高光谱推扫原理

合集下载

高光谱遥感

高光谱遥感
光谱范围 400~850nm 采样间隔 1.8nm 光谱分辨率 <5nm 瞬时视场角 1.5mrad 行象元数 376 信噪比 ~200
• 中国:MAIS、PHI、OMIS-1(10个热波段)、 中国: 个热波段)、 、 、 ( 个热波段 CMODIS(神舟III号) 、Env-DD(环境灾害小卫星) (神舟 号 (环境灾害小卫星)
三、高光谱遥感技术优势与局限性
优势 1:充分利用地物波谱信息资源 :
图 不同波谱分辨率对水铝反射光谱曲线
优势 2: 利用波形 精细光谱特征进行分类与识别地物 : 利用波形/精细光谱特征进行分类与识别地物
Al-OH
Paragonite
Muscovite
Phengite
三种类型的白云母精细光谱特征
岩石的光谱发射率特征
航空高光谱遥感飞行设计图
(2)光谱特征参数定量分析技术 )
不同水分含量的叶片的光谱反射率
RWC(%)=24.5+7.13*面积 (R2=0.845)
(3)光谱匹配技术(二值编码) )光谱匹配技术(二值编码) • 岩矿光谱分类与识别
岩石和矿物
2.15-2.31微米 粘 土 矿 2.24-2.31微米 Mg-OH 对称性>1 滑石 2.15-2.19微米 叶蜡石 2.31-2.35微米 碳 酸 盐
优势 3: 利用图 谱实现自动识别地物并制图 : 利用图-谱实现自动识别地物并制图
局限1:海量数据的传输、 局限 :海量数据的传输、处理与存储 128波段的 波段的OMIS: 采集数据速率 采集数据速率60Mb/s;400Mb/km2 波段的 ;
高光谱遥感信息的图像立方体表达形式是一种新 高光谱遥感信息的图像立方体 表达形式是一种新 型的数据存储格式, 型的数据存储格式,其正面图像是由沿飞行方向的扫 描线合沿扫描方向的像元点组成的一景优选的三波段 合成的二维空间彩色影像; 合成的二维空间彩色影像;其后面依次为各单波段的 图象叠合,其数据量为所有波段图像的总和; 图象叠合,其数据量为所有波段图像的总和;位于图 像立方体边缘的信息表达了各单波段图像最边缘各像 元的地物辐射亮度的编码值或视反射率。 元的地物辐射亮度的编码值或视反射率。

高光谱成像技术无损检测水果缺陷的研究进展

高光谱成像技术无损检测水果缺陷的研究进展

高光谱成像技术无损检测水果缺陷的研究进展田有文;牟鑫;程怡【摘要】水果缺陷无损检测是水果分级的重要依据。

随着图像技术与光谱信息的发展、高光谱成像系统硬件成本的下降和性能的提升,高光谱成像技术在水果缺陷无损检测方面获得了越来越多的应用。

为了能充分利用最新研究成果,从高光谱成像技术在水果的缺陷无损检测方面,综述了水果损伤、病害、虫害等缺陷无损检测的研究进展,并对其发展方向进行了展望。

%Nondestructive detection of fruits defects is an important basis of the classification of fruits .With the develop-ment of image technology and spectral information , decline of the hyperspectral imaging system hardware cost and im-provements of performance , hyperspectral imaging technology in nondestructive detection of fruits defects gains more and more applications .In order to take full advantage of the latest research results , this paper reviews the advancement of nondestructive detection of the fruits defects of disease , pest by hyperspectral imaging technology .And the development direction is prospected .【期刊名称】《农机化研究》【年(卷),期】2014(000)006【总页数】5页(P1-5)【关键词】高光谱成像;水果;缺陷;无损检测【作者】田有文;牟鑫;程怡【作者单位】沈阳农业大学信息与电气工程学院,沈阳 110866;沈阳农业大学信息与电气工程学院,沈阳 110866;沈阳农业大学信息与电气工程学院,沈阳110866【正文语种】中文【中图分类】TP391.410 引言水果缺陷是水果自动分级系统中的重要依据之一,种类主要有碰伤、压伤、擦伤、刺伤、磨伤、裂伤、雹伤、腐烂、虫咬、果锈、日灼和病害等。

