新人教版九年级数学讲义

合集下载

新人教版九年级数学上册讲义

新人教版九年级数学上册讲义

九年级上册数学讲义姓名:电话:第二十一章 一元二次方程1、 一元二次方程 方程中只含有一个未知数,而且未知数的最高次数是2的方程,一般地,这样的方程都整理成为形如ax bx c a 200++=≠()的一般形式,我们把这样的方程叫一元二次方程。

其中ax bx c 2,,分别叫做一元二次方程的二次项、一次项和常数项,a 、b 分别是二次项和一次项的系数。

如:24102x x -+=满足一般形式ax bx c a 200++=≠(),2412x x ,,-分别是二次项、一次项和常数项,2,-4分别是二次项和一次项系数。

注:如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。

●夯实基础例1 把下列方程先化成一元二次方程的一般形式,再写出它的二次项系数,一次项系数和常数项。

(1)272y y =-(2)()()512152y y y +-=-(3)()m x n mx x 2210++-=(是未知数)例2 已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围.例3 若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________.●能力提升例4若方程(m-1)x 2+ x=1是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠1 B .m≥0 C .m≥0且m≠1 D .m 为任何实数●培优训练例5 m 为何值时,关于x 的方程2((3)4m m x m x m -+=是一元二次方程.第一讲 一元二次方程的定义例6关于x 的方程(m+3)x m2-7+(m-3)x+2=0是一元二次方程,则m 的值为例7(2000•兰州)关于x 的方程(m 2-m-2)x 2+mx+1=0是一元二次方程的条件是( )A .m≠-1B .m≠2C .m≠-1或m≠2D .m≠-1且m≠2●课后练习1、m 为何值时,关于x 的方程2((3)4m m x m x m -+=是一元二次方程.2、已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围.3、已知关于x 的方程22()(2)x a ax -=-是一元二次方程,求a 的取值范围.4、若2310a b a b x x +--+=是关于x 的一元二次方程,求a 、b 的值.5、若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为________(1)直接开平方法形如x m m 20=≥()的方程都可以用开平方的方法写成x m =±,求出它的解,这种解法称为直接开平方法。

人教版九年级数学全册特色讲义

人教版九年级数学全册特色讲义

探索创新
【例8】 若 点 P (x1, y1) 与 Q (x1 n, y2 ) 在 抛 物 线 y x2 4x 3 上 ( 点 P 、 Q 不 重 合 ) , 且 y1=y2,求代数式 4x12 12x1n 5n2 16n 8 的值.
若函数 y m2 m xm2 2m1 为二次函数,则 m 的值是
⑵ 写出开口方向,对称轴,顶点坐标; ⑶ 求图象与两坐标轴的交点坐标; ⑷ 画出函数图象; ⑸ 说明其图象与抛物线 y 2x2 的关系; ⑹ 当 x 取何值时, y 随 x 增大而减小; ⑺ 当 x 取何值时, y 0 , y 0 , y 0 ; ⑻ 当 x 取何值时,函数 y 有最值?其最值是多少? ⑼ 求函数图象与两坐标轴交点所确定的三角形面积.
知识互联网
y ax2
y ax2 c
y a x h2 y a x h2 k
y ax2 bx c
模块一 二次函数的解析式
知识导航
定义
示例剖析
二次函数的定义:一般地,形如
例如 y x2 2x 3 是二次函数,
y ax2 bx c ( a ,b,c 是常数, a 0 ) 其中二次项系数为1,一次项系数为
C. y1 y2
D. y1 与 y2 的大小不确定
【探索】若二次函数 y 2 x 22 k 的图象上有两个点 A(7.2 ,y1) 、 B(5.8 ,y2 ) ,则 y1 ,
y2 的大小关系为
;若二次函数 y 2 x 22 k 的图象上有两个点
A(5.5 ,y1) 、 B(2.5 ,y2 ) ,则 y1 , y2 的大小关系为
简称“左同右异”.
⑶ c 的大小决定抛物线与 y 轴交点的位置(抛物线与 y 轴的交点坐标为 0 ,c )

人教版九年级数学讲义垂径定理(含解析)(2020年最新)

人教版九年级数学讲义垂径定理(含解析)(2020年最新)

第11讲垂径定理知识定位讲解用时:3分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习垂径定理及其相关推论,着重理解垂径定理及其相关推论在实际问题以及几何图形中的应用,掌握关于垂径定理部分题型的常见辅助线的做法,能够结合勾股定理进行熟练计算。

本节课的难点是垂径定理及其推论在几何图形中的应用,涉及的知识点较多,考查的内容较广,具有一定的综合性。

希望同学们认真学习,为后面圆的其他内容理解奠定良好基础。

知识梳理讲解用时:15分钟垂径定理及其推论(1)垂径定理如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的弧。

