结构力学力法习题及答案
结构力学试题及答案

结构力学试题及答案一、选择题1. 结构力学中,静定结构和超静定结构的主要区别是什么?A. 静定结构可以承受任何形式的荷载,而超静定结构不能B. 超静定结构比静定结构更稳定C. 静定结构的内力可以通过静力平衡方程求解,而超静定结构需要额外的方程D. 静定结构的内力和位移都可以通过静力平衡方程求解答案:C2. 在结构力学中,弯矩图的正确绘制方法是什么?A. 根据弯矩的定义,直接在结构上画出弯矩大小B. 根据弯矩的正负,用箭头表示弯矩的方向C. 根据弯矩的正负和大小,画出弯矩的分布曲线D. 根据弯矩的正负和大小,画出弯矩的分布曲线,并用箭头表示方向答案:D二、简答题1. 简述结构力学中力法的基本原理及其应用条件。
答:力法是结构力学中一种求解超静定结构的方法,其基本原理是利用多余约束来减少未知力的数量,通过建立力的平衡方程来求解结构的内力。
力法的应用条件是结构必须是超静定结构,且存在多余的约束。
2. 描述结构力学中位移法的求解步骤。
答:位移法的求解步骤主要包括:- 确定结构的位移约束条件,建立位移法的基本方程。
- 根据结构的位移约束条件,列出位移协调方程。
- 将位移协调方程与静力平衡方程联立,求解未知的位移和内力。
- 根据求得的位移,反求结构的内力。
三、计算题1. 给定一个简支梁,跨距为L,梁上作用有均布荷载q。
请计算梁的弯矩和剪力。
答:对于简支梁,其弯矩和剪力的计算公式如下:- 弯矩:M(x) = -qLx + qx^2/2- 剪力:V(x) = -qx + qL/2其中,x为梁上任意截面到支点的距离。
2. 给定一个悬臂梁,长度为L,梁端受到一个垂直向下的集中力P。
请计算梁端的弯矩和剪力。
答:对于悬臂梁,其弯矩和剪力的计算公式如下:- 弯矩:M(x) = -P(L - x)- 剪力:V(x) = P其中,x为梁上任意截面到悬臂端的距离。
四、论述题1. 论述结构力学在现代工程领域中的应用及其重要性。
答:结构力学是现代工程领域中的基础学科之一,它在桥梁、建筑、机械、航空航天等多个领域都有广泛的应用。
(完整版)结构力学_习题集(含答案)

《结构力学》课程习题集一、单项选择题1. 弯矩图必定发生突变的截面是()。
A. 有集中力作用的截面;B.剪力为零的截面;C.荷载为零的截面;D.有集中力偶作用的截面。
2. 图示梁中 C 截面的弯矩是()。
12kN . m 4kN 3kN / mC4m 4m 2mA.12kN.m( 下拉 );B.3kN.m( 上拉 );C.8kN.m( 下拉 );D.11kN.m( 下拉 )。
3. 静定结构有变温时,()。
A. 无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力。
4. 图示桁架 a 杆的内力是()。
A.2P ;B. -2P;; D. - 3P。
P P Pda3 d5. 图示桁架,各杆EA 为常数,除支座链杆外,零杆数为()。
A. 四根;B. 二根;C.一根;D. 零根。
P PaP Pl = 6a6. 图示梁 A 点的竖向位移为(向下为正)()。
A. Pl 3 /( 24 EI ) ;B. Pl 3 /(16 EI ) ;C. 5Pl3/( 96EI );D. 5Pl3/(48 EI )。
P2 EI EIl/ 2 A l/ 27. 静定结构的内力计算与()。
A.EI 没关;B.EI 相对值相关;C.EI 绝对值相关;D.E 没关, I 相关。
8. 图示桁架,零杆的数量为:()。
A.5 ;;; D.20 。
9. 图示结构的零杆数量为()。
A.5 ;B.6 ;; D.8 。
10. 图示两结构及其受力状态,它们的内力切合()。
A. 弯矩同样,剪力不一样;B.弯矩同样,轴力不一样;C.弯矩不一样,剪力同样;D.弯矩不一样,轴力不一样。
P P P P2P 2PEI EI EI EIh 2EI EIl ll l11. 刚结点在结构发生变形时的主要特点是()。
A. 各杆能够绕结点结心自由转动;B.不变形;C.各杆之间的夹角可随意改变;D.各杆之间的夹角保持不变。
