最新人教版九年级数学下册27.1图形的相似

合集下载

人教版数学九年级下册第27章 相似 27.1 图形的相似

人教版数学九年级下册第27章 相似 27.1 图形的相似
22、我们一直喜欢利用自然的方式来改变人生的棘手道路,但很少承认,现实的本性实际上并不是我们力所能及的,而是两只手无所作为。 3.有希望的地方,痛苦也成快乐。 13、您所学到的一切以及所遭受的一切痛苦都会在您人生中的某个时刻派上用场。 21.忌妒别人,不会给自己增加任何的好处。忌妒别人,也不可能减少别人的成就。 10、对地位和特权的喜爱陪伴我们走完人生之路,从摇篮到坟墓。——堂恩 18.没有人能替你承受痛苦,也没有人能抢走你的坚强。 14、阅读是唯一的陪伴。杜拉斯的埃米莉。书中写着,它使人想起漫长的海上旅行。中途不停靠的横渡和阿拉伯海孟加拉湾。贡布平原和瞿 罗的天空。还有不可能的爱情和无法停止的写作。埃米莉没有思想。只有对他的爱。——安妮宝贝 95.忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获得不到的收获。 90.我从不把安逸和快乐看作是生活的本身--这种伦理基础,我叫它猪栏的理想。 8、概念的变化系伴随着人生的现实变化而生。——奥铿 12、不要急于让生活给你所有的答案。有时,您必须表现出耐心等等。即使您向空谷大喊,也要等一会儿才能听到长声回音。换句话说,生 活总会给你答案,但不会立即告诉你一切。
拉长
判断两个图形是否相似,就是看这两个图 形的形状是否相同,这是相似图形的本质.
跟踪训练 1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?
跟踪训练 2.如图,图形( a )~( f )中,哪些与图形(1)或(2)相似?
新知探究
知识点:成比例线段
1.线段的比:在同一长度单位下,量得的两条线段长度 的比叫做这两条线段的比.
复印机把一个图形放大,放大后的图形 与原来的图形是相似图形.
新知探究
国旗上的大五角星与小五角星是相似图形吗? 四颗小五角星呢?
全等图形是特殊的相似图形,也就是说全 等图形一定是相似图形,但相似图形不一 定是全等图形.

人教版数学九年级下册教学设计27.1《图形的相似》

人教版数学九年级下册教学设计27.1《图形的相似》

人教版数学九年级下册教学设计27.1《图形的相似》一. 教材分析《图形的相似》是人教版数学九年级下册第27.1节的内容,本节主要让学生理解相似图形的概念,掌握相似图形的性质,以及学会运用相似图形解决实际问题。

教材通过生动的实例和丰富的练习,引导学生探索和发现相似图形的性质,培养学生的观察能力、推理能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本概念和性质,如点、线、面的关系,角度、三角形的性质等。

但是,对于相似图形的概念和性质,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对于解决实际问题,尤其是涉及到相似图形的实际问题,感到困难,需要教师的引导和帮助。