什么是高光谱

什么是高光谱

什么是高光谱,多光谱,超光谱作者:felles提交日期:2010-4-26 8:16:00 | 分类:高光谱 | 访问量:196到底什么是高光谱,多光谱和超光谱技术2009-11-18 13:53多光谱,高光谱和高光谱技术都被称为成像光谱技术,在遥感和其他科研领域具有举足轻重的作用。

多年来,我一直对这种技术理解不深,很多人说什么多光谱,甚至是超光谱,多光谱技术实际上是高光谱技术的原始阶段,几乎被淘汰了。

而有些人说的超光谱实际上还在美国研发,根本没有进入到市面上,也就说诸多同仁对成像光谱技术也是糊里糊涂。

今日,我在一个网站上发现了对这种技术的解释 ,我认为从专业角度来说,他们说的还比较靠谱。

对于科研确实有一定的帮助。

我在这里吧相关资料拷贝过来供大家欣赏。

成像光谱技术(高光谱成像技术)基础Imaging Spectrometer Fundamentals说明:1.下文所属的成像光谱仪又叫高光谱成像系统,而且同一个概念。

2.该资料为天津菲林斯光电仪器公司 编写,仅作成像光谱技术的内部交流之用,禁止一切形式的侵权传播或引用行为。

一.技术历史背景在现代科研过程中, 多数情况下必须对空间不均匀样品的分布特性加以分析和确认,使用传统的光谱仪仅仅能够以聚焦的镜头扫描样品或者获得整个样品的平均特性,这种光谱和空间信息不可兼得的局限性促使高光谱成像技术(Hyperspectral Imaging)应用而生。

早在20世纪60年代(1960s)人造地球卫星围绕地球获取地球的图片资料时,成像就成为研究地球的有利工具。

在传统的成像技术中,人们就知道黑白图像的灰度级别代表了光学特性的差异因而可用于辨别不同的材料,在此基础上,成像技术有了更高的发展,对地球成像时,选择一些颜色的滤波片成像对于提高对特殊农作物、研究大气、海洋、土壤等的辨别能力大有裨益。

这就是人类最早的多光谱技术(Multispectral imaging)它最早出现在LandSat卫星上。

光学选修课结课论文:高光谱成像系统

光学选修课结课论文:高光谱成像系统

高光谱成像系统人眼是人类认识外部世界的重要器官,它给我们带了很多的方便。

但是,它并非完美。

有些它本身的局限,如它对外部世界的描述相当于一个积分器,是一个整体的感知。

不能够对各波段光的分布情况显示。

现实生活中,我们恰恰需要对某件物品或者某个整体进行光谱分析从而研究其各部分的理化性质。

那么,多光谱成像仪和高光谱成像仪便应运而生。

多光谱成像技术和高光谱成像技术是有较大区别的。

高光谱和多光谱实质上的差别就是:高光谱的波段较多,谱带较窄。

多光谱相对波段较少。

这里就浅显地介绍高光谱成像系统。

高光谱成像技术是基于非常多窄波段的影像数据技术,它将成像技术与光谱技术相结合,探测目标的二维几何空间及一维光谱信息,获取高光谱分辨率的连续、窄波段的图像数据。

所谓高光谱图像就是在光谱维度上进行了细致的分割,不仅仅是传统所谓的黑、白或者R、G、B的区别,而是在光谱维度上也有N个通道,例如:我们可以把400nm-1000nm分为300个通道。