结构力学-习题集(含答案)

《结构力教》课程习题集之阳早格格创做一、单选题1. 直矩图肯定爆收突变的截里是(D).A.有集结力效率的截里;B.剪力为整的截里;C.荷载为整的截里;D.有集结力奇效率的截里.2. 图示梁中C截里的直矩是(D).A.12kN.m(下推);B.3kN.m(上推);C.8kN.m(下推);D.11kN.m(下推).3. 静定结构有变温时,(C).A.无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力.4. 图示桁架a杆的内力是(D).A.2P;B.-2P;C.3P;D.-3P.5. 图示桁架,各杆EA 为常数,除收座链杆中,整杆数为( A ).A.四根;B.二根;C.一根;D.整根.6. 图示梁A 面的横背位移为(背下为正)( C ).A.)24/(3EI Pl ;B.)16/(3EI Pl ;C.)96/(53EI Pl ;D.)48/(53EI Pl .7. 静定结构的内力估计与( A ).无关;相对付值有关;千万于值有关;无关,I 有关.8. 图示桁架,整杆的数目为:(C ).;;;.9. 图示结构的整杆数目为(C ).;;;.10. 图示二结构及其受力状态,它们的内力切合(B ).A.直矩相共,剪力分歧;B.直矩相共,轴力分歧;C.直矩分歧,剪力相共;D.直矩分歧,轴力分歧.11. 刚刚结面正在结构爆收变形时的主要特性是(D ).A.各杆不妨绕结面结心自由转化;B.稳定形;C.各杆之间的夹角可任性改变;D.各杆之间的夹角脆持稳定.12. 若荷载效率正在静定多跨梁的基础部分上,附属部分上无荷载效率,则(B).A.基础部分战附属部分均有内力;B.基础部分有内力,附属部分不内力;C.基础部分无内力,附属部分有内力;D.不通过估计,无法推断.13. 图示桁架C 杆的内力是(A).A.P;B.-P/2;C.P/2;.14. 用单位荷载法供二截里的相对付转角时,所设单位荷载应是(D).A.一对付大小相等目标好异的集结荷载;B.集结荷载;C.直矩;D.一对付大小相等目标好异的力奇.15. 用图乘法供位移的需要条件之一是:(B).A.单位荷载下的直矩图为背去线;B.结构可分为等截里直杆段;C.所有杆件EI为常数且相共;D.结构必须是静定的.16. 普遍正在画制效率线时,所施加的荷载是一个(B).A.集结力奇;B.指背稳定的单位移动集结力;C.单位力奇;D.集结力.17. 下图中各图乘截止精确的是(D).A. B. C. D.S=y0 S=1y1+2y2 S=y0 S=y018. 图示伸臂梁,B收座左侧截里'B的剪力效率线精确的是(A).A. B.C. D.19. 利用机动法做静定梁效率线的本理是(A).A.真功本理;B.叠加本理;C.仄稳条件;D.变形条件.20. 图示伸臂梁的效率线为哪个量值的效率线(C).A.QA F左;B.QA F;C.QA F右;D.RA F.21. 图示结构,超静定次数为( B ).A.9;B.12;C.15;D.20.22. 力法圆程中的系数δki表示的是基础结构由(B).A.X i爆收的沿X k目标的位移;B.X i=1爆收的沿X k目标的位移;C.X i=1爆收的沿X i目标的位移;D.X k=1爆收的沿X i目标的位移.23. 对付称结构正在对付称荷载效率下,其(A).A.直矩图战轴力图对付称,剪力图阻挡付称,变形与位移对付称;B.直矩图战轴力图对付称,剪力图对付称;变形与位移阻挡付称;C.直矩图战轴力图对付称,剪力图对付称,变形与位移对付称;D.直矩图战轴力图对付称,剪力图阻挡付称,变形与位移阻挡付称.24. 力法的基础已知力是通过变形协做条件决定的,而位移法基础已知量是通过( A )条件决定的.A.仄稳;B.物理;C.图乘法;D.变形协做.25. 图示结构,超静定次数为(A).A.4;B.5;C.6;D.7.26. 图示结构的超静定次数为( C ).A.3;B.4;C.5;D.6.27. 