高频丙类功率放大器
丙类功率放大器的特点

2.3 丙类谐振功放的性能分析
5.放大特性
指VCC 、 VBB 、 RP固 定, Uim变化对放
大器性能的影响。
特点:随着Uim的增
大,先后经历: 欠压→临界→过压 且θ增大。 欠压时用于放大,过
压时用于限幅。
2.4 丙类谐振功放的电路
1.基极馈电电路
2.4 丙类谐振功放的电路
2.集电极馈电电路
源VBB应小于死区电压以保证晶体管工作于丙类状态, 一般VBB略小于0。集电极电压VCC是功率放大器的能
量来源。
2.2 丙类谐振功放的工作原理
2.工作原理
设输入ui为一余弦信号: u i Uimcost
则三极管的发射结电压:uBE VBBuiV BB U im cots
因为管子只在小半周期内导通,因而iB为脉冲电流。
2.1 丙类谐振功放的特点
1.与低频功放相比较
✓ 工作频率和相对频带不同 ✓ 负载性质不同 ✓ 工作状态不同
2.与小信号谐振放大器比较
✓ 对放大信号的要求不同 ✓ 谐振网络的作用不同 ✓ 工作状态不同
2.2 丙类谐振功放的工作原理
1.电路原理
三极管V在工作时应处于丙类工作状态,只有小部分 时间导通。LC谐振回路起到滤波和匹配作用。基极电
✓ 5.倍频器按其工作原理可分为丙类倍频器和参量倍频 器。
✓ 6.传输线变压器是以传输线原理和变压器原理相结合 的方式工作,因此具有良好的宽频带传输特性。
临界状态分析,如: 1
Po n2IcnU mcn m
Cnp PD o nC 1 2IIcC nU V 0m C cn Cm
• n越大,Pon和ηcn越小且<n的谐波难滤除,所以
一般n取2~3级。
高频功率放大器

1.原理说明利用选频网络作为负载回路的功率放大器称为谐振功率放大器。
它是无线电发射机中的重要组成部件。
根据放大器电流导通角θ的范围可以分为甲类、乙类、丙类等不同类型的功率放大器。
电流导通角θ愈小放大器的效率η愈高。
如甲类功放的θ=180o ,效率η最高也只能达50%,而丙类功放的θ<90o ,效率η可达到80%。
甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。
丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
高频功率放大器按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。
高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。
1.1高频功放的主要技术指标1.1.1 功率关系:功率放大器的作用原理是利用输入到基极的信号来控制集电极的直流电源所供给的直流功率O P ,使之一部分转变为交流信号功率1P 输出去,一部分功率以热能的形式消耗在集电极上,成为集电极耗散功率C P 。
根据能量守衡定理:1o C P P P =+直流功率: 输出交流功率:2211111222c c c c L L U P U I I R R =⋅== C U -----回路两端的基频电压 c1I ----- 基频电流 L R ----回路的负载阻抗。
1.1.2 放大器的集电极效率1101122c c o CC c U I P P U I ηξγ⋅===⋅ 其中集电极电压利用系数:1c c L CC CCU I RU U ξ== 0o c CCP I U =⋅波形系数:1100()()c c I I αθγαθ==为通角 θ 的函数;θ 越小γ越大。
1.1.3 谐振功率放大器临界状态的计算临界状态下,若已知电源电压Ucc ,BB U 三极管的参数C g ,'U BB ,设电压利用系数为 ξ,集电极的导通角为θ。
丙类功率放大器的设计与仿真

摘要本论文使用EWB软件对丙类谐振式功率放大器的进行了仿真设计。