三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。

2.学会运用相似图形解决实际问题。

3.培养学生的观察能力、推理能力和解决问题的能力。

四. 教学重难点1.相似图形的概念和性质。

2.运用相似图形解决实际问题。

五. 教学方法1.实例教学:通过生动的实例,引导学生观察和发现相似图形的性质。

2.问题驱动:提出实际问题,引导学生运用相似图形进行解决。

3.分组讨论:学生分组讨论,培养学生的合作能力和解决问题的能力。

4.练习巩固:通过丰富的练习,巩固学生对相似图形的理解和掌握。

六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示实例。

2.练习题:准备相关的练习题,巩固学生的学习效果。

3.实物模型:准备一些实物模型,如相似的三角形、矩形等,帮助学生直观地理解相似图形。

七. 教学过程1.导入(5分钟)利用实物模型或图片,引导学生观察和比较相似的图形,引发学生对相似图形的兴趣。

提问:你们发现这些图形有什么共同的特点?学生回答:形状相同,但大小不同。

教师总结:这就是我们今天要学习的相似图形。

2.呈现(10分钟)展示教学课件,讲解相似图形的概念和性质。

通过实例和图形的变换,引导学生发现相似图形的性质,如对应边的比例关系、对应角的相等关系等。

人教版九年级数学下册27.1 图形的相似 课件

人教版九年级数学下册27.1 图形的相似 课件
2. 若一张地图的比例尺是 1:150000,在地图上量得甲、乙
两地的距离是 5cm,则甲、乙两地的实际距离是( D )
A. 3000 m B. 3500 m C. 5000 m D. 7500 m
课堂检测
3. 如图所示的两个矩形相似吗?为什么?如果相似,
相似比是多少?
A 3D
2
B
C
E 1.5 H
相似图形的定义
观察 全等图形
指能够完全重合的两个图形, 即它们的形状和大小完全相同.
探究新知
观察两张黄山松、 两张天坛的照片 有什么特点?
黄山松 天坛
探究新知 【思考】这两张中国地图的照片有什么关系?
探究新知 【想一想】我们刚才所见到的图形有什么相同 和不同的地方?
相同点: 形状相同.
不同点: 大小不同.
人教版 数学 九年级 下册
27.1 图形的相似
导入新知
导入新知
导入新知
导入新知
我们刚才所见到的图形有什么联系? 其中一个图形可以看作是另一个图形放大或者缩小得到的.
素养目标
3.能根据多边形相似进行相关的计算. 2.理解相似多边形的定义. 1.了解相似图形和相似比的概念.
探究新知 知识点 1
应边成比例.
探究新知 任意两个相似三角形,它们的对应角相等吗?对
应边成比例吗?
【结论】任意两个相似三角形,它们的对应角相等!对 应边成比例!
探究新知
图中两个四边形是相似形,仔细观察这两个图形,它们的对 应边之间是否有以上的关系呢?对应角之间又有什么关系?
【结论】任意两个相似多边形,它们的对应角相等!对应边 成比例!
探究新知
归纳总结
两个图形的形状 _完__全_相__同__,但图形的 大小位置 _不__一_定__相__同__,这样的图形叫做相似 图形.

人教版初中数学九年级下册27.1图形的相似课件(共30张PPT)

人教版初中数学九年级下册27.1图形的相似课件(共30张PPT)

解析
由于两个四边形相似,所以对应角相等,
对应边成比例,可得 答案
举一反三
1. 两个相似五边形,一组对应边的长分别为3 cm和4.5 cm,如果它们的面积之和是78 cm2,则较 大的五边形面积是( )cm C 2.( )
A. 44.8
B. 52
C. 54
D. 42
2. 已知如图27-1-6,一张矩形报纸ABCD的长
( D )
A. 图形中线段的长度与角的大小都保持不变
B. 图形中线段的长度与角的大小都会改变
C. 图形中线段的长度保持不变,角的大小可以 改变 D. 图形中线段的长度可以改变,角的大小保持 不变
2. 下列判断正确的是( B

A. 所有的直角三角形都相似
B. 所有的等腰直角三角形都相似 C. 所有的菱形都相似 D. 所有的矩形都相似
AB=a cm,宽BC=b cm,E,F分别为AB,CD的中 点.若矩形AEFD与矩形ABCD相似,则a∶b等于( A

新知4 例题精讲
两个多边形相似的判别方法
【例2】仔细观察图27-1-7,
看看四边形ABCD与四边形
A′B′C′D′是否相似. 如果 相似,求它们的相似比;如果
不相似,请说明理由.

