九年级数学上册图形的相似2相似图形习题课件

合集下载

23.2 相似图形 华师大版数学九年级上册课件2

23.2 相似图形 华师大版数学九年级上册课件2

知2-导
问 题(一)
图23.2.1是大小不同的两张地图,当然,它们是相 似的图形.设在大地图中有A、B、C三地,在小地 图中相应的三地记为A′、B′、C′,试用刻度尺 量一量两张地图中A(A′)与B(B′)两地之间的图上 距离和B(B′)与C(C′)两地之间的图上距离,用量 角器量一量∠ABC和∠A′B′C′的大小.
知识点 1 相似图形的定义来自知1-导1.定义:两个形状相同的平面图形叫做相似图形. 要点精析:(1)“形状相同”是判断相似图形的唯一条件; (2)相似图形之间的关系:两个图形相似,其中一个图形可 以看作由另一个图形放大或缩小得到.
2.易错警示:(1)两个图形相似是指它们的形状相同,与它们 的位置无关.(2)全等图形是一种特殊的相似图形,不仅 形状相同,大小也相同.
实际上,上面两张相似的图形中的对应线段都
是成比例的,对应角都是相等的.
这样的结论对一般的相似多边形是否成立呢?
知2-讲
1.定义:两个边数相同的多边形,如果各边对应 成比例,各角对应相等,就称这两个多边形相 似.
要点精析: 判定相似多边形的条件: (1)各角对应相等;
(2)各边对应成比例.
知2-讲
2.相似多边形的性质:相似多边形的对应边成比例, 对应角相等. 作用:常用来求相似多边形中未知的边的长度和 角的度数.
知2-讲
【例3】 在图23.2.4所示的两个相似四边形中,求边 x的长度和角α的大小.
分析:利用相似多边形的性质和多边形的内角和公 式就可以得到所需结果,在利用相似多边形 的性质时,必须分清对应边和对应角.
解:∵两个四边形相似, ∴ 18 x , 12 18 ∴x=27. 根据对应角相等,可得
α=360°-(77°+83°+116°) =84°.

2019年青岛版九年级上册数学解读课件:第1章 图形的相似(共25张PPT)

2019年青岛版九年级上册数学解读课件:第1章   图形的相似(共25张PPT)

第1章 图形的相似
1.2 怎样判定三角形相似
知识点 基本事实9
初学绘画可以借助平行线准确掌握物体之间形 的大小、宽窄、高低的关系.
知识点 基本事实9的推论
梯子是施工过程中经常使用的工具,因为它的实用 性和稳定性都很好,所以梯子的应用非常广泛,大到施 工工地,小到日常家居,都能看到梯子的身影,如图所示 的梯子由于工作失误导致的左右不对称,不过AB=BC, 且AD,BE,CF平行,那么DE=EF.
学科素养课件
新课标青岛版·数学 九年级上
第1章 图形的相似
1.1 相似多边形
知识点 相似形
如图所示,用放大镜将图形放大,图形的形状不 变,只是大小发生了变化,因此两图形是形状相同的 图形.
知识点 相似多边形
小明看标有数据的户型图,能知道新房各 个房间的面积.
知识点 相似多边形(理解;掌握)
两个多边形相似的前提条件是边数相同.
第1章 图形的相似
1.3 相似三角形的性质
知识点 相似三角形的性质
利用卫星测量观察物体的周长和面积.
第1章 图形的相似
1.4 图形的位似
知识点 位似图形的定义
小孔成像,大约两千四五百年以前,我国的学者——墨翟 (墨子)和他的学生,做了世界上第一个小孔成倒像的实验,解 释了小孔成倒像的原因,指出了光的直线传播的性质.用一根 蜡烛通过小孔成像的原理在暗箱里成一个倒立的像.蜡烛和 像就是位似图形.
知识点 相似三角形的判定定理2
如图所示,比例规是一种画图工具,它由长度相等的两 脚AD和BC交叉构成,利用它可以把线段按一定的比例伸 长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻 度3的地方(即同时使OA=3OC,OB=3OD),然后张开两 脚,使A,B两个尖端分别在线段l的两个端点上,当CD=1.8 cm时,利用两组对边的比相等且夹角相等的三角形是相 似三角形判定相似,然后根据相似三角形对应边成比例可 得AB=3CD=3×1.8=5.4(cm).