因此,通过高光谱设备获取到的是一个数据立方,不仅有图像的信息,并且在光谱维度上进行展开,结果不仅可以获得图像上每个点的光谱数据,还可以获得任一个谱段的影像信息。

高光谱成像技术是基于非常多窄波段的影像数据技术,它将成像技术与光谱技术相结合,探测目标的二维几何空间及一维光谱信息,获取高光谱分辨率的连续、窄波段的图像数据。

目前高光谱成像技术发展迅速,常见的包括光栅分光、声光可调谐滤波分光、棱镜分光、芯片镀膜等。

下面将分条介绍。

一、光栅分光原理。

在经典物理学中,光波穿过狭缝、小孔或者圆盘之类的障碍物时,不同波长的光会产生不同程度的弯散传播,再通过光栅进行衍射分光,形成一条条谱带。

也就是说:空间中的一维信息通过镜头和狭缝后,不同波长的光按照不同程度的弯散传播,这一维图像上的每个点,再通过光栅进行衍射分光,形成一个谱带,照射到探测器上,探测器上的每个像素位置和强度表征光谱和强度。

一个点对应一个谱段,一条线就对应一个谱面,因此探测器每次成像是空间一条线上的光谱信息,为了获得空间二维图像再通过机械推扫,完成整个平面的图像和光谱数据采集。

高光谱,多光谱及超光谱

高光谱,多光谱及超光谱

1、光谱分辨率光谱分辨率spectral resolution定义1:遥感器能分辨的最小波长间隔,是遥感器的性能指标。

遥感器的波段划分得越细,光谱的分辨率就越高,遥感影像区分不同地物的能力越强。

定义2:多光谱遥感器接收目标辐射信号时所能分辨的最小波长间隔。

光谱分辨率指成像的波段范围,分得愈细,波段愈多,光谱分辨率就愈高,现在的技术可以达到5~6nm(纳米)量级,400多个波段。

细分光谱可以提高自动区分和识别目标性质和组成成分的能力。

传感器的波谱范围,一般来说识别某种波谱的范围窄,则相应光谱分辨率高。

举个例子:可以分辨红外、红橙黄绿青蓝紫紫外的传感器的光谱分辨率就比只能分辨红绿蓝的传感器的光谱分辨率高。

一般来说,传感器的波段数越多波段宽度越窄,地面物体的信息越容易区分和识别,针对性越强。

2、什么是高光谱,多光谱及超光谱高光谱成像是新一代光电检测技术,兴起于2O世纪8O年代,目前仍在迅猛发展巾。

高光谱成像是相对多光谱成像而言,通过高光谱成像方法获得的高光谱图像与通过多光谱成像获取的多光谱图像相比具有更丰富的图像和光谱信息。

如果根据传感器的光谱分辨率对光谱成像技术进行分类,光谱成像技术一般可分成3类。

(1)多光谱成像——光谱分辨率在delta_lambda/lambda=0.1mm数量级,这样的传感器在可见光和近红外区域一般只有几个波段。

(2)高光谱成像——光谱分辨率在delta_lambda/lambda=0.01mm数量级,这样的传感器在可见光和近红外区域有几十到数百个波段,光谱分辨率可达nm 级。

(3)超光谱成像——光谱分辨率在delta_lambda/lambda =O.001mm=1nm数量级,这样的传感器在可见光和近红外区域可达数千个波段。

众所周知,光谱分析是自然科学中一种重要的研究手段,光谱技术能检测到被测物体的物理结构、化学成分等指标。

光谱评价是基于点测量,而图像测量是基于空间特性变化,两者各有其优缺点。

基于曲面棱镜的宽视场推帚式高光谱成像仪设计

基于曲面棱镜的宽视场推帚式高光谱成像仪设计

(f e 中继结构 的光栅光谱成像仪 , )nr i 其能量利用 率高 。 析了 曲面棱镜 的近轴光 学理论 和 Of e 分 f r中继结 构 n 的成像 特点 , 出了光谱仪 的设计指标 和结 果 , 给 并对其 光谱 成像 质量进行了评价 。
关键词 高光谱成像 ;曲面棱镜 ;O fe f r中继结构 ; 波红外光谱仪 n 短
第3卷 , 6 2 第 期 20 l2年 6月








