 粉末与CsPb-Br 3/Si 3N 4荧光粉归一化的发射强度对比及365nm 波长激发下,CsPbBr 3PQDs 粉末与CsPbBr 3/Si 3N 4荧光粉浸水10min 后的图片;(c)不同恒温恒湿时间下(50ħ,85%),CsPbBr 3/Si 3N 4荧光粉的发射光谱,插图为CsPbBr 3PQDs 粉末与CsPbBr 3/Si 3N 4荧光粉归一化的发射强度对比及365nm 波长激发下CsPbBr 3PQDs 粉末与CsPbBr 3/Si 3N 4荧光粉7d 后的图片;不同恒温恒湿时间下(50ħ,85%),CsPbBr 3/Si 3N 4荧光粉(d)㊁CsPbBr 3PQDs 粉末(e)的半峰宽及最强发射波长的变化㊂Fig.6㊀(a)Emission spectra of CsPbBr 3/Si 3N 4phosphor in the range of 30-120ħ.Inset:the normalized emission intensitiesof CsPbBr 3PQDS powder and CsPbBr 3/Si 3N 4phosphor.(b)Emission spectra of CsPbBr 3/Si 3N 4phosphor under different immersion time.Inset:the normalized emission intensities of CsPbBr 3PQDs powder and CsPbBr 3/Si 3N 4phosphor and the photograph of CsPbBr 3PQDs powder and CsPbBr 3/Si 3N 4phosphor after soaking in water for 10min under excitation at 365nm wavelength.(c)Emission spectra of CsPbBr 3/Si 3N 4phosphor under different time at 50ħand humidity of85%.Inset:the normalized emission intensities of CsPbBr 3PQDs powder and CsPbBr 3/Si 3N 4phosphor and the photo-graph of CsPbBr 3PQDs powder and CsPbBr 3/Si 3N 4phosphor after 7d under excitation at 365nm wavelength.The change of FWHM and strongest emission wavelength of CsPbBr 3/Si 3N 4phosphor(d),CsPbBr 3PQDs powder(e)under different time at 50ħand humidity of 85%.激发下的发光图片㊂CsPbBr 3PQDs 粉末随浸泡时间的增加,发光强度急剧下降,当浸泡时间为20min 时,发光强度下降为初始发光强度的8%,基本不发光;而CsPbBr 3/Si 3N 4荧光粉浸泡120min 后,发光强度仍有初始发光强度的75.5%㊂从发光图片可以看出,CsPbBr 3PQDs 粉末表现出微弱的发光,而CsPbBr 3/Si 3N 4荧光粉绿光发射强㊂上述现象表明,CsPbBr 3/Si 3N 4荧光粉对CsPbBr 3PQDs 的耐湿性得到了显著的改善㊂水接触角测试表明,CsPbBr 3PQDs 粉末的水接触角为64.70ʎ,CsPbBr 3/Si 3N 4的水接触角为100.60ʎ,表明复合后CsPbBr 3/Si 3N 4表面具有较强的疏水性,因此水稳定性更好㊂表1给出了不同材料修饰CsPbBr 3的热稳定性㊁水稳定性对比,从表中可以看出,CsPbBr 3/Si 3N 4荧光粉表现出优异的水稳定性及在高温处优异的热稳定性㊂为进一步验证CsPbBr 3/Si 3N 4荧光粉的稳定性,将CsPbBr 3PQDs 粉末与CsPbBr 3/Si 3N 4荧光粉分别置于温度50ħ㊁湿度85%的恒温恒湿箱中进行老化实验,图6(c)分别给出了CsPbBr 3/Si 3N 4荧光粉发光强度依赖时间的发光行为㊂随着时间的延长(1~7d),CsPbBr 3/Si 3N 4荧光粉发光强度表现出下降趋势,插图为CsPbBr 3PQDs 粉末与CsPbBr 3/Si 3N 4荧光粉最强发射对比图及㊀第6期徐范范,等:CsPbBr 3/Si 3N 4复合材料制备及发光性能835㊀365nm 激发下发光的照片,相对来说CsPbBr 3PQDs 粉末下降更快㊂老化7d 之后,CsPbBr 3/Si 3N 4荧光粉的发光强度仍有初始发光强度的77.7%,而CsPbBr 3PQDs 粉末的发光强度为原发光强度的33.9%㊂从发光照片也可以看出,7d 后CsPbBr 3/Si 3N 4荧光粉表现出更强的绿光发射㊂图6(d)是不同恒温恒湿时间下,CsPbBr 3/Si 3N 4荧光粉的半峰宽及最强发射波长的变化图,可以表1㊀不同材料修饰CsPbBr 3的热稳定性、水稳定性对比Tab.1㊀Comparison of thermal stability and water stability ofCsPbBr 3modified with different materials修饰㊀热稳定性水稳定性CsPbBr 3@NH 4Br 80ħ40%1h:60%CsPbBr 3/SiO 275ħ60%CsPbBr 3-SDDA /PMMA 100ħ65%在水中稳定10minCsPb X 3@h-BN 120ħ80% CsPbBr 3QDs /BNNS 100ħ50%h-BN /CsPbBr 3100ħ20%室温㊁湿度80%:110h:72%本论文100ħ65%湿度:85%,温度50ħ:168h:78%,水中2h:78%看出CsPbBr 3/Si 3N 4复合材料老化过程中半峰宽和最强发射几乎没变化,半峰宽最大与最小之间仅差0.22nm,最强发射变化仅1.2nm㊂图6(e)是CsPbBr 3PQDs 粉末的半峰宽及最强发射变化图,半峰宽变化了3nm,最强发射偏移了1.6nm㊂因此,CsPbBr 3/Si 3N 4荧光粉具有较好的色稳定性㊂3.4㊀添加CsPbBr 3/Si 3N 4荧光粉的WLED 的电致发光特性为研究CsPbBr 3/Si 3N 4荧光粉的实际应用前景,将获得的CsPbBr 3/Si 3N 4绿色荧光粉㊁K 2SiF 6ʒMn 4+红色荧光粉和蓝色InGaN 芯片(~450nm)组合在一起制得了WLED㊂在20mA 电流驱动下,WLED 的电致发光(EL )光谱㊁封装好的WLED 实物及相应的发光照片如图7(a)所示㊂从电致发光光谱中可以看到CsPbBr 3/Si 3N 4的绿光发射峰,这与图3(b)的发射光谱一致,表明作为绿色荧光粉的CsPbBr 3/Si 3N 4可以被蓝光芯片有效地激发,器件流明效率为49.4lm /W㊂使用CsPbBr 3/Si 3N 4复合材料的流明效率比使用CsPb-Br 3@聚苯乙烯㊁CsPbBr 3@介孔二氧化硅㊁CsPbBr 3@二氧化硅球及Cs 4PbBr 6/CsPbBr 3@Ta 2O 5复合材料的流明效率要高[24-27],但比Cs 4PbBr 6/CsPbBr 3㊁650姿/nmE L i n t e n s i t y /a .u .(a )700600550500450400Blue chipKSF ∶Mn 4+CsPbBr 3@Si 3N 45205400.5xy5605806006207003804704804900.104600.100.20.30.40.60.70.80.20.3NTSC This work0.40.50.60.70.80.9500姿/nmI n t e n s i t y /a .u .(c )7006005004001.00.80.60.40.2020mA 60mA 120mA 180mA 240mA 300mA(b )图7㊀(a)由CsPbBr 3/Si 3N 4绿色荧光粉㊁K 2SiF 6ʒMn 4+红色荧光粉和蓝色InGaN 芯片制得的WLED 的电致发光光谱和实物图,插图是WLED 不工作时(左图)和20mA 电流下工作时的图片(右图);(b)制得的WLED 对应CIE 坐标图;(c)不同驱动电流下(20~300mA)WLED 的电致发光光谱㊂Fig.7㊀(a)EL spectrum of WLED made of CsPbBr 3/Si 3N 4green phosphor,K 2SiF 6ʒMn 4+red phosphor and blue InGaN chip.Inset:the picture of WLED(left figure)and working at 20mA current(right figure).(b)Corresponding CIE coordinatesof WLED.(c)EL spectra of WLED under different driving currents(20-300mA).