首先,根据电路的性能指标要求,对丙类谐振式功率放大器的电路参数进行工程估算;然后,利用软件对估算的电路进行进一步分析,通过观测、分析丙类谐振式功放的调制特性、负载特性、放大特性的基础上,调整电路的参数,从而达到优化电路参数的目的,以使电路的各项性能指标满足预期的设计要求。
关健词: EWB;丙类功率放大器;放大特性;负载特性ABSTRACTIn this dissertation,the simulation of the class-C resonant Power-Amplifier is given in detail by studying EWB, by using which the accurate simulation analysis of the estimated circuit is obtained after the Circuit parameters of the class-C resonant Power-Amplifier are estimated according to the circuit performance. On the base of observing and analyzing load characteristics, amplify characteristics and modulation characteristics, optimized Circuit Performance are obtained by adjusting the circuit parameters for the purpose of meeting the demands of the design.Keywords:EWB;class C amplifier;amplification characteristics;load characteristics目录第1章前言 (1)1.1 研究背景 (1)1.2 研究意义 (1)1.3 研究内容 (2)第2章丙类功率放大器原理 (2)2.1 丙类功率放大器的电路组成及工作原理 (3)2.2 丙类谐振功率放大器的效率与功率 (3)2.3 丙类放大器的工作特性 (4)2.3.1 调制特性 (4)2.3.2 放大特性(振幅特性) (5)2.3.3负载特性 (6)第3章丙类功率放大器电路设计与仿真分析 (8)3.1放大器电路设计要求 (8)3.2设计电路图 (8)3.3 EWB软件介绍 (9)3.3.1 EWB操作介绍 (9)3.3.2 EWB软件中各界面介绍 (11)3.4 仿真结果及分析 (12)3.4.1测量高频功率放大器的技术指标 (12)3.4.2 调制特性的仿真分析 (12)3.4.3 放大特性(振幅特性)的仿真分析 (14)3.4.4 负载特性的仿真分析 (16)总结 (20)参考文献 (1)致谢 (2)第1章前言1.1 研究背景随着无线通信技术的高速发展,市场对射频电路的需求越来越大,同时对射频电路的性能要求也越来越高。
《高频实验》实验二 高频功率放大器

实验二高频功率放大器一、实验目的:l.了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载变时的动态特性。
2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化和电源电压Vcc变化时对功率放大器工作状态的影响。
3.比较甲类功率放大器与丙类功率放大器的特点、功率、效率。
二、实验内容:1.观察高频功率放大器丙类工作状态的现象,并分析其特点2.测试丙类功放的调谐特性3.测试丙类功放的负载特性4.观察电源电压变化对丙放工作状态的影响及激励信号变化、负载变化对工作状态的影响。
三、实验基本原理:丙类功率放大器通常作为发射机末级功放以获得较大的输出功率和较高的效率。
本实验单元模块电路如图2—l所示。
该实验电路由两级功率放大器组成。
其中VT1(3DG12)、XQ1与C15 组成甲类功率放大器,工作在线性放大状态,其中R2、R12、R13、VR4组成静态偏置电阻,调节VR4可改变放大器的增益。