V 1 2N . ,p7811 o 3 , o6 p10—71 .
J n ,2 1 ue 02
Sp cr so y a d S eta ay i e to c p n p cr lAn lss
基 于 曲面棱 镜 的宽 视 场 推 帚式 高 光谱 成 像仪 设 计
中 图分 类 号 : H7 4 1 T 4 . 文献标识码 : A D I 0 3 6/.sn 10—5 3 2 1 )610 —4 O :1. 9 4ji .0 00 9 (0 2 0 —7 80 s
工、检测 和 装 调 都 带 来 不 少 困 难 。基 于 凸 面光 栅 色 散 的
引 言
质量进行 了评价 。光谱仪在设计时采 用物方远 心结构 ,在匹 配只要采用像方远心 的前置镜组 , 便能很好 的满 足光谱成像
仪的性能指标 。
1 曲面棱镜 的近轴光学理论
曲面棱镜是将传统色散型三棱镜 的两个通光表 面做成 曲 面而获得 的一种特殊棱镜 ,它同时具有色散和成像 的双重功 能 。图 1 是一束会 聚光线经过 曲面棱镜 的光路 图。假定 曲面 棱镜 的折射率为 , 前后通光表面 的切线夹角为 a 采用薄棱 。

高光谱遥感原理与方法

高光谱遥感原理与方法

高光谱遥感原理与方法
高光谱遥感是一种利用光谱信息来获取地物特征的遥感技术。

传统的遥感技术通过测量地物反射、辐射或散射的总辐射能量来获取地物信息,而高光谱遥感则可以在较短的时间内获取地物的详细光谱信息。

高光谱遥感的原理是利用遥感仪器将地球表面上被测量物体反射的电磁波信号分成很多独立的波段,称为光谱带。

每个光谱带对应于不同的波长范围,从可见光到红外波段。

对于每个光谱带,遥感仪器会记录地物对该波段的反射或辐射能量。

高光谱遥感的方法可以分为两个步骤:数据获取和数据分析。

数据获取阶段,需要利用高光谱遥感仪器对地表进行遥感观测。

高光谱遥感仪器通常由光学设备和光谱仪组成,可以捕捉地物反射的光谱信息。

数据分析阶段,利用计算机技术对获取的高光谱数据进行处理和分析。

首先,需要对原始数据进行预处理,包括大气校正、辐射校正等,以消除环境因素的影响。

然后,利用光谱特征进行地物分类和识别。

通过对高光谱数据分析,可以提取出地物的光谱特征,比如植被指数、土壤属性、水质等。

最后,可以将分析结果应用于各种领域,比如环境监测、农业管理、资源调查等。

总的来说,高光谱遥感通过光谱信息获取地物特征,具有较高
的分辨率和较强的光谱敏感性,可以提供更详细的地物信息,对于地球科学研究和自然资源管理具有重要意义。

高光谱遥感技术综述

高光谱遥感技术综述

四、高光谱遥感成像技术的发展趋势
伴随着成像光谱技术的逐渐成熟,高光谱影像分析研究的 不断深入,应用领域日益广泛,高光谱遥感技术发展呈现以下 趋势: 1、成像光谱仪的光谱探测能力将继续提高 2、成像光谱仪获取影像的空间分辨率逐步提高 3、正在由航空遥感为主转为航空和航天遥感相结合阶段,逐 步从遥感定性分析阶段发展到定量分析阶段
谢谢!
三、高光谱遥感成像技术发展现状
高光号 检测、计算机技术、信息处理技术于一体的综合性技术。技术成 果主要表现在成像光谱仪研制、高光谱影像分析两方面。 1、国外发展现状 国外的发展大致可以分为机载成像光谱仪和星载成像光谱仪。 随着美国的三代机载成像光谱仪的问世,现在更多的倾向于在航 空领域的发展。美国的JPL研制的中分辨率成像光谱仪搭载TERRA卫星的发射,成为第一颗在轨运行的星载成像光谱仪。2000 年发射的高光谱成像仪地面分辨率为30m,2002年美国海军测绘 观测卫星携带的成像光谱仪具有自适应性信号识别能力,能够满 足军民两用,2007年美国又向空军交付的基地的高光谱成像传感 器通过TacSat-3卫星送入太空。