烷基磷酸酯处理CsPbBr 3的低[15,28]㊂与胶态量子点相比,粉体材料的流明效率降低的原因主要是CsPbBr 3/Si 3N 4荧光粉中的量子点发生聚集,以及部分光可能被Si 3N 4吸收所导致的㊂图7(b)给出了该WLED 的CIE 坐标图,从图中可以得出制得的WLED 色域达到113.4%NTSC,说明其具有广色域的优势㊂图7(c)给出了在不同驱动电流下该WLED 的EL 光谱,可以看出,当驱动电流从20mA 增加至120mA 时,绿光发射仍保持不变㊂当驱动电流增加至180mA836㊀发㊀㊀光㊀㊀学㊀㊀报第42卷时,绿光发射有略微下降,进一步表明CsPbBr3/ Si3N4绿色荧光粉有较好的稳定性㊂4㊀结㊀㊀论本文成功合成了稳定的CsPbBr3/Si3N4绿色荧光粉,实验过程操作简单,室温下一步即可完成㊂CsPbBr3/Si3N4荧光粉最强发射峰位于513.4 nm处,半峰宽较窄,约为20nm㊂CsPbBr3PQDs 粉末与CsPbBr3/Si3N4荧光粉的对比实验表明, CsPbBr3/Si3N4荧光粉表现出优异的热稳定性㊁水稳定性及色稳定性㊂变温光谱结果表明,80ħ时CsPbBr3/Si3N4荧光粉的发光强度能保持初始发光强度的87.4%;在去离子水中浸没120min后, CsPbBr3/Si3N4荧光粉的发光强度仍保持初始发光强度的75.5%㊂温度85ħ㊁湿度85%的恒温恒湿条件下,7d后CsPbBr3/Si3N4荧光粉的发光强度仍能保持原发光强度的77.7%,并且半峰宽及最强发射波长几乎没发生改变,进一步证明CsPbBr3/Si3N4荧光粉具有优异的稳定性㊂在450 nm波长激发下,CsPbBr3/Si3N4荧光粉量子效率提高至35.4%㊂电致发光结果表明,CsPbBr3/ Si3N4绿色荧光粉与KSFʒMn4+㊁蓝光芯片封装制得的WLED色域为113.4%NTSC,流明效率为49.4lm/W㊂本文专家审稿意见及作者回复内容的下载地址: /thesisDetails#10.37188/ CJL.20210085.参㊀考㊀文㊀献:[1]PROTESESCU L,YAKUNIN S,BODNARCHUK M I,et al..Nanocrystals of cesium lead halide perovskites(CsPb X3,X=Cl,Br,and I):novel optoelectronic materials showing bright emission with wide color gamut[J].Nano Lett.,2015,15(6):3692-3696.[2]王巍,李一,宁平凡,等.广色域钙钛矿量子点/荧光粉转换白光LED[J].发光学报,2018,39(5):627-632.WANG W,LI Y,NING P F,et al..Perovskite quantum dot/powder phosphor converted white light LEDs with wide color gamut[J].Chin.J.Lumin.,2018,39(5):627-632.(in Chinese)[3]JI W Y,LIU S H,ZHANG H,et al..Ultrasonic spray processed,highly efficient all-inorganic quantum-dot light-emittingdiodes[J].ACS Photonics,2017,4(5):1271-1278.[4]SONG J Z,LI J H,LI X M,et al..Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides(CsPb X3)[J].Adv.Mater.,2015,27(44):7162-7167.[5]MALI S S,SHIM C S,HONG C K.Highly stable and efficient solid-state solar cells based on methylammonium lead bro-mide(CH3NH3PbBr3)perovskite quantum dots[J].NPG Asia Mater.,2015,7(8):e208-1-9.[6]TRAVIS W,GLOVER E N K,BRONSTEIN H,et al..On the application of the tolerance factor to inorganic and hybridhalide perovskites:a revised system[J].Chem.Sci.,2016,7(7):4548-4556.[7]郭洁,陆敏,孙思琪,等.基于CsPbBr3钙钛矿量子点的高柔性绿光发光二极管[J].发光学报,2020,41(3):233-240.GUO J,LU M,SUN S Q,et al..Highly flexible green light-emitting diode based on CsPbBr3perovskite quantum dots[J].Chin.J.Lumin.,2020,41(3):233-240.(in Chinese)[8]YANG G L,ZHONG H anometal halide perovskite quantum dots:synthesis,optical properties,and display applica-tions[J].Chin.Chem.Lett.,2016,27(8):1124-1130.[9]PAN J,QUAN L N,ZHAO Y B,et al..Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering[J].Adv.Mater.,2016,28(39):8718-8725.[10]HUANG C Y,ZOU C,MAO C Y,et al..CsPbBr3perovskite quantum dot vertical cavity lasers with low threshold and highstability[J].ACS Photonics,2017,4(9):2281-2289.[11]XU H Z,DUAN J L,ZHAO Y Y,et al..9.13%-efficiency and stable inorganic CsPbBr3solar cells.lead-free CsSnBr3-x I xquantum dots promote charge extraction[J].J.Power Sources,2018,399:76-82.[12]MING H,LIU L L,HE S A,et al..An ultra-high yield of spherical K2NaScF6ʒMn4+red phosphor and its application in ul-tra-wide color gamut liquid crystal displays[J].J.Mater.Chem.C,2019,7(24):7237-7248.[13]CHEN J S,LIU D Z,AL-MARRI M J,et al..Photo-stability of CsPbBr3perovskite quantum dots for optoelectronic applica-㊀第6期徐范范,等:CsPbBr 3/Si 3N 4复合材料制备及发光性能837㊀tion [J].Sci.China Mater .,2016,59(9):719-727.[14]MALGRAS V,HENZIE J,TAKEI T,et al ..Stable blue luminescent CsPbBr 3perovskite nanocrystals confined in meso-porous thin films [J].Angew.Chem.Int.Ed .,2018,57(29):8881-8885.[15]XUAN T T,YANG X F,LOU S Q,et al ..Highly stable CsPbBr 3quantum dots coated with alkyl phosphate for white light-emitting diodes [J].Nanoscale ,2017,9(40):15286-15290.[16]CUI J,XU F F,DONG Q,et al ..Facile,low-cost,and large-scale synthesis of CsPbBr 3nanorods at room-temperature with 86%photoluminescence quantum yield [J].Mater.Res.Bull .,2020,124:110731-1-6.[17]HE X,YU C,YU M M,et al ..Synthesis of perovskite CsPbBr 3quantum dots /porous boron nitride nanofiber composites with improved stability and their reversible optical response to ammonia [J].Inorg.Chem.,2020,59(2):1234-1241.[18]QIU L,HAO J R,FENG Y X,et al ..One-pot in situ synthesis of CsPb X 3@h-BN (X =Cl,Br,I)nanosheet composites with superior thermal stability for white LEDs [J].J.Mater.Chem.C,2019,7(14):4038-4042.[19]LI Y,DONG L B,CHEN N,et al ..Room-temperature synthesis of two-dimensional hexagonal boron nitride nanosheet-sta-bilized CsPbBr 3perovskite quantum dots [J].ACS Appl.Mater.Interfaces ,2019,11(8):8242-8249.