(2)相关推论①如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直于这条弦,并且平分这条弦所对的弧;①如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对的弦;①如果一条直线是弦的垂直平分线,那么这条直线经过圆心,并且平分这条弦所对的弧;①如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦;①如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线经过圆心,并且平分这条弦。

总结:在圆中,对于某一条直线“经过圆心”、“垂直于弦”、“平分弦”、“平分弦所对的弧”这四组关系中,如果有两组关系成立,那么其余两组关系也成立。

课堂精讲精练【例题1】下列判断中,正确的是()。

A.平分一条弦所对的弧的直线必垂直于这条弦B.不与直径垂直的弦不能被该直径平分C.互相平分的两条弦必定是圆的两条直径D.同圆中,相等的弦所对的弧也相等【答案】C【解析】本题考查了垂径定理及圆心角、弧、弦、弦心距之间关系的定理同时平分一条弦所对优弧、劣弧的直线必垂直于这条弦,故A错误;任意两条直径互相平分,故B错误;同圆中,相等的弦所对的优弧、劣弧分别相等,故D错误。

讲解用时:3分钟解题思路:根据垂径定理及圆心角、弧、弦、弦心距之间关系的定理逐项排除。

人教版九年级下册数学讲义知识点归纳

人教版九年级下册数学讲义知识点归纳

人教版九年级下册数学讲义知识点总结第二十六章反比例函数一、反比例函数的概念1.()能够写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应专门注意系数这一限制条件;2.()也能够写成xy=k的形式,用它能够迅速地求出反比例函数解析式中的k,从而取得反比例函数的解析式;3.反比例函数的自变量,故函数图像与x轴、y轴无交点.二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支别离位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量y≠,因此它的图像与x轴、y轴都没有交点,即双曲线的两个分支x≠,函数值0无穷接近坐标轴,但永久达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精准;③连线时,必需依照自变量大小从左至右(或从右至左)用滑腻的曲线连接,切忌画成折线;④画图像时,它的两个分支应全数画出,但切忌将图像与坐标轴相交。

三、反比例函数及其图像的性质1.函数解析式:()2.自变量的取值范围:3.图像:(1)图像的形状:双曲线,越大,图像的弯曲度越小,曲线越平直。

越小,图像的弯曲度越大。

(2)图像的位置和性质:当时,图像的两支别离位于一、三象限;在每一个象限内,y随x的增大而减小;当时,图像的两支别离位于二、四象限;在每一个象限内,y随x的增大而增大。

(3)对称性:图像关于原点对称,即假设(a,b)在双曲线的一支上,那么(,)在双曲线的另一支。

图像关于直线对称,即假设(a,b)在双曲线的一支上,那么(,)和(,)在双曲线的另一支上。

.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x 轴于A点,PB⊥y轴于B点,那么矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。

如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,那么有三角形PQC的面积为2|k|。

初三数学人教版秋季讲义

初三数学人教版秋季讲义

第四讲 一元二次方程根与系数的关系一、典题回顾:1、已知x 、y 都是正整数,且18=+y x ,求x+y 的值。

2、2222)11(y xy x y x y x ++÷+--,其中23,23-=+=y x .3、按要求解方程: ①033212=+-x x (利用配方法) (2)0822=--x x (利用因式分解方法)③2)1(5)1(32=+-+x x (利用公式法)二、根与系数的关系:1、如果方程)0(02≠=++a x bx ax 有两个实数根21,x x ,那么 ;2、一些常见的关于两根代数式的变形:(1)2221x x += ;(2)))((21a x a x ++= ;(3)1221x x x x += ;(4)21x x -= ; 3、求关于一元二次方程根的代数式的值的方法:遇双平方,先 ;遇括号,先展开;遇分式,先 ;遇公因式,先 ;遇两根之差,先 ,再 。

例1、(1)设a 、b 是方程020092=-+x x 的两个实数根,则b a a ++22的值为( )A 、2006B 、2007C 、2008D 、2009(2)已知α、β是一元二次方程0252=--x x 的两个实数根,则22βαβα++= .(3)已知m 和n 是方程03522=--x x 的两根,则nm 11+= . (4)设21,x x 是方程0242=+-x x=-21x ,()()=++1121x x 。

例2、方程012222=+-++k k kx x 的两个实数根是21,x x ,满足42221=+x x ,则k = 。

例3、已知关于x 的一元二次方程0222=+-m x x 有两个不相等的实数根。

(1)求实数m 的最大整数值;例4、(七中高新·半期)已知21,x x 是关于方程()()()()m p p m x x --=--22的两个实数根.(1)求21,x x 的值;(用m 和p 表示出来)(2)若21,x x 是某直角三角形的两直角边的边长,问当实数m ,p 满足什么条件时,此直角三角形的面积最大?并求出最大值。