3. 一个五边形的各边长为2,3,4,5,6,另
一个与它相似的五边形的最长边是12,则最短边为( ) A
A. 4
B. 5
C. 6
D. 8
方法规律 1. 两个图形相似,其中一个图形可以看作由另一
个图形放大或缩小得到.判断两个图形是否相似,就是
看这两个图形是不是形状相同,与其他因素无关.
2. 对于四条线段a,b,c,d,如果其中两条线段的

最新人教版九年级数学下册第二十七章《图形的相似》教材梳理

最新人教版九年级数学下册第二十七章《图形的相似》教材梳理

疱丁巧解牛知识·巧学一、相似的概念1.相似图形:把具有相同形状的图形称为相似形.“相同形状”也就是一个图形可看作是由另一个图形放大、缩小或复制得到的.方法归纳相似关系中只关注图形的形状是否相同,不考虑它们的大小和位置之间的关系.也就是说:只要两个图形形状相同,不论大小是否相同,位置如何摆放都是相似形.2.生活中常见的相同形状的图形主要有以下几种类型:(1)同一地区按不同的比例尺所绘制的地图;(2)同一张底片扩印出来的照片,电影胶片上的图像与它映照到屏幕上的图像;(3)通过放大镜、眼镜所看到的图形与实际图形;(4)沙盘模型与建筑原型是相似形.3.相似多边形:形状相同的多边形是相似多边形.例如:国旗上的5个五角星都相似.要点提示形状相同的前提是边数相同.4.相似与全等:全等是相似的特殊情形.形状相同,两图形相似;形状相同并且大小也相同,两图形全等.辨析比较“放大镜”与“哈哈镜”.放大镜是一种用来观察物体细节的简单目视光学器件,是焦距比眼的明视距离小得多的会聚透镜.使用放大镜,令其紧靠眼睛,并把物体放在它的焦点以内,成一正立放大的虚像,这个“像”与物体本身相似.哈哈镜镜面凹凸不平,根据凹凸镜成像原理,成的是或大或小的虚象,照出人来就奇形怪状了,所以哈哈镜的“像”与物体本身不相似.二、比例线段1.线段的比:线段的比是指用同一长度单位量得两条线段的长度的比.①两条线段的比与长度单位的选择无关;②求两条线段的比时,若其单位不同,则必须使单位相同再求比;③两条线段的比是一个正数;④两条线段的比a∶b中,要清楚谁为前项.例如:线段a=10 cm,b=15 cm,则线段a与b的比是10∶15=2∶3,a是前项,b是后项;线段b与a的比是15∶10=3∶2,b是前项,a是后项.10cm,则线段AB与AC的比是正方形ABCD中,AB=10 cm,对角线AC=210=2∶2.10∶22.比例线段:比例线段是指在四条线段a、b、c、d中,如果其中两条线段的比a∶b等于另外两条线段的c∶d,即a∶b=c∶d.那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.例如:四条线段1 cm、2 cm、3 cm、6 cm满足1∶2=3∶6,所以1 cm、2 cm、3 cm、6 cm是比例线段.要点提示①四条线段才能成比例;②线段成比例时,一定要将线段按顺序列出,不可颠倒,一般可以按大小顺序写出.3.比例中项:若作为比例内项的两条线段相同,即a∶b=b∶c,则线段b叫做a、c的比例中项.三、相似多边形的性质1.相似多边形的性质:对应边成比例,对应角相等.(1)形状的相同是指“对应边成比例,对应角相等”.(2)识别两个边数相同的多边形是否相似的方法:①两个多边形的边都对应成比例;②角都对应相等, 那么这两个多边形相似.误区警示上述两个条件必须同时成立,缺一不可(如矩形与正方形角都对应相等,但边不是都对应成比例,不相似;菱形与正方形边都对应成比例,但角不是对应相等,不相似).在格点上画多边形相似时,就是保持对应位置上的线段放大或缩小相同的倍数,对应的角的大小不变,所以画出的多边形是相似的.2.相似比:相似多边形对应边的比叫做相似比.例如:若△ABC 与△A′B′C′相似,那么k A C CA C B BC B A AB =''=''='',这两个相似三角形的相似比就是k.(1)相似比是有顺序性的,前面的一个多边形的边作为分子,后面一个多边形的边作为分母.表示两个多边形相似的顺序不一样时,相似比也不相同.(2)相似比为正数.相似比为1,即k=1时,两个相似多边形不仅形状相同,而且大小也相同,这时两个多边形就全等.深化升华 根据性质,可以由一个图形的已知条件求其相似图形的未知元素.①由对应角相等,可以直接求出对应角的度数;②由对应边的比等于相似比,列比例式可以求对应边长.问题·探究问题1 等边三角形都相似吗?导思:根据相似多边形的定义,比较它们的边,是否成比例比较它们的角是否相等. 探究:(1)从不同类型的三角形入手:①等边三角形的三条边都相等,三个角都是60°,因此,两个等边三角形的边都对应成比例,角也都对应相等,所以是相似的;②两个等腰三角形,当它们的顶角不相等时,角就不能对应相等,虽然两三角形对应腰的比相等,但是不能等于两底边的比,所以也不一定相似;③由于任意两个三角形,它们的边不一定对应成比例,角也不一定对应相等,所以不一定相似.