XQ2与CT2、C6组成的负载回路与VT3(3DG12)组成丙类功率放大器。
甲类功放的输出信号作为丙放的输入信号(由短路块J5连通)。
VR6为射极反馈电阻,调节VR6可改变丙放增益。
与拨码开关相连的电阻为负载回路外接电阻,改变S5拨码开关的位置可改变并联电阻值,即改变回路Q值。
当短路块J5置于开路位置时则丙放无输入信号,此时丙放功率管VT3截止,只有当甲放输出信号大于丙放管VT3 be间的负偏压值时,VT3才导通工作。
四、实验步骤:1.了解丙类工作状态的特点1)对照电路图2—l,了解实验板上各元件的位置与作用。
2)将功放电源开关S1拨向右端(+12V),负载电阻转换开关S5全部拨向开路,示波器电缆接于J13与地之间,将振荡器中S4开关“4”拨向“ON”,即工作在晶体振荡状态,将振幅调制部分短路块J11连通在下横线处,将前置放大部分短路块J15连通在“ZD”下横线处,将短路块J4、J5、J10均连在下横线处,调整VR5、VR11、VR10使J7处为0.8伏,调VR4、VR6,在示波器上可看到放大后的高频信号。
实验七丙类功率放大器实验

实验七丙类功率放⼤器实验实验七丙类功率放⼤器实验⼀、实验⽬的:1. 了解谐振功率放⼤器的基本⼯作原理,初步掌握⾼频功率放⼤电路的计算和设计过程;2. 了解电源电压与集电极负载对功率放⼤器功率和效率的影响。
⼆、预习要求:1. 复习谐振功率放⼤器的原理及特点;2. 分析图7-7所⽰的实验电路,说明各元件的作⽤。
三、实验电路说明:本实验电路如图7-7所⽰。
图7-7本电路由两级组成:Q1等构成前级推动放⼤,Q2为负偏压丙类功率放⼤器,R4、R5提供基极偏压(⾃给偏压电路),L1为输⼊耦合电路,主要作⽤是使谐振功放的晶体三极管的输⼊阻抗与前级电路的输出阻抗相匹配。
L2为输出耦合回路,使晶体三极管集电极的最佳负载电阻与实际负载电阻相匹配。
R14为负载电阻。
四、实验仪器:1. 双踪⽰波器2. 万⽤表3. 实验箱及丙类功率放⼤模块4.⾼频信号发⽣器五、实验内容及步骤;1. 将开关拨到接通R14的位置,万⽤表选直流毫安的适当档位,红表笔接P2,⿊表笔接P3;2. 检查⽆误后打开电源开关,调整W使电流表的指⽰最⼩(时刻注意监控电流不要过⼤,否则损坏晶体三极管);3. 将⽰波器接在TP1和地之间,在输⼊端P1接⼊8MHz幅度约为500mV的⾼频正弦信号,缓慢增⼤⾼频信号的幅度,直到⽰波器出现波形。
这时调节L1、L2,同时通过⽰波器及万⽤表的指针来判断集电极回路是否谐振,即⽰波器的波形为最⼤值,电流表的指⽰I0为最⼩值时集电极回路处于谐振状态。
⽤⽰波器监测此时波形应不失真。
4. 根据实际情况选两个合适的输⼊信号幅值,分别测量各⼯作电压和峰值电压及电流,并根据测得的数据分别计算:1)电源给出的总功率;2)放⼤电路的输出功率;3)三极管的损耗功率;4)放⼤器的效率。
六、实验报告要求:1. 根据实验测量的数值,写出下列各项的计算结果:1)电源给出的总功率;2)放⼤电路的输出功率;3)三极管的损耗功率;4)放⼤器的效率。
2. 说明电源电压、输出电压、输出功率的关系。
丙类功率放大器电路组成和工作原理分析

+
+
ib V +
uce
+
ube - -
vc C -L
输出
vb=Vbmcoswt
-
+- VBB
-+ VCC
vBE VBB Vbmcost;
VBB设置在功率管的截止区,以实现丙类工作, 丙类工作时集电极电流为尖顶脉冲
集电极电流 ic
iC IC0 ic1 ic2
IC0 Ic1mcost Ic2mcos2t
丙类谐振功率 放大器的工作原理
不同工作状态时放大器的特点
工作状态 半导通角 理想效率
负载
应用
甲类 乙类
甲乙类 丙类
θ c=1800 θ c=900
900<θ c<1800 θ c<900
50%
78.5%
50% <η <78.5% η >78.5%
电阻
低频
推挽,回 低频、高
路
频
推挽
低频
选频回路 高频
ic
+
+
ib V +
uce