[20]YOON H C,LEE S,SONG J K,et al ..Efficient and stable CsPbBr 3quantum-dot powders passivated and encapsulated with a mixed silicon nitride and silicon oxide inorganic polymer matrix [J].ACS Appl.Mater.Interfaces ,2018,10(14):11756-11767.[21]HUANG C,SUN W Z,LIU S,et al ..Highly controllable lasing actions in lead halide perovskite-Si 3N 4hybrid micro-resona-tors [J].Laser Photon.Rev .,2019,13(3):1800189-1-11.[22]ZHOU G J,XU Y,XIA Z G.Perovskite multiple quantum wells on layered materials toward narrow-band green emission for backlight display applications [J].ACS Appl.Mater.Interfaces ,2020,12(24):27386-27393.[23]LI F,LIU Y,WANG H L,et al ..Postsynthetic surface trap removal of CsPb X 3(X =Cl,Br,or I)quantum dots via a Zn X 2/hexane solution toward an enhanced luminescence quantum yield [J].Chem.Mater.,2018,30(23):8546-8554.[24]SHAO H,BAI X,PAN G C,et al ..Highly efficient and stable blue-emitting CsPbBr 3@SiO 2nanospheres through low tem-perature synthesis for nanoprinting and WLED [J].Nanotechnology ,2018,29(28):285706.[25]CAI Y T,WANG L,ZHOU T L,et al ..Improved stability of CsPbBr 3perovskite quantum dots achieved by suppressing in-terligand proton transfer and applying a polystyrene coating [J].Nanoscale ,2018,10(45):21441-21450.[26]ZHANG M L,LI Y,DU K M,et al ..One-step conversion of CsPbBr 3into Cs 4PbBr 6/CsPbBr 3@Ta 2O 5core-shell microcrys-tals with enhanced stability and photoluminescence [J].J.Mater.Chem .C,2021,9(4):1228-1234.[27]DI X X,SHEN L D,JIANG J T,et al ..Efficient white LEDs with bright green-emitting CsPbBr 3perovskite nanocrystal in mesoporous silica nanoparticles [J].J.Alloys Compd.,2017,729:526-532.[28]HUANG S X,YANG S,WANG Q,et al ..Cs 4PbBr 6/CsPbBr 3perovskite composites for WLEDs:pure white,high luminousefficiency and tunable color temperature [J].RSC Adv.,2019,9(72):42430-42437.徐范范(1996-),女,山西长治人,硕士研究生,2018年于运城学院获得学士学位,主要从事全无机钙钛矿量子点CsPbBr 3的合成及稳定性提升的研究㊂E-mail:1522638328@qq.com叶信宇(1980-),男,安徽桐城人,博士,教授,博士研究生导师,2008年于北京有色研究总院获得博士学位,主要从事稀土发光材料及相图热力学计算相关的研究㊂E-mail:xinyye@青年编委介绍:叶信宇,教授/博士研究生导师,主要从事稀土发光材料及相图热力学计算相关工作㊂近年来,主持了国家自然科学基金㊁863课题子项㊁国家工信部项目等在内的纵横向课题30余项,以一作或通讯作者在ACS AMI ,J.Mater.Chem .C,J.Euro.Ceram.So .,Ceram.Inter .等国际权威刊物上发表SCI 论文49篇,其中J.Mater.Chem.C,Dalton Trans.J.Am.Ceram.Soc .封面论文3篇㊂已出版‘稀土元素化学“研究生教材一部;授权国家专利11项㊂相关研究获得 江西省科学技术进步二等奖 ㊁ 中国有色金属工业科学技术二等奖 等奖项㊂入选江西省百千万工程人才㊁青年井冈学者,并获江西省杰出青年人才资助计划支持㊂。
纳米SrAl2O4:Eu2+,Dy3+长余辉发光材料的制备与性能
纳米SrAl2O4:Eu2+,Dy3+长余辉发光材料的制备与性能肖琴;肖丽媛;刘应亮【摘要】采用水热-均匀共沉淀法制备了纳米SrAl2O4:Eu2+,Dy3+长余辉发光材料.通过XRD、TEM、荧光光谱、热释光谱对其结构和性能进行分析.XRD结果表明所制备的SrAl2O4:Eu2+Dy3+纳米发光材料为单相,属单斜晶系.TEM测试表明纳米SrAl2O4:Eu2+,Dy3+发光材料为规则的球状粒子,粒径为50~80 nm,且分散性良好.激发和发射光谱测试表明,样品的激发光谱是峰值在356 nm 的连续宽带谱,发射光谱是峰值位于512 nm的宽带谱,与SrAl2O4:Eu2+,Dy3+粗晶材料相比,激发和发射光谱都出现了"蓝移"现象.样品的热释光峰值位于358 K,适合于产生长余辉.【期刊名称】《无机化学学报》【年(卷),期】2010(026)007【总页数】5页(P1240-1244)【关键词】水热-均匀共沉淀法;SrAl2O4:Eu2+,Dy3+;纳米粉体;长余辉发光【作者】肖琴;肖丽媛;刘应亮【作者单位】暨南大学化学系纳米化学研究所,广州,510632;暨南大学化学系纳米化学研究所,广州,510632;暨南大学化学系纳米化学研究所,广州,510632【正文语种】中文【中图分类】O614.23+2;O614.3+1;O614.33+8;O614.342纳米材料因量子尺寸效应、表面效应和宏观量子隧道效应而具有不同于体相材料的光、电、磁等特性,近年来对纳米发光材料的研究不断取得新的进展。
稀土掺杂纳米发光材料,由于与常规尺寸材料相比具有许多独特的性能,如高发光效率、高猝灭浓度和寿命等,引起人们的广泛研究兴趣[1]。
SrAl2O4∶Eu2+,Dy3+是一种新型、稳定、高效的黄绿色长余辉发光材料。
这种材料具有发光效率高、余辉时间长、化学稳定性好、无放射性污染等特点,它不仅在弱光照明、指示等领域有很重要的应用价值,而且在信息存储和高能探测等方面也展示出诱人的前景[2-3],尤其是纳米级的SrAl2O4∶Eu2+,Dy3+发光材料的应用范围更加广阔。
VO2(A)纳米杆的水热合成、生长机理及光学特性
VO2(A)纳米杆的水热合成、生长机理及光学特性魏宁;金城;熊狂伟;赵慧;金绍维【摘要】用V2O5和草酸作为初始原料,在水热条件下合成了VO2(A)纳米杆.通过改变初始的V2O5与草酸摩尔比以及反应时间制备纯相VO2 (A).样品的元素组成、微结构及光学性能分别被X射线光电子能谱(XPS)、X射线衍射(XRD)、扫描电镜(SEM)、差示扫描量热法(DSC)和傅里叶变换红外光谱(FT-IR)表征.实验结果表明合成VO2 (A)的最佳条件为:反应温度230℃、保温24 h以及V2O5对草酸摩尔比为1∶1.5.结合XRD数据与SEM图像,提出一个转变、自组装和重结晶过程解释了VO2 (A)纳米棒的形成过程.