(2)看看我们学习过的四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形等图形,它们各自能相似吗?如果不相似,添加几个条件就可以判断它们相似呢?(见27.2《问题·探究》)(3)不同边数的多边形相似吗?边长为10 cm 的正方形与同样边长的正六边形相似吗?为什么?问题2 相似三角形的周长之比为多少?导思:熟悉比例的变形,避免重复计算.探究:比例是商的形式,根据等式的基本性质,可以把商与积互化.(1)【比例的基本性质】在任意的一个比例里,两个外项的积等于两个内项的积,即a ∶b=c ∶d ⇔da=bc.(符号“⇔”表示从左边的条件可以得到右边的结论,把右边作为条件,可以得到左边的结论).(2)【反比定理】在一个比例里,第一个比的反比,等于第二个比的反比,这叫做比例中 的反比定理,即cd a b d c b a =⇔=. (3)【更比定理】在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例;或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理,即db c a d c b a =⇔=. (4)【合比定理】在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这叫做比例中的合比定理,即dd c b b a d c b a +=+⇔=. (5)【等比定理】几个相等的比的前项的和与后项的和的比,等于这些比里的任一个比,即 若k n m d c b a ==== (b+d+…+n≠0),则k nd b m c a =++++++ . 典题•热题例1 如图27.1-2,在给出的点格内通过放大或缩小画出已给图形的相似形.图27.1-2思路解析:首先固定一个最左边格点上的一个点,分别在横线上和竖线上把相应的线段放 大或缩小(画图,一般都画在所给定的区域内).解:如图27.1-3.图27.1-3方法归纳 在格点中作相似形时,找能够反映图形特征的点,作出这些被放大或缩小后的位置,再由这些点构造新图形.例2 (1)已知线段a=30 mm ,b=5 cm ,则a ∶b=__________;(2)量得A 、B 两地在某张地图上的距离是5 cm ,而两地的实际距离是250 km ,则这张地图的比例尺是__________;(3)在相同时刻的物高与影长成比例.如果一古塔在地面上的影长为50 m ,同时,高为1.5 m 的测竿的影长为2.5 m ,那么古塔的高是__________m.思路解析:(1)由定义“两条线段的比是这两条线段长度的比”,在计算它们的比时先要 统一单位;因为a=30 mm=3 cm ,所以a ∶b=3∶5.(2)比例尺=实际距离图上距离,通常写成1∶常数的形式,计算前还是要注意统一单位;因为 5cm=0.05 m ,250 km=250 000 m ,所以比例尺为0.05∶250 000=1∶5 000 000.(3)相同时刻的物高与影长成比例,因此古塔的高、古塔的影长、测竿的高、测竿的影长是成比例线段,即测杆的影长测杆的高古塔的影长古塔的高=,从而解决问题. 设古塔的高为x m ,根据题意得5.25.150=x , 解得x=30,所以古塔的高为30 m.答案:(1)3∶5 (2)1∶5 000 000 (3)30深化升华 利用比例线段可以进行相关计算,其关键是找准比例式.比例尺=测杆的影长测杆的高物体的影长物体的高实际距离图上距离=;. 例3 若x ∶y ∶z=3∶4∶7且2x-y+z=18,那么x+2y-z=__________. 思路解析:由x ∶y ∶z=3∶4∶7,知743z y x ==.可利用比例解决问题.特别是遇到连等式时,可用设比例系数(即公比)的办法解决.方法一:∵x ∶y ∶z=3∶4∶7,∴743z y x ==. 设k z y x ===743(k≠0),则x=3k ,y=4k ,z=7k. ∴ 2x-y+z=6k-4k+7k=9k ,即9k=18.解得k=2.∴ x+2y-z=3k+8k-7k=4k=4×2=8.方法二:∵x ∶y ∶z=3∶4∶7,∴y z y x 47,43==. ∴2x-y+z=2×y 43-y+y 47=18.解方程得y=8. ∴x=6,z=14.∴x+2y-z=6+16-14=8.答案:8变式方法 利用比例式计算时,通常可用方程思想,设中间参数计算.又如:已知x ∶y=2∶7,求22225223y xy x y xy x -++-的值. 由x ∶y=2∶7,得y x 72=.把y x 72=代入原式得(以下略).。