+
ube - -
vc C -L
输出
vb=Vbmcoswt
-
+- VBB
-+ VCC
vBE VBB Vbmcost;
vCE VCC Vcmcost(Vcm Ic1mRP )
结论:丙类功放导通时间短,集电极 功耗小,所以效率高。
总结:
1、电路工作状态:晶体管发射结为负偏置, 由 VBB 来保证,流过晶体管的电流为余弦脉冲 波形;
C Rp L vc +
Vc c
ic
+
C
Rp
南理工高频电子实验-非线性丙类功率放大器实验报告

高频电子实验非线性丙类功率放大器实验学号班级专业姓名非线性丙类功率放大器实验一、实验目的(1)了解丙类功率放大器的基本工作原理,掌握丙类功率放大器的调谐特性以及负载变化时的动态特性。
(2)了解激励信号变化对功率放大器工作状态的影响。
二、实验原理晶体管高频功率放大器的原理线路(1)采用负偏置:减小无用功耗,提高效率;(2)采用变压器耦合:阻抗匹配,减小负载电阻R对谐振回路的影响;(3)采用电感部分接入:减小晶体管输出电阻对谐振回路的影响。
在晶体管负偏置,输入信号为大信号的条件下:晶体管在输入信号的正半周的部分时间内导通,在输入信号的其他时间内截止;基级电流和集电极电流为高频脉冲信号;集电极电流流过具有选频作用的并联谐振回路后,产生了与输入信号同频的集电极电压信号。
电流、电压波形(流)通角θ: 有电流出现时所对应相角的一半。
集电极电流式中tω012cos cos 2cos C c c c cn i I I t I t I n t ωωω=+++++()()()()()()()()()()0maxmax 01maxmax 1max 2max 1sin cos ()21cos 1sin cos ()cos 1cos 12sin cos 2sin cos ()cos 11cos 1c C C cC C cn C C n I i t d t I I I i t t d t I I n n n I i t n t d t I n n I n θθθθθθθθθωππθαθθθθωωππθαθθθθθωωππθαθ----==-=-==-=-==--=>⎰⎰⎰()n n αθ称为余弦脉冲的次谐波分解系数。
高频功放的电流、电压波形tCCU BBU 1cos o c c L u u I R tω==cos CE CC o CC c u U u U U tω=-=-输出功率:直流输入功率:集电极损耗功率: 集电极效率:负载特性实验电路图如下图22111111222c c c c L LU P I U I R R ===200012c CCc CCP i Ud t I U πωπ==⎰01c P P P =-11001122c c c CC I U P P I U ηγξ===()()1100c c I I αθγαθ==称为波形系数cCCU U ξ=称为集电极电压利用系数min1(1)L c CE CC c CES R U U U U U =->较小,使得较小,使得,称为欠压状态;min 2(2)L c CE CC c CES R U U U U U =-=增大,使得增大,使得,称为临界状态;min3(3)L c CE CC c CES R U U U U U =-<继续增大,使得继续增大,使得,称为过压状态。
简述丙类功率放大器的原理

简述丙类功率放大器的原理丙类功率放大器是一种常见的功率放大器,它的原理可以概述为通过将输入信号分为两个部分,一个部分用于控制开关管的导通,另一个部分则用来控制开关管的关断,从而实现对输入信号的放大。
这种设计使得丙类功率放大器具有高效率和低失真的特点,被广泛应用于音频放大、射频通信等领域。
丙类功率放大器的原理基于晶体管(或管子)的非线性导通特性。
晶体管的导通和关断是通过基极电流进行控制的。
在丙类功率放大器中,晶体管通常使用开关型晶体管(如MOSFET)或具有延迟特性的双极型晶体管(如BJT)。
开关型晶体管具有高开关速度和低导通电阻,适用于高频率的应用;而双极型晶体管的导通特性更加符合音频信号的放大需求。