【期刊名称】《安徽大学学报(自然科学版)》【年(卷),期】2016(040)001【总页数】8页(P42-49)【关键词】钒氧化物;VO2(A);水热合成;相转变;红外光谱【作者】魏宁;金城;熊狂伟;赵慧;金绍维【作者单位】安徽大学物理与材料科学学院,安徽合肥230601;安徽大学物理与材料科学学院,安徽合肥230601;安徽大学物理与材料科学学院,安徽合肥230601;安徽大学物理与材料科学学院,安徽合肥230601;安徽大学物理与材料科学学院,安徽合肥230601【正文语种】中文【中图分类】O613.51Received date:2015-07-31Foundation item:Supported by the National Science Foundation of China (11174001,51402002),the Science Foundation of Anhui Education (KJ2013A030)Author’s brief:WEI Ning(1987-),male,born in Jinan of Shandong Province,master degree candidate of Anhui University;*JIN Shaowei (corresponding author),professor of Anhui University,doctoral student supervisor,E-mail:jinsw@.Vanadium dioxides,VO2is a typical binary compound with various polymorphs.The polymorphic configurations in this system include rutile-type VO2(R)[1],monoclinic VO2(M)[2],tetragonal VO2(A)[3],monoclinic VO2(B)[4],tetragonal VO2(C)[5],etc.Among all of VO2,more effort has been paid to rutile type VO2(R)because it undergoes a fully reversible metal-to-insulator transition(MIT)at 340K[2],which is closer to the ambient temperature compared to other compounds having thermochromic behavior that had been found [6].Associated with this transition is a structural distortion from a high temperature,rutile structure VO2(R)(P42/mnm,136)to a low temperature,monoclinic form VO2(M)(P21/c,14)[2],which has been studied abundantly for applications to smart windows[7-9].Except for the polymorphic of VO2(R)and VO2(M)structures,the metastable polymorphs of VO2,such as VO2(B),VO2(A),etc.are not frequently reported[10]. In recent years,VO2(B)has gained increasing attention because it is a potential candidate for the cathode in lithium cells forelectric vehicles.Studies revealed the layer structure of VO2(B)has highLi+intercalation performance[11-12].However,another layer structureof the metastable VO2(A)has limited study until now.One main reason is that the metastable of VO2(A)is usually missed during the preparationof VO2polymorphs.VO2(A)was firstly reported by Th obaldin the hydrothermal process ofV2O4-V2O5-H2O system,the crystal structure of VO2(A)had not been clarified until 1998[13].The thermal stability of VO2(A)indicates that VO2(A)transforms reversibly from low-temperature tetragonal VO2(A)(P4/ncc,130)to high-temperature body-center tetragonal VO2(AH)(I4/m,87)structure at 162℃. Recently,the synthesis condition of VO2(A)has been studied by some researchers via a hydrothermalroute.However,Ji et al.[14]used oxalic to reduce V2O5by a hydrothermal route to synthesis VO2(A)at 270℃.The filling ratio of the experimental procedure in Li’s group[15]was 80%.For ultra-long VO2(A)nanorods,Liu et al.[16]reported the hydrothermal treatment time was 48h.Thus a simple and effective method for preparing metastable of VO2(A)nanostructures is very essential for theoretical research and practical applications.In this paper,VO2(A)nanorods with about 10μm in length are prepared by one pot hydrothermal process in V2O5-H2C2O4-H2O system.The phases of VO2(B)and VO2(A),as well as their transformation can be controlled by varying both the molar ratio of V2O5to oxalic acid and reaction time at a lower temperature of 230℃for 24hwith a filling ratio of40%.The microstructure,phase transition and optical properties of theVO2(A)samples were carefully studied. A possible growth mechanism was proposed to explain the formation process of the VO2(A)nanorods.1.1 SynthesisVanadium pentoxide and oxalic acid(H2C2O4·2H2O)are of analytical grade and used without any further purification.In a typical synthesis,0.3g of V2O5(orange yellow)powder and 0.21-0.42 g of H2C2O4·2H2O were dispersed into 20mL of distilled water with vigorous stirring for about 30 min at room temperature.After,the mixed solution was transferred into a Teflon-lined autoclave(50 mL)with stainless steel shell(the filling ratio designated as fin the captions of the following figures is 0.4),which was sealed and sustained at 230℃for 2-60h,and then cooled to room temperaturenaturally.The precipitates were collected by filtering,washed with distilled water and ethanol alternately,and dried in an oven at70℃for 10hfor further characterization and measurement.1.2 CharacterizationX-ray photoelectron spectroscopy(XPS,ESCALAB-250)was used to identifiy the composition of the sample and the valence of the vanadium.The phase structure was determined by X-ray diffraction (XRD)with Philips X’Pert diffractometer(Cu Kαradiation,λ=1.540 6)at 40kV and 30mA. The morpholgys of the as-obtained samples were examined using scanning electron microscopy(SEM,S-4800).Differential