挨启对接三个刚刚片的复铰,相称于去掉( C )个拘束?A.2;B.3;C.4;D.5.28. 图示结构C截里不为整的是( D ).A.横背位移;B.直矩;C.轴力;D.转角.29. 力法的基础已知量是( A ).A.多余已知力;B.收座反力;C.独力的结面线位移;D.角位移.30. 对付于下图所示结构,下列叙述精确的是( D ).A.A面线位移为整;B.AB杆无直矩;C. AB杆无剪力;D. AB杆无轴力.31. 位移法典范圆程中主系数一定( B ).A.等于整;B.大于整;C.小于整;D.大于等于整.32. 正在位移法中,将铰接端的角位移,滑动收撑端的线位移动做基础已知量( B ).A.千万于不可;B.不妨,但是不必;C.一定条件下不妨;D.必须.33. 估计刚刚架时,位移法的基础结构是( C ).A.单跨静定梁的集中体;B.静定刚刚架;C.单跨超静定梁的集中体;D.超静定铰结体.34. 正在位移法基础圆程中,k ij代表( A ).⊿j=1时,由于⊿j=1正在附加拘束i处爆收的拘束力;⊿i=1时,由于⊿i=1正在附加拘束j处爆收的拘束力;C.⊿j=1时,正在附加拘束j处爆收的拘束力;D.⊿i=1时,正在附加拘束i处爆收的拘束力.35. 位移法的基础已知量是( C ).A.收座反力;B.杆端直矩;C.独力的结面位移;D.多余已知力.二、推断题36. 有多余拘束的体系一定是几许稳定体系.(X)37. 形成二元体的链杆不妨是复链杆.(√)38. 每一个无铰启关框皆有3个多余拘束.(√)39. 如果体系的估计自由度等于其本量自由度,那么该体系不多余拘束.(√)40. 若体系的估计自由度小于大概等于整,则该体系一定是几许稳定体系.(X)41. 对付于静定结构,改变资料的本量大概者改变横截里的形状战尺寸,不会改变其内力分散,也不会改变其变形战位移.(X)42. 下图所示二相共的对付称刚刚架,启受的荷载分歧,但是二者的收座反力是相共的.(X)43. 温度改变,收座移动战制制缺面等果素正在静定结构中均引起内力.(X)44. 图示结构火仄杆件的轴力战直矩均为0.(X)45. 正在荷载效率下,刚刚架战梁的位移主假如由于各杆的蜿蜒变形引起.(√)46. 用机动法做得下图(a)所示结构Q左效率线如图(b)所示.b(X)47. 效率线的正背号仅表示本量的内力(大概反力)与假设的目标是可普遍.(√)48. 静定结构指定量值的效率线经常由直线段组成的合线,合面位于铰结面战欲供截里处.(√)49. 荷载的临界位子必定有一集结力效率正在效率线顶面,若有一集结力效率正在效率线顶面也必为一荷载的临界位子.(X)50. 一组集结移动荷载效率下,简收梁的千万于最大直矩不可能出当前跨中截里.(X)51. 力法的基础体系是不唯一的,且不妨是可变体系.(X)52. n次超静定结构,任性去掉n个多余拘束均可动做力法基础结构.(X)53. 图(a)对付称结构可简化为图(b)去估计.(X)54. 下图所示结构的超静定次数是n=8.(X)55. 超静定结构正在荷载效率下的内力估计与各杆刚刚度相对付值有关.(√)56. 超静定结构正在收座移动、温度变更效率下会爆收内力.(√)57. 超静定结构中的杆端力矩只与决于杆端位移.(X)58. 位移法的基础结构有多种采用.(X)59. 位移法是估计超静定结构的基础要领,不克不迭供解静定结构.(X)60. 位移法圆程的物理意思是结面位移的变形协做圆程.(X)三、估计题161. 供下图所示刚刚架的直矩图.62. 用结面法大概截里法供图示桁架各杆的轴力.63. 请用叠加法做下图所示静定梁的M 图.64. 做图示三铰刚刚架的直矩图.65. 做图示刚刚架的直矩图.四、估计题266. 用机动法做下图中E M 、L QB F 、R QB F 的效率线.67. 做图示结构F M 、QF F 的效率线.68. 用机动法做图示结构效率线L Q B F F M ,.69. 用机动法做图示结构R Q B C F M ,的效率线.70. 做图示结构QB F 、E M 、QE F 的效率线.五、估计题371. 用力法做下图所示刚刚架的直矩图.72. 用力法供做下图所示刚刚架的M 图.73. 