丙类功率放大器的输入信号被分为两个部分,一个部分用于控制晶体管的导通,另一个部分则用来控制晶体管的关断。
这样,晶体管只在输入信号正半周期与负半周期的过渡点才会被导通,而在信号的保持期则关闭,从而减小了功率放大器在无信号输入时的功耗。
具体实现时,丙类功率放大器通常采用交叉耦合的方式。
即将输入信号通过耦合电容分为正信号和负信号,分别作用于两个晶体管的控制端。
在正信号过程中,正信号晶体管导通,负信号晶体管关闭;在负信号过程中,负信号晶体管导通,正信号晶体管关闭。
这样,输入信号就被放大到输出端。
需要注意的是,由于丙类功率放大器在正负信号过程中只有一个晶体管处于导通状态,因此输出信号将会出现截止失真。
为了解决这个问题,一般会在输出端引入一个滤波电路,对输出信号进行滤波和重构。
滤波电路通常由电感和电容组成,用于将输出信号的截止部分滤除,使得输出信号更加接近于原始信号。
总结起来,丙类功率放大器的原理是通过将输入信号分为控制导通和关断的两个部分,利用晶体管的开关特性对输入信号进行放大。
由于只有一个晶体管处于导通状态,使得丙类功率放大器具有高效率和低失真的特点。
通过引入滤波电路,可以进一步改善输出信号的质量。
这种放大器常用于音频放大、射频通信等领域,是一种常见且实用的功率放大器设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一:高频丙类功率放大器前言在高频范围内为获得足够大的高频输出功率,必须采用高频放大器,高频功率放大器主要用于发射机的未级和中间级,它将振荡产生的信号加以放大,获得足够高频功率后,再送到天线上辐射出去。
另外,它也用于电子仪器作未级功率放大器。
高频功率放大器要求功率高,输出功率大。
丙类放大器它是紧紧围绕如何提高它的效率而进行的。
高频功率放大器的工作频率范围一般为几百KHZ—几十MHZ。
一般都采用LC 谐振网络作负载,且一般都是工作于丙类状态,如果要进一步提高效率,也可工作于丁类或戊类状态。
一.实验目的及要求(一)实验目的1.进一步了解高频丙类功率放大器的工作原理和调试技术。
2.熟悉负载变化对放大器工作状态的影响及各指标的测试方法。
3.掌握输入激励电压,集电极电压,基极偏置电压变化对放大器工作状态的影响。
(二)实验要求1.认真阅读本实验教材及有关教材内容2.熟悉本实验步骤,并画出所测数据表格。
3.熟悉本次实验所需仪器使用方法。
(三)实验报告要求1.写出本次实验原理及原理框图2.认真整理记录测试数据及绘出相应曲线图。
3.对测试结果与理论值进行比较分析,找出产生误差的原因,提出减少实验误差的方法。
4.详细记录在调谐和测试过程中发生的故障和问题,并进行故障分析,说明排除过程和方法。
5.本次实验收获,体会以及改进意见。
二.实验仪器及实验板1.双踪示波器(CA8020)一台2.高频信号发生器(XFG-7)一台3.晶体管直流稳压电源一块4.数字万用表一块5.超高频毫伏表(DA22)一台6.直流毫安表一块7.高频丙类功率放大器实验板一块三.实验原理及公式推导高频谐振放大器的主要作用是使电路输出功率大,效率高;主要特点是用谐振回路来实现阻抗变换,并且为了提高效率常工作在丙类状态。
高频功率放大器一般有两种:1.窄带高频功率放大器;2. 宽带高频功率放大器。
前者由于频带比较窄,故常用选频网络作为负载回路,所以又称为谐振功率放大器。
而宽带高频功率放大器的输出电路则是传输线变压器或其它宽带高频功率放大器,以高效率,小失真得到较大输出功率。
因此一般都工作在丙类状态。
其导通角小于π,其通角小于π/2。
如图1所示是丙类功率放大器原理图。
图中LC谐振回路为集电极的负载,Ec为集电极直流电源,Eb为基极负偏置电源。
Ub是高频输入信号,Ub=Ubm cosωt。
可见,只有输入信号电压足够大时,即Ub>Eb+Eb1(Eb1为晶体管截止偏压)时晶体管才导通。
显然电流的通脚<π/2,集电极电流Ic呈脉冲形状,这个电流经集电极谐上得到一个放大的基波功率。