scanning calorimetry(DSC)analysis were performed using a Q2000under a nitrogen gas flow with a scan rate of 10℃·min-1.Optical properties of VO2(A)nanorods were measured by Fourier transform infrared spectroscopy (FT-IR,Nicolet 8700)with an adapted heating controlled cell.Fig.1shows the typical XPS spectrum of the sample prepared at 230℃for 24hwith a molar ratio of 1∶1.5(V2O5/oxalic acid).No other element peaks except for those of V,O and C are observed on the survey spectrum(Fig.1a).The peak of C1sis ascribed to some carbon dioxides absorbed on the surfaces of the sample and can be disregarded.The spectrum of Fig.1bshows the peaks at 516.6,524.3and 530.4eV are attributed to the V2p2/3,V2p1/2and O1slevel,they are characteristics of vanadium in+4oxidation state and accord with the values of bulkVO2reported in literatures[17-18].For the obtained sample,theΔ(O1s-V2p2/3)value is 13.8eV,which is true of the reported value of V4+in literature[18],this confirms the vanadium valence to be+4oxidation state.Generally,the reaction temperature,reaction time,and the initial molar ratio of vanadium source to reducing agent under the hydrothermal conditions are greatly important for the VO2synthesis.Fig.2 shows the XRD patterns of the samples synthesized at temperature of 230℃after 24hwith different molar ratios of V2O5/oxalic acid(from 1∶1.2to 1∶1.8).The samples obtained at a molar ratio of 1∶1.2can be indexed to the metastable VO2(B)phase(JCPDS:31-1438)[19],it has gained increasing interest as a cathode material for lithium cells.Upon increasing the molar ratio to 1∶1.5,the isolated sample can be indexed to pure phase VO2(A)(JCPDS:42-0876)[3].As depicted in Fig.2c,the mostremarkable peaks belong to the(hk0)family,which strongly suggests a preferential growth along a specific orientation.When the molar ratios are raised to 1∶1.6and/or 1∶1.8,the obtained samples appear to be a mixof the original VO2(A)along with a prominent proportion of VO2(B).Such results reveal the initial molar ratio of V2O5/oxalic acid plays an important role in synthesizing high purity ofVO2(A).As shown in Fig.2,the preparation of phase-pure VO2(A)is only achieved in hydrothermal treatment at 230℃for 24hwith a molar ratio of 1∶1.5(V2O5/oxalic acid),where as the mix of VO2(A)and VO2(B)is observed below and above this optimum molar ratio.The SEM images of the samples corresponding to Fig.2(XRD)are depicted in the Fig.3. Analyzing the SEM images(Fig.3)and comparingthe results of XRD(Fig.2),one can draw the conclusion that the VO2(B)appeared as the short belt-like structures(Fig.3a),the VO2(A)appeared as the long rod-like structures(Fig.3c).Fig.4shows the XRD patterns of the samples obtained at 230℃for different reaction t imes under a molar ratio of 1∶1.5(V2O5/oxalic acid),which reveal the formation and evolution of the VO2(A)phase.From the diffraction pattern of the Fig.3a,it was observed that all peaks of the isolated sample after the reaction of 2hbelong to the VO2(B)phase.Upon increasing reaction time to 12h,the samples appear to bemix of the primary VO2(B)along with a noticeable proportion of theVO2(A).Further increasing the time to 36hor longer(such as,60h),the samples appear to be exclusively phase-pure of VO2(A).Thissuggests that the VO2(B)formed at 230℃after 2h,and then the VO2(A)phase was transformed from VO2(B)with the increase of thetime.Eventually,the pure VO2(A)formed after the reaction of 24h (Fig.3c).Galy[20]proposed that the phase transition VO2(B)→VO2(A)is just a crystallographic slip Cs=1/3[-100](001),occurring in the median plane of the double layers assembled by VO6octahedra of the VO2(B)[4].The morphological evolution of the samples prepared at 230℃for different reaction times under a molar ratio of 1∶1.5was depicted in Fig.5.The morphology of VO2(B)(Fig.5a)is short belt after the reaction of2h.With futher reaction,some short VO2(B)belts combine together,and assemble to the VO2(A)nanorods(Fig.5b).This combination occurs continuously,and the VO2(A)nanorods progressively elongate with increasing time to 36h(Fig.5c).Finally,the long VO2(A)nanorods with lengths up to tens of micrometers are formed after the reaction of60h(Fig.5d).Several benched surfaces and short rods attached to long rods can be clearly observed(Figs.3cand 5d).These are evidence of the self-assembled nanorods combining or attaching.Through the XRD patterns(Fig.4)and SEM images(Fig.5),it is found that the belt-like VO2(B)is the intermediate product to synthesize VO2(A)nanorods.A possible process for the formation of VO2(A)nanorods was schematically charted in Fig.6.