新人教版九年级数学下册 第27章 相似 课件

新人教版九年级数学下册 第27章  相似 课件

图形的缩小
相似图形的关系
两个图形相似,其中一个图形可以 看做是由另一个图形_________ 放大 或 缩小 得到的,实际的建筑物 _________ 相似 的,用 和它的模型是___________ 复印机把一个图形放大或缩小后所 得的图形,也是与原来的图 _________ 相似 的.
1、如图,从放大镜里看到的三角尺 和原来的三角尺相似吗?
• 认识形状相同的图形。
• 对相似图形概念的理解。
• 抓住形状相同的图形的特征,认
识其内涵。
回顾旧知
全等图形
A' B
A
B'
C'
C
形状、 大小完全相 同的图形是 全等图形。
新课导入
多啦A梦的2寸照片和4寸照片,他的形状改变 了吗?大小呢?
符合国家标准的两面共青团团旗的形状 相同吗?大小呢?
四阶魔方和三阶魔方形状相同吗?大小呢?
A
E A E B B
D C C
D
A
D
A
D
B
C
B
C
A
A
C B C
B
你从上述几组图片发现了什么?
它们的大小不一定相等,
形状相同.
知识要点
两个图形的形状 完全相同 ________,但图形 的大小位置 不一定相同 __________,这样的图形叫 做相似图形。
图形的放大
图形的放大
两个图形相似
不规则四边形
B
A
请分别量出 这两个不规则四 边形各内角的度 数,求出对应边 的长度。
C
缩小 B1
A1
对 应 角 有 什 么 D 关 系?
对应边有什么关系? C1

人教版九年级数学下27.1图形的相似(第1课时)优秀教学案例

人教版九年级数学下27.1图形的相似(第1课时)优秀教学案例
2.问题导向的教学策略:教师在课堂上提出一系列具有启发性的问题,引导学生思考和探索相似图形的性质。这种问题导向的教学策略能够培养学生的独立思考能力,提高他们的逻辑思维能力。
3.小组合作的学习方式:教师将学生分成若干小组,鼓励他们相互讨论、交流,共同探究相似图形的性质。这种小组合作的学习方式能够培养学生的合作精神,提高他们的沟通能力和团队协作能力。
4.教师组织小组汇报、展示等活动,让学生在分享成果的同时,提高自己的表达能力和合作能力。
(四)反思与评价
1.教师引导学生回顾本节课的学习内容,总结相似图形的性质及其应用。
2.教师设计反思性题目,让学生思考自己在学习过程中的优点和不足,明确今后的学习方向。
3.教师组织学生进行自我评价、同伴评价,让学生了解自己的学习状况,提高自我监控能力。
(二)过程与方法
1.采用自主学习、合作交流的教学模式,引导学生主动探究相似图形的性质。
2.利用多媒体课件、实物模型等教学资源,为学生提供丰富的感性材料,增强他们的空间想象力。
3.设计一系列具有层次性的数学题目,让学生在解决实际问题的过程中,逐步掌握相似图形的性质。
4.注重培养学生的问题提出、问题解决、归纳总结的能力,提高他们的逻辑思维能力。
4.教师及时给予反馈,引导学生反思自己的思考过程,及时调整学习策略。
(三)小组合作
1.教师将学生分成若干小组,鼓励他们相互讨论、交流,共同探究相似图形的性质。
2.教师设计具有挑战性的数学题目,让学生在合作交流中,提高自己的数学素养。
3.教师关注每个小组的学习进度,及时给予指导,帮助学生克服学习中的困难。
三、教学策略
(一)情景创设
1.利用多媒体课件展示生活中的实际例子,如建筑物的立面图、电路图等,让学生感受到相似图形在实际应用中的重要性。