利用力法估计图示结构,做直矩图.74. 用力法供做下图所示结构的M 图,EI=常数.75. 用力法估计下图所示刚刚架,做M 图.六、几许构制分解 76.77.78.79.80.81.82.83.84.85.七、估计题4(略)……问案一、单选题1. D2. D3. C4. D5. A6. C7. A8. C9. C10. B11. D12. B14. D15. B16. B17. D18. A19. A20. C21. B22. B23. A24. A25. A26. C27. C28. D29. A30. D31. B32. B34. A35. C二、推断题36. Х37.√38.√39.√40. Х41. Х42. Х43. Х44. Х45.Ö46. Х47.√48.√49. Х50. Х51. Х53. Х54. Х55.√56.√57. Х58. Х59. Х60. Х三、估计题161. 解:与完齐为钻研对付象,由0A M =∑,得2220yB xB aF aF qa +-= (1)(2分)与BC 部分为钻研对付象,由0C M =∑,得yB xB aF aF =,即yB xB F F =(2)(2分)由(1)、(2)联坐解得23xB yB F F qa ==(2分) 由0x F =∑有 20xA xB F qa F +-= 解得 43xA F qa =-(1分)由0y F =∑有 0yA yB F F += 解得 23yA yB F F qa =-=-(1分) 则2224222333D yB xB M aF aF qa qa qa =-=-=()(2分)直矩图(3分)62. 解:(1)推断整杆(12根).(4分)(2)节面法举止内力估计,截止如图.每个内力3分(3×3=9分)63. 解:(7分)(6分)64. 解:由0B M=∑,626P RA F F =⨯,即2P RA F F =(↓)(2分) 由0y F =∑,2P RB RA F F F ==(↑)(1分)与BE 部分为断绝体0E M =∑,66yB RBF F =即2P yB F F =(←)(2分) 由0x F =∑得2PyA F F =(←)(1分)故63DE DA yA PM M F F ===(内侧受推)(2分) 63CB CE yB P M M F F ===(中侧受推)(2分)(3分)65. 解:(1)供收座反力.对付完齐,由0x F =∑,xA F qa =(←)(2分)0A M =∑,22308RC F a qa qa ⨯--=,178RC F qa =(↑)(2分)(2)供杆端直矩.0AB DC M M ==(2分)2BA BC xA M M F a qa ==⨯=(内侧受推)(2分)2248CB CD a a qa M M q ==⨯⨯=(中侧受推)(2分) (3分)四、估计题266. 解:(1)C M 的效率线(4分)(2)L QB F 的效率线(4分)(2)R QB F 的效率线(4分)67. 解:(1)F M 的效率线(6分)(2)QF F 的效率线(6分)68. 解:F M 效率线(6分)L Q B F 效率线(6分)69. 解:Q Bc F M ,效率线(6分) R Q B c F M ,效率线(6分)70. 解:(1)QB F 的效率线.(4分)E M 的效率线.(4分)QE F 的效率线.(4分)五、估计题371. 解:(1)本结构为一次超静定结构,与基础体系如图(a )所示.(2分)(2)典型圆程11110P X δ+∆=(2分)(3)画制P M 、1M 分别如图(b )、(c )所示.(3分)(a ) (b )(c ) (d )(4)用图乘法供系数战自由项.333111433l l l EI EI δ=+=(2分)232112217()22336P l Pl Pl Pl l Pl EI EI-⨯∆=++⨯=-(2分) (5)解圆程得1178P X =(1分) (6)利用11P M M X M =+画制直矩图如图(d )所示.(2分)72. 