2、国内发展现状 20世纪80年代,我国开始着手研制自己的高光谱成像系统。 相继成功研制出推扫式成像光谱仪(PHI)系列,实用型模块 化成像光谱仪(OMIS)系列等。中科院上海技术物理研究所研 制的中分辨率成像光谱仪于2002年搭载神舟三号发射升空,成 功获取航天高光谱影像,从可见光到近红外30个波段,空间分 辨率在500m。2007年10月发射的嫦娥一号携带干涉成像光谱仪 升空,用于月球的探测。2007-2010年,我国组建了环境和灾 害监测预报小卫星星座,携带超光谱成像仪,采用0.450.95um波段,平均光谱分辨率在5nm,地面分辨率在100m。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高光谱推扫原理
高光谱影像是一种可以提供更多光谱信息的数字影像技术。

它在农业、环境保护、地质勘探、遥感影像分析等领域得到广泛应用。

本文
将介绍高光谱推扫的原理和其在各个领域中的应用。

一、高光谱推扫概述
高光谱推扫是通过获取多个连续波段的光谱数据来获取影像信息的
技术。

传统的彩色影像具有红、绿、蓝三个波段的信息,而高光谱推
扫可以获取数十至上百个波段的光谱信息。

这些波段可以包括可见光、红外光和近红外光等。

二、高光谱推扫原理
高光谱推扫主要依赖于光谱传感器和数据处理系统。

光谱传感器是
一种通过接收不同波长的光并将其转化为电信号的设备。

这些传感器
通常由光学仪器、光谱分光器和光电探测器组成。

当高光谱传感器接收到光线时,它会将光线分散成不同波长的光谱,并将其转化为电信号。

得到的电信号会被传输到数据处理系统进行数
字化处理和图像构建。

通过分析这些数字化的光谱数据,我们可以获
取目标物体的光谱特征。

三、高光谱推扫应用
1. 农林业
高光谱推扫在农林业中有着广泛的应用。

通过获取植物的光谱信息,可以监测植物生长、检测病虫害、优化施肥和水源管理等。

同时,高
光谱推扫还可以帮助农民进行土壤养分检测和农作物的品质评估。

2. 环境保护
高光谱推扫在环境保护领域中的应用也非常重要。

它可以用于监测
水质、空气污染和地表覆盖等环境问题。

通过获取大范围的高光谱数据,科学家可以更好地评估环境状况并制定相应的保护措施。

3. 地质勘探
高光谱推扫在地质勘探中起着关键作用。

通过分析地表的光谱数据,地质学家可以判断地表物质的成分和结构。

这对于矿产资源勘探和地
质灾害的预测都具有重要意义。

4. 遥感影像分析
高光谱推扫也是遥感影像分析的重要工具。

它可以提供更准确的遥
感影像分类和检测结果。

例如,在城市规划中,高光谱推扫可以帮助
确定土地利用类型、监测城市扩展和道路网络的建设等。

综上所述,高光谱推扫技术通过获取多波段的光谱数据,提供更详
细的光谱信息,拓宽了遥感影像技术在各个领域中的应用。

通过分析
这些数据,我们可以更好地了解地球表面的特征,解决环境问题和资
源管理等挑战。

高光谱推扫技术的发展将进一步推动我们对地球的认
识和研究。

相关文档
最新文档