九年级数学下册人教版27.1图形的相似优秀教学案例

九年级数学下册人教版27.1图形的相似优秀教学案例
(五)作业小结
在课堂教学结束后,我会布置一些作业,让学生进一步巩固所学知识。同时,我会提醒学生在完成作业时注意运用相似图形的性质,解决实际问题。作业小结环节有助于学生巩固课堂所学,提高他们的应用能力。
五、案例亮点
1.生活实例导入:通过展示生活中的实例,引导学生关注相似图形在实际中的应用,激发学生的学习兴趣,引出相似图形的概念。这种教学方法使学生能够更好地理解抽象的数学概念,并感受到数学与生活的紧密联系。
三、教学策略
(一)情景创设
在教学过程中,我注重创设贴近学生生活实际的情景,激发学生的学习兴趣。例如,通过展示实际生活中的图片、模型等,引导学生关注相似图形在生活中的应用,从而引出相似图形的概念。同时,我还会设计一些有趣的实践活动,如让学生自己动手绘制、变换图形,使其在实际操作中感受相似图形的性质。
(二)问题导向
4.反思与评价:在教学过程中,我注重引导学生进行反思与评价,使其能够及时发现自己的不足,调整学习方法。这种教学方法有助于学生建立自信,提高学习兴趣,培养良好的学习习惯。
5.多媒体教学手段:我运用动画、图片等多媒体教学手段,形象地展示相似图形的变化过程,帮助学生建立起空间想象能力。这种教学方法使抽象的数学概念更加直观,有助于学生更好地理解和掌握知识点。同时,多媒体教学手段也使课堂更加生动有趣,提高了学生的学习兴趣。
在教学过程中,我以生活实际为出发点,设计了一系列具有针对性和实用性的教学活动,旨在激发学生的学习兴趣,提高学生的动手操作能力和解决问题的能力。同时,我也注重引导学生从直观图形中抽象出相似图形的共同特征,培养学生的高级思维能力。
二、教学目标
(一)知识与技能
1.学生能够理解相似图形的概念,掌握相似比、对应角、对应边等基本性质。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C D
E
C1
Байду номын сангаас
D1
对应角相等
∠A =∠A1,∠B =∠B1, ∠C =∠C1 ∠D =∠D1, ∠E =∠E1, ∠F =∠F1
对应边有什么关系? A B C D F 正八边形 放大 B1
A1
F1
E
E1
D1 C1 AB = BC = CD = DE = EF = FA , A1B1 = B1C1 = C1D1 = D1E1 = E1F1 = F1A1 AB BC CD DE EF FA = = = = = A1B1 B1C1 C1D1 D1E1 E1F1 F1A1 对应边成比例
∴ 它们的对应角相等. ∵ 对应边 3 : 6 ≠ 3 : 8. ∴ 它们的对应边不成比例. ∴ 这一组图形不相似.
例题
一块长 3m,宽1.5m的矩形黑板,镶其外 围的木质边宽7.5cm。边框内外边缘所组成的 A D 矩形相似吗?为什么?
解: ∵ 矩形的每个内角都等于90o. ∴ ∠A =∠E = 90°,∠B =∠F = 90° ∠C =∠G = 90°,∠D =∠H = 90° B ∴ 它们的对应角相等. ∵ EH:AD=300:(300+2×7.5)=20/21. EF:AB =150:(150+2×7.5)=10/11. ∴ EH:AD≠EF:AB. ∴ 它们的对应边不成比例. ∴ 矩形ABCD和矩形EFGH不相似. E F H G
C
题型2 求相似多边形的对应角或对应边
例题
五边形ABCDE相似于五边形FGHIJ,且 AB=2cm,CD=3cm,DE=2.2cm,GH=6cm, HI =5cm,FJ=4cm, ∠A=120°,∠H=90° 求:(1)相似比等于多少? (2)FG,IJ,BC,AE, ∠F, ∠C