初中数学九年级上册《23.2相似图形》PPT课件 (4)

初中数学九年级上册《23.2相似图形》PPT课件 (4)

(9)
(10)
相似图形有:(1)和(8);(2)和(6);(3)和(7) 。
2.如图所示的相似四边形中,求边x的长
度和角α 的大小
分析 利用相似多边形的性质和多边形的内角和
公式就可以得到所需结果,再利用相似多边形的
性质时,必须分清对应边和对应角。 解 ∵两个四边形相似,
18 x
1812 18源自原来的图形相似吗?放大镜下的角与原图 形中角是什么关系?
画一画
... ... ... ... ...
如下图的左边格点图中有一个四边形,请 在右边的格点图中画出一个与该四边形相 似的图形。和你的伙伴交流一下,看看谁
. . 的方法又快又好。 . . . . .
..
.....
..
.....
..
.....
77°
83°
x 27
x
根据对应角相等,可得
12 117° α 77° 18
=360- 77+83+117
=83
课堂小结
1.经过这节课的学习,你有哪些收获? 2.你想进一步探究的问题是什么?
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
为了成功地生活,少年人必须学习自 立,铲除埋伏各处的障碍,在家庭要教养 他,使他具有为人所认可的独立人格。
第23章
1.相似图形
情景导入
推进新课
想一想:我们刚才所见到的图形有什 么相同点和不同点?
相同点:形状相同.
不同点:大小不一定相同.
问题:在现实生活中,同学们还见过哪些形状相 同但大小不一定相等的图形?
(请讨论)
生活中我们会碰到许多这样形状相同的.大

人教版初三数学《图形的相似》公开课PPT课件

人教版初三数学《图形的相似》公开课PPT课件

y
• ⑵如图2,x= 22.5 .
30
6 65╰0
800
5
α╭
图1
3
15
20
x
图2
•结束语
•当你尽了自己的 最大努力时,失 败也是伟大的,
•感谢聆听
•不足之处请大家批评指导
•Please Criticize And Guide The Shortcomings
•演讲人:XXXXXX 时 间:XX年XX月XX日
•结束语
•当你尽了自己的 最大努力时,失 败也是伟大的,
•感谢聆听
•不足之处请大家批评指导
•Please Criticize And Guide The Shortcomings
•演讲人:XXXXXX 时 间:XX年XX月XX日
§27.1 图形的相似
你从上述几组图片发现了什么?
它们的大小不一定相等, 形状相同.
1、相似图形的概念:
形状相同的图形叫做相似图形。
注意:相似图形的大小不一定相同。
2、全等图形:
形状、大小都相同的图形称为全等图形。
注:全等图形是相似图形的特殊情况。
3、图形的相似具有传递性;
如果图形A与图形B相似,图形B与图形C相似, 那么图形A与图形C相似。
ABDF
两个相似的平面图形之间有什么关系 呢?为什么有些图形是相似的,而有些 不是呢?相似图形有什么主要特征呢?
合情猜测
如果两个图形相似,它们的对应边、 对应角可能存在某种关系.
探索一
图中两个四边形是相似形,仔细观察这两 个图形,它们对应边之间存在怎样的关系? 对应角之间又有什么关系?
探索二
比是__1_∶__2____.
基础训练

初中数学华东师大九年级上册图形的相似(新)华师版九年级数学上--相似图形PPT

初中数学华东师大九年级上册图形的相似(新)华师版九年级数学上--相似图形PPT

AB=2 A’B’=
BC=2 B’C’=1
CD=2 C’D’=1
DE=2 D’E’=
EA=2 E’A’=1
相似多边形的性质:
相似多边形的对应边成比例,对 应角相等。
实际上这也是我们判定两个多边形是否相似的方法:即对于两个边数相同的多边形,如果对应边成比例,对应角相等,那么这两个多边形相似。
放大镜下的图形和原来的图形相似吗?
放大镜下的角与原图形中角是什么关系?
你知道吗
图23.2.3中两个四边形是相似图形,仔细观察这两个图形,它们的对应边之间是否有关系呢?对应角之间又有什么关系?(行列之间距离为1)
再看看图23.2.4中两个相似的五边形,是否与你观察图23.2.3所得到的结果一样?
∴两个矩形为相似图形。
2.如图所示的两个相似四边形中,求边BC的长度和角α的大小
分析 利用相似多边形的性质和多边形的内角和公式就可以得到所需结果,再利用相似多边形的性质时,必须分清对应边和对应角。
A B D F
1.如图所示的两个矩形是否相似?
2.矩形ABCD沿AD与BC中点EF对折后恰好与原矩形相似,求原矩形长与宽比?
全等图形
指能够完全重合的两个图形,即它们的形状和大小完全相同。
回忆Leabharlann 情景导入想一想:我们刚才所见到的图形有什么相同点?
形状相同.
推进新课
生活中我们会碰到许多这样形状相同的.大小不一定相同的图形,在数学上,我们把具有相同形状的图形称为:
相似图形 注意: 1.相似图形只与图形的形状有关 ,与图形的 大小、位置无关。 2.全等图形是相似图形的特例。 3.两个图形相似,其中一个图形可以看作是由 另一个图形放大或缩小或只是方位变化得到。