(1)VO2(B)belts are fast formed by the hydrothermal reaction between V2O5and H2C2O4,as described in Figs.4aand 5a.(2)VO2(B)short belts transformed and assembled toVO2(A)nanorods,as depicted in Figs.4b-c and Fig.5b. (3)VO2(A)short rods are attached and recrystallized to long rods.(4)VO2(A)nanorods continue to grow with further prolonging the time(Figs.5c-d).Briefly,the formation of the VO2(A)nanorods can be described as the transformation,assembly,attaching and recrystallization process. Fig.7shows the DSC curves of the obtained samples with different molar ratios.In the DSC scan,the thermal behavior of the samples was performed when it was heated(from 20to 200℃)and then cooled(from 200to 20℃)at 10K·min-1.During the heating process,a single endothermic peak was observed at 168.3℃,it can be assigned to conversion of the primitive tetragonal VO2(A)into a body-centered tetragonal VO2(AH)structure.A wide exothermic peak is detected at 122.8℃on cooling,it is ascribed to the transformation of the VO2(AH)into the VO2(A)form.In previous studies,Oka et al.[21]reported a phase transition of the VO2(A)sample at 162℃only upon heating not on cooling from the DTA and magnetic susceptibility measurements.In our work,the transition temperature of 168.3℃for the VO2(A)nanorods raised about 6℃.The higher transition temperature and wide hysteresis loop can be considered to be due to the nonstoichiometry of VO2(A)nanorods and/or the scaling to nanoscale dimensions,as described inthe VO2(M)nanostructures[22]. There are no peaks detected in the heating and cooling process of VO2(B)because no structure transition occurs.The endothermic peak at 169.9℃for sample synthesized with a molar ratio of 1∶1.8may caus ed by the crystal boundary between VO2(B)and VO2(A).Contrast with the rutile VO2(R),the optical properties of VO2(A)in the infrared region(IR)are limited studied.The infrared spectra ofFig.8shows a clear process of the phase transition in the VO2(A)sample before and after the Tc(Transition temperature).It is clearly seen that as-prepared VO2(A)nanorods has optical switching property at absorption bands from 680to 660cm-1where its missing can be ascribed to the delocalisation of the electrons involving in the V4+-V4+bonds between VO6octahedra[16].It suggests the VO2(A)has potential application in optical switching devices.Two IR curves below Tc(one from the heating,the other from cooling)are basically coincided,revealing the phase transition of the VO2(A)nanorods has good reversibility.These optical properties indicate that the VO2(A)is a good candidate for the application of an infrared light switching material.VO2(A)nanorods were facilely prepared by hydrothermal approach using V2O5,oxalic acid and H2O as starting materials.The results reveal that the optimal synthesis condition of the VO2(A)nanorods is hydrothermal process at 230℃with a 1∶1.5molar ratio of V2O5to oxalic acid after 24h. An assembly,attaching and recrystallization mechanism is considered to be responsible for the formation of VO2(A)nanorods.An endothermic peak at 168.3℃on heating and an exothermal peak at122.8℃on cooling were detected in DSC curve for pure VO2(A)product.The infrared spectra indicate that the VO2(A)nanostructures can be used as the optical switching materials at bands from 680to 660cm-1.References:[1] EYERT V,HCK K H.Electronic structure of V2O5:role of octahedral deformations[J].Phys Rev B,1998,57(20):12727-12737.[2] MORIN F J.Oxides which show a metal-to-insulator transition at the neel temperature[J].Phys Rev Lett,1959,3(1):34-36.[3] OKA Y,YAO T,YAMAMOTO N.Powder X-ray crystal structure ofVO2(A)[J].J Solid State Chem,1990,86(2):116-124.