F A G J E D H
60°
B C B1 C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 AB = BC = AC , A1B1 = B1C1 = A1C1
AB : A1B1 = BC : B1C1 = CD : C1D1
对应角相等
对应边成比例
对应角有什么关系?
A1
F1
A
150°
F
正八边形
放大 B1
150°
E1
B
A A1
B
C
B1
C1
相似多边形的对应三角形
相似多边形的性质
相似多边形对应高的比、对应角平分线的比、 对应中线的比、对应周长的比都等于相似比。 相似多边形对应对角线的比等于相似比。 相似多边形对应三角形相似,且相似比等于相 似多边形的相似比。 相似多边形面积的比等于相似比的平方。 相似多边形对应三角形面积的比等于相似多边 形的相似比的平方。
你能找出其中的相似多边形吗?
相似正五边形
相似正六边形
相似正八边形
相似正十二边形
选一选
(1) 与_____ (4) 相似的. 下列图形中是____
(1)
(2)
(3)
(4)
请把下列各组图形是否相似的结 论写在下面的括号里.
解: ①相似 ②不相似 ③不相似 ④相似 ⑤不相似 ⑥不相似
课堂小结
C
形状、 大小完全相 同的图形是 全等图形。
新课导入
多啦A梦的2寸照片和4寸照片,他的形状改变 了吗?大小呢?
符合国家标准的两面共青团团旗的形状 相同吗?大小呢?
四阶魔方和三阶魔方形状相同吗?大小呢?
A
E A E B B
D C C
D
A
D
A
D
B
C
B
C
A
A
C B C
B
你从上述几组图片发现了什么?
当相似比k =1时, 相似图形即是全等图形。
全等是一种特殊的相似。
A
F
A1 B1 F1 E1 C1 D1
B
E
D 六边形ABCDEF与六边形A1B1C1D1E1F1的 相似比为 k1= 2 : 1, 对应边 AB:A1B1= 2 : 1 。
C
A1
A B
F1
F
E
B1
E1
C1 D1 六边形ABCDEF与六边形A1B1C1D1E1F1的 相似比为 k2= 1 : 2, 对应边 AB:A1B1= 1 : 2 。
C
D
相似比与叙述的顺序有关。
相似多边形
各对应角相等、各对应边成比例的 多边形叫做相似多边形.
B1 B A C E D
A1 F1
E1 C1
F
D1
两个多边形相似的条件 对应角相等。 对应边成比例。
相似六边形
相似多边形的对应高
相似多边形的对应角平分线
相似多边形的对应中线
相似多边形的对应对角线
题型1 判断两个多边形是否相似
例题
3 正方形 3 4 菱形
4
解: ∵ 正方形,菱形的四条边都相等.
∴ 它们的对应边成比例,k = 3 : 4. ∵ 正方形的四个内角均为直角,而菱形的内角有钝角有锐角. ∴ 它们的对应角不相等. ∴ 这一组图形不相似.
例题
3 正方形 3 6 长方形
8
解:∵ 正方形和矩形的四个内角都是直角.
A、大小不同 B、大小相同 C、形状相同 D、形状不同 答案:( C )
小练习
1、下列说法正确的是( D ) A.小明上幼儿园时的照片和初中毕业 时的照片相似. B.商店新买来的一副三角板是相似的. C.所有的课本都是相似的. D.国旗的五角星都是相似的.
相似的图形具有传递性;
图形 A
图形 B
图形 C
4. 如图所示的两个矩形相似吗?为什么? 如果相似,相似比是多少?
A
2 B C 3
D
E 1 F
1.5
H G
解;矩形ABCD相似于矩形EFGH 因为它们的对应角相等,对应边成比例。