九年级数学《图形的相似》总复习课件-PPT

九年级数学《图形的相似》总复习课件-PPT

6或2/3或1.5
6
2.比例中项:
当两个比例内项相等时,即
a b=
cb(,或 a:b=b:c),
那么线段 b 叫做a 和 c 的比例中项.
即: b2 ac
数2与8的比例中项是 ___4_ .线段2cm与8cm的
比例中项是 _4__c_m.
7
3.黄金分割: A
C
B
把一条线段(AB)分成两条线段,使其中较长线段(AC)是 原线段(AB)与较短线段(BC)的比例中项,就叫做把这条 线段黄金分割。
y
·P
O B· C·
x
·A
28
9、如图, 在△ABC中,AB=5,AC=4,E是AB上一点,AE=2,
在AC上取一点F,使以A、E、F为顶点的三角形与
△ABC相似,那么AF=___85_或___52_
A
.E
F1
F2
DC
B
C
A
B
10、 如图, 在直角梯形中, ∠BAD=∠D=∠ACB=90。,
CD= 4, AB= 9, 则 AC=__6____
P
A
C
D
B
33
15、 如图D,E分别AB,AC是上的点, ∠AED=72o, ∠A=58o,∠B=50o, 那么△ADE和△ABC相似吗?
若AE=2,AC=4,则BC是DE的
倍.
A
E D
C B
34
16、若△ ACP∽△ABC,AP=4,BP=5,则AC=___6____,△
ACP与△ABC的相似比是_____2__:,3周长之比是_______,
1
1. 成比例的数(线段):
若 a c 或a : b c : d , 那么 a ,b, c , d 叫做四个数成比例。

图形的相似 初中九年级数学教学课件PPT 人教版

图形的相似 初中九年级数学教学课件PPT 人教版
知识 问题 课堂 回顾 探究 小结
1.全等形的概念; 2.全等三角形的性质; 3.比的意义、比的性质、比例、比例 尺等概念。
知识 问题 回顾 探究
问题探究一:什么是相似图形?
课堂 小结
活 动1
请观察下面几组图片:你能发现它们 有什么特点吗?
(1)
(2)
(3)
形状相 同的图形叫 相似形。
知识 问题 回顾 探究
问题探究二:什么是成比例线段?
课堂 小结
活 动1
通过计算、讨论得出成比例线段的概念
如图,设小方格的边长为1,四边形ABCD与四
边形EFGH的顶点都在格点上,那么AB,AD,EF,
EH的长A度B ,分AD别, A是B , E多F 少?
EF EH AD EH
分别计算
的值。
知识 问题 回顾 探究 问题探究二:什么是成比例线段?
设△ABC的边长为a,△A1B1C1
的∴= A边A1BB1.长为ba= bBB,1C,C1
a b
A=C ,a A1C1 b
归纳:特 殊三角形的对 应角相等,对 应边成比例。
知识 回顾
问题 探究
课堂 小结
题探究三:什么是相似多边形?相似多边形有怎样的性质?
活 动2
探究:如图中的两个相似三角形和相似 四边形,它们的对应角和对应边有什么关系?
解:由a:b=c:d,4:6=c:9,c=6
知识 问题 课堂 回顾 探究 小结
题探究三:什么是相似多边形?相似多边形有怎样的性质?

思考图中的两个相似的正三角形和两个相似的正六边形的
动1 和对应角的关系。
∵正△ABC与正△A1B1C1相似,
∴∠A=∠A1=60°,∠B=∠B1=60°,

人教版九年级数学上册课件:27.1图形的相似

人教版九年级数学上册课件:27.1图形的相似

AB
8
B'
C'
反思:由三角形相似你想到什么?
学而不思则罔




我有哪些收获呢?
, 我
与大家共分享!



:如图,△ABC ∽△A' B' C' ,求∠α 的大
小和A' C'的长.
解:∵ △ABC ∽△A' B' C' ∴∠α= ∠A=60°;(对应角相等)
A
60°
10
8
AB AC ,(对应边成比例)
B
C
A' B' A'C'
A'
∴ A'C' AC A' B' 10 6 7.5
α 6
则∠C= 800
A
B
1O
2
D
3
C
1、记作: △AOB∽△ COD
2、△AOB与 △ COD 的相似
1
比为
3
△AOB与 △ COD 的相似且 ∠A=∠C
3、
对应边的比列式为:
CAOO= BDOO= CADB
2
4、 OB=
3
如图:△ADE∽△ABC
A D
E
B
C
1、AE和 AC , AB 和 AD , ED 和 CB
是对应边,对应比的比例式为
AAEC=
AADB =
DE BC
2、∠A和 ∠A ,∠AED和 ∠C ,∠ADE和∠B
是对应角.
如果相似比 k=1 ,这两个三角
形有怎样的关系?
定义3:类似地,如果 两个边数相同的多边 形的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
18
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
19
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
20
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
9
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
10
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
11
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
12
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
2
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
3
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
4
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
13
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
14
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
15Leabharlann 2019年8月15日遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
16
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
5
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
6
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
7
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
8
2019年8月15日
遇上你是我们的缘分,愿您生活愉快, 身体健康,学业有成!
21
相关文档
最新文档