解:1)采用基础体系(2分)那是一次超静定刚刚架,可去掉B 端火仄拘束,得到如下图所示的基础体系.2)列力法圆程(2分)3)画制基础体系的Mp 图战单位直矩图,估计系数、自由项(6分,Mp 图战单位直矩图各2分,系数每个1分,截止过失得一半分)解圆程得: 1128ql X =(1分) 做M 图:11PX MM M =+(3分) 73. 解:(2分) (3分)(1分)(2*4=8分)74. 解:与基础体系如图(2分)列力法基础圆程:11110p X δ+∆=(2分)1M 图(1.5分) p M 图(1.5分)3113l EI δ= (2分) 418p ql EI ∆=-(2分)代进力法圆程得 138ql X =(1分) M 图(2分)75. 解:(1)采用基础体系如图(a )所示(2分)(a )(2)列力法圆程.11112210P X X δδ++∆=(1分)21122220P X X δδ++∆=(1分) (3)分别做P M 、1M 战2M 图(1*3=3分) (4)供系数战自由项.2241111315()32428Pqa a qa a a a qa EI EI ∆=-⋅⋅⋅+⋅⋅=-⋅(1分) 422111()224P qa qa a a EI EI ∆=-⋅⋅⋅=-(1分)3111124()233a a a a a a a EI EIδ=⋅⋅⋅+⋅⋅=(1分) 322112()233a a a a EI EI δ=⋅⋅⋅=(分)3122111()22a a a a EI EI δδ==⋅⋅⋅=(分)将上述数据代进基础圆程得137X qa =,2328X qa =(1分)(5)利用叠加法做直矩图如图.(2分)六、几许构制分解76. 图中,刚刚片AB、BE、DC由不共线的三个铰B、D、E对接,组成一个大刚刚片,再战天基前提用不相接也不齐仄止的三链杆贯串,组成不多余拘束的几许稳定体系(5分).77. 如图所示的三个刚刚片通过不正在共背去线上的A、B、C三个铰二二贯串形成无多余拘束的夸大刚刚片,正在此前提上依次减少二元体(1,2)、(3,4)、(5,6)、(7,8)组成无多余拘束的几许稳定体系.(5分)78. 如图所示的三个刚刚片通过共背去线上的A、B、C三个铰二二贯串形成了瞬变体系.(5分)79. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)80. 如图依次裁撤二元体(1,2)、(3,4)、剩下刚刚片Ⅰ战天里刚刚片Ⅱ通过一铰战不过该铰的链杆组成了几许稳定体系,故本量系是无多余拘束的几许稳定体系.(5分)81. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)82. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)83. 如图以铰接三角形ABC为基础刚刚片,并依次减少二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)产死夸大刚刚片,其战天里刚刚片通过铰A战节面B 处链杆组成了几许稳定体系,11杆为多余拘束,故本量系为含有1个多余拘束的几许稳定体系.(5分)84. 如图依次裁撤二元体(1,2)、(3,4)、(5,6),刚刚片Ⅱ战天里刚刚片Ⅰ通过相接于共一面的三根链杆组成了瞬变体系.(5分)85. 如图依次裁撤二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)、(11,12)后只剩下天里刚刚片,故本量系是无多余拘束的几许稳定体系.(5分)七、估计题4(略)……。
结构力学课后习题答案

习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。
题3-1图3-2 试不计算反力而绘出梁的M 图。
题3-2图习题44-1 作图示刚架的M 、Q 、N 图。
题4-1图4-2 作图示刚架的M 图。
(b)(a)20kN40kN20kN/m40kN(b)5kN/m40kN(a)(c)(b)(a)题4-2图4-3 作图示三铰刚架的M 图。