振回路选出Ic的基波分量Ic1,再经过变压器耦合,在RL从而实现了丙类功率放大。
高频功率放大器是由输入回路,晶体管负载和电源几部分组成。
1.高频丙类功率放大器的输出功率和效率。
为了便于计算脉冲电流Ic,将晶体管的动态转移特性曲线ic-Ubc用折线gm表示。
如图2所示,由图2所知:i c =g m (U b θ—E 'b) = g m (U b m C o s ωt +E b '—b E 'b) g m 为跨导。
当ωt=θ时,i c = 0。
cos θ=当ωt=0时,i c = i c m a x = g m (U bm +E b '—b E 'b) = g m U bm (1- )= g m U bm (1- cos θ)由(1)(2)(3)式得出: i c = i c m a x 因为丙类工作状态的集电极电流脉冲是尖顶余弦脉冲,是以ω为角频率的周期性函数。
故可用付里叶级数求系数方法来表示它的直流、基波分量,各次谐波分量的数值。
由付氏级数的系数求得: +xI co = i c d ωt=i cmax -x +xI Cim = i c cos ωtd ωt=i cmax-x +xI c 2m = i c cosn ωtd ωt=i cmax -x 式中可写成:I co =i cmax α0 (θ)I Cim =i cmax α1(θ) α0(θ)、α1(θ)、αn (θ)为余弦脉冲电I c n m = i cmax αn (θ) 流i e 的分解系数。
因此i c 分解为付氏级数为:i c = I co + I Cim cos2wt+ I c 2m cos2wt+…I c n m cos2wt 在功率放大器中,主要研究它的输出功率和效率。
为什么要工作丙类状态,从三极管输出功率来看。
+θP o = i c E c dt -θ直流电源供给功率:E 'b+ - -E bU b mE 'b+ - -E bU b m sin θ-θcos θ π(1-cos θ) 1 2π 1π θ-sin θcos θ π(1-cos θ) 1 π2(sin θcos θ-ncosn θ)π[n(n 2-1)(1-cos θ)1 2π-π Q Q P d c = E c i c dut= E c i c dut= i c dut=E c I co +π Q Q 三级管输出功率P o u t = I 2Cim Re=R e 为折合到集电极谐振回路初级的阻抗。
集电极效率:ηt = = = § = §g 1(θ)可以看出减少管耗Pc, 或者提高ζ和g 1(θ)都可以提高放大器的效率。
这是因为:1。
要减少集电极损耗功率Pc ,则要求减少Uce 。
当管内有较大电流i c 时,Uce 应尽量减少,最好在ic 整个流通时间内Uce 均很小,或者当Uce 较大时,要尽量减少集电极电流1 2π 1 2π 1 2π P outP dc1 2π U 2cimRe 1 2π 1 2 U cim ·I cio E c ·I co 1 2 I cim I co 12ic。
2.要提高集电极效率,则要求提高集电极电流电压利用系数ζ。
Uc1m增大,ζ可增大,因为Uc1m增大使Uce减小。
(Uce=Ec - Uc1m cosωt),所以,当ic较大时,Uce的减少使得管子集电极损耗Pc减少,从而提高效率。
3.要提高效率,也可增大g1(θ)。
θ的减少,可使g1(θ)增大,于是提高效率。
θ减少,意味着减少ic与Uce均不为零的时间,从而可用甲,乙,丙3种工作状态的集电极电压,电流波形来说明,如图3所示。
图3 甲、乙、丙类三种工作状态甲类在一个周期中都有ic流通,因而Uce正半周,也有ic,所以管耗大,效率低。
乙类ic只有半个周期流通,而且,当放大器的负载为电阻时,ic流通半周正好与Uce 负半周相对应,此时,Uce小,因而效率比甲类高。
丙类工作时波形,ic流通时间小于半个周期,当集电极谐振回路对激励信号谐振时,ic仅在Uce负半周瞬时值较大时流过,此时Uce较小,所以丙类比乙类效率高。