AB 2 相似比为: EF 1
2、下列说法中,错误的是( B) (A)两个全等三角形一定是相似形 (B)两个等腰三角形一定相似 (C)两个等边三角形一定相似 (D)两个等腰直角三角形一定相似 3、在下列各组图形: ①两个平行四边形;②两个圆;③两个矩形; ④均有一个内角是80°的两个等腰三角形;⑤ 两个正五边形;⑥均有一个内角是100°的两个 等腰三角形. 其中一定是相似图形的是 ②, ⑤, ⑥ .(填序号)
习题答案
1. 1:100 000 .
2. 任意两个正方形相似,证明略.任意两个矩形 不一定相似,例如长宽比为2:1的矩形和长宽 比为3:2的矩形对应的比不相等,它们不相似. 3. x=6,y=3.5. 4. 图形略.
B
C
5
I
F
A 2 B 120° C 3 G 4 J
E 2.2
D
6
H 5 I
解:(1)相似比=CD : HI=3 : 5 (2)∵五边形ABCDE相似于五边形FGHIJ ∴ ∠F =∠A=120o, ∠C= ∠H=90o, ∴AB : FG = BC : GH = CD : HI = DE : IJ = EA : JF 即2 : FG = BC : 6 = 3/5 = 2.2 : IJ = AE :4 解得FG =10/3 cm, BC =18/5cm,IJ=11/3cm,AE=12/5cm
如果图形A与图形B相似,图形B与图形C相似, 那么图形A与图形C相似。
多边形 由在同一平面且不在同一直线上 的多条线段首尾顺次连结且不相交所 组成的图形叫做多边形。
相似多边形
这个零 件中,有没有 相似的图形? 根据相似多边形的特征,给
相似多边形下定义。
这两个图案中, 有没有相似的 图形?
对应角有什么关系?对应边有什么关系? A 正三角形 60° 缩小 A1
2. 五边形ABCDE相似于五边形 A′B′C′D′E′,它们的相似比为1 : 3,(1)若 ∠D=135°,则∠D′= ______。 135° 5 。 (2)若A′B′=15cm,则AB= ______
3. 一个多边形的边长分别是2、3、4、 5、6,另一个和它相似的多边形的最短边 18 长为6,则这个多边形的最长边为______ 。
它们的大小不一定相等,
形状相同.
知识要点
完全相同 两个图形的形状 ________ ,但图形 不一定相同 的大小位置 __________ ,这样的图形叫 做相似图形。
图形的放大
图形的放大
两个图形相似
图形的缩小
相似图形的关系
两个图形相似,其中一个图形可以 看做是由另一个图形_________ 放大 或 _________ 缩小 得到的,实际的建筑物 相似 的,用 和它的模型是___________ 复印机把一个图形放大或缩小后所 得的图形,也是与原来的图 _________ 相似 的.
1、如图,从放大镜里看到的三角尺 和原来的三角尺相似吗?
答:相似
下图是人们从平面镜及哈哈镜里 看懂的不同镜像,它们相似吗?
相似 总结:第一个图的两个图形______, 第二个图与第三个图的镜子中的 不相似 图像已变形,所以_________.
小练习
在下列图形中,找出相似图形。
小练习
你认为下列属性选项中哪个才是相似 图形的本质属性?
不规则四边形
B
A
对 应 角 有 什 么 D 关 系?
请分别量出 这两个不规则四 边形各内角的度 数,求出对应边 的长度。
C
缩小 B1
A1
对应边有什么关系? C1
D1
知识要点
相似多边形 对应角相等,对应边成比例。
(对应边的比相等)
相似比
相似多边形对应边的比。 ( k > 0)
若相似比k =1 ,相 似图形有什么关系?
相关文档
最新文档