题4-3图4-4 作图示刚架的M 图。
题4-4图4-5 已知结构的M 图,试绘出荷载。
P(e)(d)(a)(b)(c)/4kN(b)(a)(a)(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。
题4-6图习题55-1 图示抛物线三铰拱轴线方程,试求D 截面的内力。
题5-1图5-2 带拉杆拱,拱轴线方程,求截面K 的弯矩。
题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。
习题66-1 判定图示桁架中的零杆。
(e)(g)(h)P(d)(c)(a)(b)(f)x x l l fy )(42-=x x l lfy )(42-=C题6-1图6-2 用结点法计算图示桁架中各杆内力。
题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。
题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。
题6-4图6-5 用适宜方法求桁架中指定杆内力。
(c)(b)(b)(b)(a)题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。
结构力学计算题经典(有答案)

结构力学 ——渐进法与近似法分析与计算题1. 用力矩分配法计算图示连续梁,作弯矩图和剪力图,并求支座B 的反力。
答案:计算过程、弯矩图、剪力图及支座B 的反力分别如图(a )、(b )和(c )所示。
解析:根据单结点结构力矩分配法的步骤计算即可。
难易程度:易知识点:单结点结构的力矩分配2. 用力矩分配法计算图示连续梁,作弯矩图和剪力图,并求支座B 的反力。
A60kN 40kN·m EIEI B C4m4m6m(b)M 图(单位: )kN·m 图(单位: )(c)kNQ F (a)计算过程答案:图(a )为求解结点B 约束力矩的受力分析图。
计算过程、弯矩图、剪力图及支座B 的反力分别如图(b )、(c )和(d )所示。
解析:根据单结点结构力矩分配法的步骤计算即可。
难易程度:中知识点:单结点结构的力矩分配3. 用力矩分配法计算图示连续梁,作弯矩图和剪力图,并求支座B 的反力。
答案:CD 段为静定悬臂梁,将其截开并暴露出截面C 的弯矩,用力矩分配法计算如图(a )所示结构。
弯矩图和剪力图如图(b )、(c )所示。
BCEIN/m2EI m3m3m40kN(b)计算过程F BM (a)图(单位: )(c)M kN·m图(单位: )Q F (d)kN10kN20kN12kN/m ABCDEI 2EI 2m 4m4m解析:根据单结点结构力矩分配法的步骤计算即可。
本题中悬臂段CD 若不切除,则可按B 、C 两个刚结点的结构进行计算。
难易程度:中知识点:单结点结构的力矩分配4. 用力矩分配法计算图示连续梁,作弯矩图和剪力图,并求支座B 的反力。
答案:AB 段为静定悬臂梁,将其截开并暴露出截面B 的弯矩,用力矩分配法计算过程如图(a )所示。
弯矩图和剪力图图(b )、(c )所示。
kNQ F (c)图(单位: )m M 图(单位: )(b)RB F =63.02kN ( )计算过程(a)mkN·10kN/m 60kN EI 2IB CD2m6m2m解析:根据单结点结构力矩分配法的步骤计算即可。
结构力学习题及答案

结构力学习题及答案一、填空题1、图(a )所示结构A 支座的弯距大小为A M ,则图(b )所示结构A 支座的弯距大小为 3 M A .(a)(b)2、图示桁架结构中内力为零的杆件的数目(包括支座连杆)为 11 。
3、图示结构中AB 杆B 截面的弯矩BA M =____0______________。
(设内侧受拉为正)二、(1.)计算并作出图示结构的弯矩图。
(2.)计算出该结构中E 点平方向的位移,各杆EI 为常数 。