当θ<π/2,是否可能接近于零,得到最高效率呢?当θ→0时,使得输出功率也显著下降,为了兼顾输出功率和不使激励功率过大,因而θ不能太小,从而限制效率提高。
一般情况下θ=π/3-7π/18时,相应的集电极效率较大,η在80%-90%之间。
2.丙类功率放大器的负载特性丙类功率放大器的负载特性是指在Ec,Eb,Ubm不变的条件下,各种电流输出电压,功率和效率等随Re变化的曲线。
因为高频功率放大器的工作状态取决于Rc,Ubm,Eb和Ec四个参数。
如果保持Ubm,Eb和Ec不变,则工作状态仅取决于Rc。
(1)负载变化对工作状态的影响如果保持Ubm,Eb和Ec不变则Re变化影响工作状态的变化如图3从图3看出:1.动特性表示Re较小时,这时Uc1m也较小,动态负载线A1在线性放大区,这种状态称为欠压状态。
在欠压状态,ic呈余弦脉冲。
2.动特性随Rc增加,动态负载线A2在临界线上,称这种状态为临界状态,此时ic还是呈余铉脉冲。
3.动特性随Rc继续增大,A3也进入饱和区,此时ic呈凹脉冲,这种状态称过压状态,在过压状态,随Rc增大,ic的幅度也迅速下降,但它的基波输出电压振幅基本不变,即Uc1m≈Ec。
(2)负载Re变化对Ico,Icm,Uc1m,Pout,Po和η的影响。
当维持Ubm,Eb和Ec不变时,放大器Ico,Icm,Uc1m,Pout,Po,Pc和η随负载阻抗Re变化。
因为,Uc1m=Ic1m*Re。
如图5:在欠压区:Ic1m与Ico基本不变,仅随R e增加略有下降,Uc1m也随Re增加而直线增加,Pc管耗下降。
把放大器看成恒流源。
在过压区:Uc1m几乎不变,Ico和Ic1m则随R e的增大也急剧下降。
把放大器看成恒流源。
从图4看出:集电极电源输入功率Po=Eo*Ico。
由于Ec不变,因而Po与Re关系曲线和Ico曲线的形状相同。
放大器输入功率Pout=1/2 Ic1m*Uc1m,Pout与Re关系是根据Uc1m、Ic1m两条曲线相乘求出来。
在临界状态时,Pout达到最大值,放大器效率也较高。
这就是希望放大器工作在临界工作状态的原因。
集电极损耗功率Pc=Po – Pout,故Pc曲线由Po与Pout曲线相减得出。
在欠压区,当Re减小,Pc上升很快;当Re=0时,Pc达到最大值,可能使晶体管烧坏。
(这种情况是短路)放大器的效率η=Pout/Po.在欠压状态时,Po变化小,所以η随Pout增加而增加,到临界状态后,Pout下降没有Po快,在过压状态时,Pout主要是随Ic1m急剧下降而下降,因而η也略有下降,故在靠近临界的弱过压状态η出现最大值。
3.放大器各级电压对工作状态的影响(1)Ubm对工作状态的影响在讨论激励电压幅度Ubm的变化对放大器工作状态影响,设Ec,Eb,Re不变。
当Ubm较小时,Ubemax=Eb+Ubm也较小,从ic-Ubc动态特性看出:放大器工作在欠压状态,集电极电流为尖顶余弦脉冲。
当Ubm增大时,Icmax,Ic1m也增大,,而引起Uce=Ec-Ic1m*Rc的减少。
从而使放大器由欠压状态过渡到过压状态。
如图6所示:(a)为ic-Ubc此称平面上ic的动特性。
(b)为集电极电流脉冲波形。
(c)Ic1m,Ico,Icm-Ubm的关系。
从图6可看出:在欠压状态时,随着Ubm的增加,将引起icmax增加,于是Ic1m,Ico 和Uc1m与Ubm几乎成正比增加。
在过压状态时,随着Ubm的继续增加,虽然电流脉冲高度继续增大,但其凹度增大。
所以Ic1m,Ico在过压区增加不大。
在欠压区,Uc1m与Ubm成线性关系。
(2)Eb变化对工作状态影响设Ec,Ubm,Re不变。
由于Ubemax=Eb+Ubm。
所以Eb变化与Ubm变化一样,都要引用Ubemax的变化。
当Ec,Ubm,Re不变时,| Eb|减小相当于Ubm的增大。
这样,当Eb反向偏置向正向偏置变化时,icmax增大,放大器从欠压状态转入过压状态。