[4] THOBALD F,BERNARDS J,CABALA R.Essai sur la structure de VO2(B)[J].J Solid State Chem,1976,17(4):431-438.[5] HAGRMAN D,ZUBIETA J,CHRISTOPHER J,et al.A new polymorph of VO2prepared by soft chemical methods[J].J Solid State Chem,1998,138(1):178-182.[6] MAENG J S,KIM T W,JO G H,et al.Fabrication,structural and electrical characterization of VO2nanowires[J].Mater Res Bull,2008,43(7):1649-1656.[7] KANG L T,GAO Y F,LUO H J.A novel solution process for the synthesis of VO2thin films with excellentthermochromic properties[J].ACS Appl Mater Interface,2009,1(10):2211-2218.[8] ZHANG Z T,GAO Y F,CHEN Z,et al.Thermochromic VO2thin film:solution-based processing,improved optical properties,and lowered phase transformation temperature[J].Langmuir,2010,26(13):10738-10741.[9] DAI L,CAO C X,GAO Y F,et al.Synthesis and phase transition behavior of undoped VO2with a strong nano-sizeeffect[J].Sol EnergyMater and Sol Cells,2011,95(2):712-715.[10] ZHANG S D,SHANG B,YANG J L,et al.From VO2(B)to VO2(A)nanobelts:first hydrothermal transformation,spectroscopic study and first principles calculation[J].Phys Chem Chem Phys,2011,13:15873-15881.[11] LIU H M,WANG Y G,WANG K X,et al.Design and synthesis of nanothorn VO2(B)hollow microsphere and their application in lithium-ion batteries[J].J Mater Chem,2009,19:2835-2840.[12]MILOˇSEVIC′S,STOJKOVC′I,KURKO S,et al.The simple one-step solvothermal synthesis of nanostructurated VO2(B)[J].Ceramics International,2012,38(3):2313-2317.[13] OKA Y,SATO S,YAO T,et al.Crystal Structures and transition mechanism of VO2(A)[J].J Solid State Chem,1998,141(2):594-598.[14] JI S D,ZHANG F,JIN F P.Selective formation of VO2(A)or VO2(R)polymorph by controlling the hydrothermal pressure[J].J Solid State Chem,2011,184(8):2285-2292.[15] LI M,KONG F Y,LI L,et al.Synthesis,field-emission and electric properties of metastable phase VO2(A)ultra-long nanobelts[J].Dalton Trans,2011,40:10961-10965.[16] LIU P C,ZHU K J,GAO Y F,et al.Ultra-long VO2(A)nanorods using the high-temperature mixing method under hydrothermal conditions:synthesis,evolution and thermochromic properties[J]. CrystEngComm,2013(15):2753-2760.[17] CHEN Y S,XIE K,LIU Z X.Determination of the position of V4+as minor component in XPS spectra by difference spectra[J].Appl Surf Sci,1998,133(4):221-224.[18] MENDIALDUA J,CASANOVA R,BARBAUX Y.XPS studies of V2O5,V6O13,VO2and V2O3[J].J Electron Spectrosc Relat Phenom,1995,71(3):249-261.[19] OKA Y,YAO T,YAMAMOTO N,et al.Phase transition and V4+-V4+paring in VO2(B)[J].J Solid State Chem,1993,105(1):271-278.[20] GALY J.A proposal for(B)VO2(A)VO2Phase transition:a simple crystallographic slip[J].J Solid State Chem,1999,148(2):224-228. [21] OKA Y,OHTANI T,YAMAMOTO N,et al.Phase transition and electrical properties of VO2(A)[J].J Ceram Soc Jpn,1989,97(10):1134-1137.[22] WHITT AKER L,JAYE C,FU Z G,et al.Depressed phase transitionin solution-grown VO2nanostructures[J].J Am Chem Soc,2009,131(25):8884-8894.。
热处理气氛对α-Fe_(2)O_(3)光阳极光电化学性能影响研究
第33卷第1期2021年1月化学研究与应用Chemical Research and ApplicationVol.33,No.1Jan.,2021文章编号:1004-1656(2021)01-0090-07热处理气氛对a-Fe203光阳极光电化学性能影响研究李龙珠*,吴浩宇,陈玉伟,杨蓉,唐惠东(常州工程职业技术学院化工与制药工程学院,江苏常州213164)摘要:分别在空气和氮气中对水热制备的薄膜进行热处理获得了纳米棒状a-Fe2()3光阳极。
对样品分别进行T X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外-可见吸收光谱和光电化学性能测试。
与空气热处理获得的a-Fe2O3Air光阳极相比,氮气气氛热处理获得的a-Fe2O3N2光阳极正面光照电流密度显著提升达到0.42mA-cm'%正面光照下,a-Fe2O3N2光阳极的体内电荷分离效率弘强和表面电荷注入效率Nwfaee都有较大增加,说明%热处理明显增加了«-Fe203膜的载流子浓度,增强了体内载流子的传输和表面载流子注入效率。
关键词:光电化学电池;水分解;a-Fe203;水热法中图分类号:TK91文献标志码:AEffects of annealing atmosphere on the photoelectrochemicalperformance of a-Fe2O3photoanodesLI Long-zhu*,WU Hao-yu,CHEN Yu-wei,YANG Rong,TANG Hui-dong(School of Chemical and Pharmaceutical Engineering,Changzhou Vocational Institute of Engineering,Changzhou213164,China)Abstract:The hydrothermal prepared films were converted into nanorods-like a-Fe203photoanodes by annealing treatment in air and nitrogen,respectively・The samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) ,X-ray photoelectron spectroscopy(XPS),UV-vis absorption spectroscopy and photoelectrochemical properties.Under front illumination,the photocurrent density of the a-Fe2O3photoanode annealed