解:(1)绘制结构的弯矩图,见图(a )(2)E 点沿水平方向虚设单位力1=F ,绘M 图,见)(b 图利用图乘法,图)(b 与图)(a 的弯矩图图乘,即∑=∆EIwy E C水平 其中:3824311=⨯⨯=w 232431=⨯=C y 844212=⨯⨯=w 2231076103138322=-=⨯-⨯=C y844213=⨯⨯=w 36831256123138323=+=⨯+⨯=C y442214=⨯⨯=w 35232824283112324=+=⨯+⨯=C y EIEI EI EI EI y w y w y w y w EI EI wy E C 292)1121764(1)33361764(1)32085441764(1)352436882282338(1)(144332211水平=++=++=-++=⨯-⨯+⨯+⨯=-++==∆∑三、作图示结构M 图,各杆EI 相同。
(22分)解:(1)取基本结构 (a )(2)列力法方程01212111=∆++F x x δδ02222121=∆++F x x δδ(3)计算系数和自由项,画_1M 、_2M 、F M 图,见(b )、(c) 、(d)333311353223221l l l l l l l =+=+⨯⨯⨯⨯=δ 322211222l l ll l -=⨯-⨯-==δδ3322343221l l l l l =+⨯⨯⨯=δ31613121Fl l l Fl F =⨯⨯⨯=∆322212Fl Fl l F -=⨯-=∆(4)计算多余未知力 1X 、2X23406353231332313=-+-=+-l FX l X l l FX l X l⎪⎭⎪⎬⎫→023406352121=-+-=+-F X X F X X F FF F F F X 2259111851920218413435)1(23461==-+-=-⨯-⨯-⨯-= F FF F F F X 1169116491166591162352==-=-⨯=(5)绘制弯矩图 见(e)图四、图示结构,EI=常数,利用位移法作其M图(利用对称性)。
结构力学-习题集(含答案)

《结构力学》课程习题集西南科技大学成人、网络教育学院版权所有习题【说明】:本课程《结构力学》(编号为06014)共有单选题,判断题,计算题1,计算题2,计算题3,计算题4,几何构造分析等多种试题类型,其中,本习题集中有[计算题4]等试题类型未进入。
一、单选题1.弯矩图肯定发生突变的截面是()。
A.有集中力作用的截面;B.剪力为零的截面;C.荷载为零的截面;D.有集中力偶作用的截面。
2.图示梁中C截面的弯矩是()。
4m2m4mA.12kN.m(下拉);B.3kN.m(上拉);C.8kN.m(下拉);D.11kN.m(下拉)。
3.静定结构有变温时,()。
A.无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力。
4.图示桁架a杆的内力是()。
A.2P;B.-2P;C.3P;D.-3P。
5.图示桁架,各杆EA为常数,除支座链杆外,零杆数为()。
A.四根;B.二根;C.一根;D.零根。
Pal = a P PP66. 图示梁A 点的竖向位移为(向下为正)( )。
A.)24/(3EI Pl ;B.)16/(3EI Pl ;C.)96/(53EI Pl ;D.)48/(53EI Pl 。
PEI EI A l/l/2227. 静定结构的内力计算与( )。
A.EI 无关;B.EI 相对值有关;C.EI 绝对值有关;D.E 无关,I 有关。
8. 图示桁架,零杆的数目为:( )。
A.5;B.10;C.15;D.20。
9. 图示结构的零杆数目为( )。
A.5;B.6;C.7;D.8。
10. 图示两结构及其受力状态,它们的内力符合( )。
A.弯矩相同,剪力不同;B.弯矩相同,轴力不同;C.弯矩不同,剪力相同;D.弯矩不同,轴力不同。
PPll11. 刚结点在结构发生变形时的主要特征是( )。
A.各杆可以绕结点结心自由转动;B.不变形;C.各杆之间的夹角可任意改变;D.各杆之间的夹角保持不变。