in nitrogen atmosphere increased significantly to0.42mA•cm'2compared with that of hematite photoanode annealed in air.The a-Fe203photoanode annealed in nitrogen atmosphere had gready increased ^buik i7surface under front illumination,which indicated that nitrogen heat treatment significantly increased the carrier concentration of the hematite film and enhanced the carrier transport in the bulk and surface carrier injection efficiency.Key words:photoelectrochemical;water splitting;a-Fe203;hydrothermal method收稿日期=2020-06-09;修回日期:2020-10-12基金项目:江苏省高等学校自然科学研究面上项目(19KJB510001)资助;江苏省青蓝工程项目资助;国家自然科学基金项目(51874050)资助联系人简介:李龙珠(1981-),女,副教授,主要从事新能源材料制备研究。
镍掺杂纳米ZnO的制备及其光催化性能研究
铀掺杂纳米ZnO的制备及其光催化性能研究摘要:以ZnSO4.7H2O和硝酸铀为原料。
采用溶胶凝—胶法制备了纳米级的Ni/ZnO光催化剂,并用XRD和SEM手段进行表征,以甲基橙光催化降解作为模板反应,对所制备的催化剂催化性能进行了评价,考察了制备催化剂最佳工艺条件和催化剂投加量,光照时间对甲基橙降解率的影响。
结果表明:————————————————————————————————————————————————————————————————————————————————————————————————关键词:溶胶—凝胶法;制备;Eu掺杂;光催化The Preparation and Peoperty Research on Doping Eu Nanosized ZnO PhotocatalystSong Qing(department of Chem.&Eng,Baoji University of Arts and Sciences,Baoji Shannxi 721013) Abstract:nanosized Ni/ZnO was prepared from zinc sulphate and ammonium metavanadate by sol-gel method .The structural properties of the catalystrized by means of XRD and TEM techeniques____________________________________________________________________ ____________________________________________________________________ ___________________________________Key words: sol-gel method ;preparation; ni doped; photocatalysis引言氧化锌是一种重要的宽禁带、直接带隙(3.37eV)半导体材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收稿 日期 : 2 0 1 2—1 2—1 1
作者简介: 高晓峰( 1 9 8 3 一 ) , 男, 陕西宝鸡人, 工程
师, 硕士研究生, 从事辐射防护及环境保护工作。
6 1 0
1 实验
制备 四硼酸锂微 晶所用原料 均为分析纯
ห้องสมุดไป่ตู้。
将 2 . 0 3 7 4 g L i O H 、 5 . 8 1 6 4 g H 3 B O 3 、 0 . 0 8 1 g C u C l 和4 0 I I l l 去离子水混合搅拌 为白色 的悬
中, 在 1 8 0℃条 件下 反应 1 2 h , 然后 自然 冷却 至
室温 , 过滤后 , 将所得沉淀用去离子水和酒精分 别冲洗 3 次, 然后在 9 0℃条件下 真空干燥 1 2 h , 得到 L i 3 B 5 O 8 ( O H) 。将所 得到 的 L i 3 B 5 O 8 ( O H ) 放人陶瓷坩埚 , 加入一定量 的氯化钠 饱 和溶液 , 放人马弗炉 中在 7 0 0 c 【 = 条 件下烧结 2 h 。将烧结产物用热 的去离子水 冲洗数次 以去 除残留的 N a C 1 , 最后在 9 O c C条件下 干燥 1 2 h ,
浮液 ( 摩尔比: u: B=1 : 2 , C u掺杂 为 0 . 2 %, C
[ L i ] = 1 . 1 7 m o l L ) , 再 加入 0 . 0 9 2 4 g十六 烷基 三 甲基 溴 化 铵 ( C T A B) 。将 上述 的混 合 液 放入 1 0 0 m l 的聚四氟乙烯 内衬 的水 热反应釜
减的影 响 。因此制备的 L T B : C u 微 晶非常适用 于高剂量 射线 的测量 。同时对 比了 N a C I 共烧结和直接 烧结的 L T B : C u 微 晶的发光 曲线 , 发现 N a C I 可以有效地提升 L T B : C u 微 晶的热释光 性能 。 关键词 : 水 热法 ; C u 掺杂 L i 2 B 。 O , 微晶 ; 热释 光
第3 3卷
2 0 1 3年
第 5期
5月
核 电子 学 与探 测技 术
Nu c l e a r El e c t r o n i c s& De t e c t i o n T e c h n o l o g y
V0 1 . 3 3 NO. 5 Ma v . 2 0 1 3
中图分类 号 : 0 4 8 3 , T L 8 1 8 . 4 文献标志码 : A 文章编 号 : 0 2 5 8 - 0 9 3 4 ( 2 0 1 3 ) 0 5 - 0 6 1 0 - 0 6
热释光是指晶体在受辐射作用后积蓄的能
量在 加 热过程 中以光 的形 式 释放 出来 的一 种 物
纳米棒在 中子 和 混合 场辐 照剂量测 量方面 有潜在应用 等。可见通过改进和尝试新 的热释
理现象 , 早在 1 9 5 3 年就被用于原子武器爆炸后 的辐射剂量测量。对于热释光材料 , 不仅不 同 材料的热释光性能不同 , 即使是同一种材料 , 掺
光材料 的制备方法 , 进而改变热释光材料的微 结构来提高现有热释光材料 的性 能, 有着很大
C u掺 杂 四硼 酸 锂 微 晶 的 水 热 合 成 及 其 热 释 光 特 性
高晓峰 , 王万平 , 黄才 龙 , 张亚男 , 张海 黔
( 南 京航空航天 大学 核科学与工程 系 , 江苏南京 2 1 1 1 0 0 )
摘要: 用水热法制 备了 c u 掺 杂的 “: B 0 ( L T B: C u ) 微晶 , 使用 X R D和 S E M对 样品进行 了表征 , 测 量 和分析 了样品的各项热释 光性能 。运用一般 级动力 学方 程对发 光 曲线 进行 解谱 , 确 定其 3个剂 量 峰 峰温分别 为 1 6 2 、 2 5 4和 3 6 6 ℃, 并 得到 了与 3个剂 量峰相对应的 陷阱参数 。结果 表明 制备 的 L T B: C u微 晶在很 大范围 ( 1 0—5 0 0 0 G y ) 内都有着 良好 的线 性响应 和很好 的重 复性 , 并且 可 以通 过预加 热 减少衰
2 0 0 3 年, 印度的 P a n d e y等 人 首 先 探 讨 了 L i — N a S O : E u 纳米 晶体在热释光剂量学 当中的应
用 J , 随后 多人对 纳米 晶及 微 晶态 的 A 1 0 , 、 C a S O 、 L i F 、 Z n S 等各类热 释光材料 的热释光性
的研究和实际意义。
杂杂质的种类和浓度、 制作方 法的不同都会极 大地影 响热释光材料 的发 光性 能…。热 释光
材料微晶化 和纳米化之后 , 在其 中的陷阱和发 光 中心 的结构和性质会发生改变 , 从而呈现出 与大 粒 度 热 释 光 材 料 所 不 同 的 热 释 光 性 能 。
L i B 0 , 作为一种热释光剂量材料 , 具有很 好的剂量线性响应和较高的灵敏度 , 并 因为其 有效原子序数 为 7 . 3 , 而使得 它还具有其 他剂 量材料所无可 比拟的组织 等效性 ( 人体软组织 的有效原子序数 为 7 . 4 2 ) 卜 引, 这对于 医疗照
能进行 了研究 J , 发现这些 热释光 材料在某 些方面的性能得到 了明显的提升 , 如C a S O 纳 米晶可用于 测量重带 电粒 子 的辐照剂 量 、 L i F
L i B 0 , 研究较少。本文用水热法制备 了 C u 掺 杂的 L i : B 0 微晶 , 并首次测量 了它们 的热释光
射、 核事故应急 中的个人辐照剂量测量是非常 重 要 的 。正 因 为 L i B 0 , 的这 一 特性 , 从2 O世 纪8 0年代 以来 , 成 为 国外 热 释光 剂 量材 料 的研 究热点 。但是一 直 以来 , 人们对 L i : B O 的研究主要集 中在 M n 、 C u 、 I n 、 A g以及稀土元 素等掺杂 的烧结块 和单晶上¨ J , 对微晶态的