同济大学 结构力学课后习题及答案解析(完整版)

(c) (d)
(e) (f)
(g) (h)
2-5 试从两种不同的角度分析图示体系的几何构造。 (a)
(b)
同济大学朱慈勉 结构力学 第 3 章习题答案 3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a) A
FP
B
C
FPa
D
E
F
a
a
a
a
a
(b) 2kN/m
10kN
A
2m
6m
B
C
2m
D
4m
2m
1
1
2a
1
2
2
M1
6-4 试用力法计算图示结构,并绘其内力图。 (a)
6m
20kN/m
B
1.75EI
C
D
EI
A
6m
3m
解:基本结构为:
20kN/m
X1
6 1
M1
6 810
810
Mp
11X1 1p 0
M M1X1 M p
(b) E
2a
4a
C
D
q
EI=常数
A
B
4a
4a
解:基本结构为:
X1
计算 M 1 ,由对称性知,可考虑半结构。
(c)
15kN
20kN/m
A
B
C
D
E
F
2m 2m 3m
3m
3m
4m
(d)
6kN·m
4kN·m
A 3m
B
C
D
2m 2m
E 2m 2m
A
4kN
FG
H
2m 2m 2m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构力学力法习题及答案
结构力学力法习题及答案
结构力学是一门研究物体在外力作用下产生的应力和变形的学科。
在工程学中,结构力学是非常重要的一门学科,它为我们设计和分析各种建筑和机械结构提
供了基础。
在学习结构力学的过程中,习题是必不可少的一部分。
下面将给出
一些结构力学的力法习题及其答案,希望对读者有所帮助。
1. 一个悬臂梁上有一个集中力作用在梁的自由端,求该梁的弯矩分布图。
解答:根据悬臂梁的特点,自由端处的弯矩最大。
假设集中力为F,梁的长度
为L,弹性模量为E,梁的截面惯性矩为I。
根据悬臂梁的弯矩公式M = F * L,
可以得到弯矩分布图为一个从自由端开始逐渐减小的直线。
2. 一个等截面的梁上有一个均布载荷作用,求该梁的剪力分布图。
解答:假设均布载荷为q,梁的长度为L,根据梁的受力平衡条件,可以得到梁上任意一点的剪力大小为V = q * x,其中x为距离梁的一端的距离。
因此,该
梁的剪力分布图为一个线性增长的直线。
3. 一个梁上有多个集中力作用,求该梁的弯矩和剪力分布图。
解答:对于每个集中力,可以分别求出其在梁上的弯矩和剪力分布图。
然后将
所有的弯矩和剪力分布图叠加在一起,即可得到梁的总弯矩和总剪力分布图。
4. 一个悬臂梁上有一个集中力和一个均布载荷同时作用,求该梁的弯矩和剪力
分布图。
解答:首先,根据集中力的大小和悬臂梁的长度,可以求出集中力在悬臂梁上
的弯矩分布图。
然后,根据均布载荷的大小和悬臂梁的长度,可以求出均布载
荷在悬臂梁上的剪力分布图。
最后,将两者叠加在一起,即可得到梁的总弯矩
和总剪力分布图。
5. 一个梁上有多个集中力和多个均布载荷同时作用,求该梁的弯矩和剪力分布图。
解答:对于每个集中力和均布载荷,可以分别求出其在梁上的弯矩和剪力分布图。
然后将所有的弯矩和剪力分布图叠加在一起,即可得到梁的总弯矩和总剪
力分布图。
通过以上习题的解答,我们可以看到结构力学中力法的应用。
在实际工程中,
我们需要根据具体的结构形式和受力情况,运用结构力学的理论知识,求解结
构的受力分布,从而保证结构的安全可靠。
掌握结构力学的力法习题及其解答,对于我们的学习和工作都具有重要意义。
结构力学是一门综合性较强的学科,涉及到许多理论和方法。
本文仅仅给出了
一些基础的习题及其解答,希望读者能够通过这些习题的练习,加深对结构力
学的理解和掌握。
当然,除了力法,结构力学还有其他的方法和理论,如位移法、应力法等,读者可以进一步学习和探索。
结构力学的学习需要不断的实践
和思考,只有通过大量的习题练习,才能真正掌握其应用技巧和解题方法。
希
望读者能够在学习结构力学的过程中,不断提高自己的能力,为工程实践做出
更大的贡献。