新人教版初三数学讲义

新人教版初三数学讲义

新人教版初三数学(上下册)讲义第二十一章 一元二次方程一、一元二次方程1、等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2、一般形式:ax 2+bx+c=0(a ≠0),ax 2是二次项,a 是二次项系数,bx 是一次项,b 是一次项系数,c 是常数项。

3、一元二次方程的根:一元二次方程的解。

二、降次——解一元二次方程 1、配方法: 2、公式法:一般地,式子b 2-4ac 叫做方程ax 2+bx+c=0(a ≠0)的根的判别式,通常用希腊字母∆表示它,即=b 2-4ac 。

求根公式:当≥∆0时,方程ax 2+bx+c=0(a ≠0)的实数根可写为x=2a4ac -b b -2±3、因式分解法:先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。

归纳:配方法是先配方,再降次;通过配方法可以推出求根公式,公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有一元二次方程,因式分解法用于某些一元二次方程,总之,解一元二次方程的基本思路是:将二次方程化为一次方程,即降次。

一元二次方程的根与系数的关系:x 1,x 2为方程的两根,a ,b ,c 为方程的系数,则有:4、aca b-xx x x 2121==+,。

三、实际问题与一元二次方程第二十二章 二次函数一、二次函数及其图象1、二次函数:一般地,形如y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的函数。

其中,x 是自变量,a ,b ,c 分别是函数解析式的二次项系数、一次项系数和常数项。

2、二次函数y=ax 2的图象3、二次函数y=a (x-h )2+k 的图象4、二次函数y=ax 2+bx+c 的图象5、用待定系数法求二次函数的解析式 二、用函数观点看一元二次方程 三、实际问题与二次函数一般地,因为抛物线y=ax 2+bx+c 的顶点是最低(高)点,所以当x=-ab2时,二次函数y=ax 2+bx+c 有最小(大)值ab ac 442-。

人教版九年级上册数学讲义知识点归纳

人教版九年级上册数学讲义知识点归纳

九年级上册数学讲义知识点归纳第21章一元二次方程一、学习目标一、明白得一元二次方程的概念二、学会一元二次方程的解法3、了解方程的根与系数的关系4、把握一元二次方程的实际应用二、重点一、一元二次方程一、一元二次方程含有一个未知数(一元),而且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

二、一元二次方程的一样形式)0(02≠=++a c bx ax ,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

二、降次----解一元二次方程1.降次:把一元二次方程化成两个一元一次方程的进程(不管用什么方式解一元二次方程,都是要一元二次方程降次)2、直接开平方式利用平方根的概念直接开平方求一元二次方程的解的方式叫做直接开平方式。

直接开平方式适用于解形如x 2=b 或b a x =+2)(的一元二次方程。

依照平方根的概念可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

3、配方式:配方式的理论依照是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,那么有222)(2b x b bx x ±=+±。

配方式解一元二次方程的步骤是:①移项、②配方(写成平方形式)、③用直接开方法降次、④解两个一元一次方程、⑤判定2个根是不是实数根。

4、公式法:公式法是用求根公式,解一元二次方程的解的方式。

一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b a ac b b x当ac b 42->0时,方程有两个实数根。

当ac b 42-=0时,方程有两个相等实数根。

当ac b 42-<0时,方程没有实数根。

5、因式分解法:先将一元二次方程因式分解,化成两个一次式的乘积等于0的形式,再使这两个一次式别离等于0,从而实现降次,这种解叫因式分解法。

人教版 九年级数学 圆及其基本性质讲义 (含解析)

人教版 九年级数学 圆及其基本性质讲义 (含解析)

第8讲圆及其基本性质知识定位讲解用时:3分钟A、适用范围:人教版初三,基础偏上B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习圆及其基本性质,重点掌握圆的有关概念,能够对相关概念进行辨析,其次理解与圆有关的性质、定理及其推论,着重学习圆心角与弧、弦的关系以及圆周角定理,能够利用相关定理及推论进行解题,本章是中考重点内容之一,也是历年常考难点知识点之一,希望同学们认真学习,为后面的学习奠定良好的基础。

知识梳理讲解用时:25分钟圆的相关概念(1)圆的定义①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径,以O点为圆心的圆,记作“①O”,读作“圆O”;①圆可以看做是所有到定点O的距离等于定长r的点的集合.(2)半径:联结圆心和圆上任意一点的线段叫做圆的半径;(3)直径:经过圆心,并与圆两端相交的线段叫做圆的直径;(4)圆心角:以圆心为顶点并且两边都和圆相交的角叫做圆心角;(5)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角;(6)弧:圆上任意两点之间的部分叫做圆弧,简称弧;(7)半圆:圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫做半圆;(8)优弧:大于半圆的弧叫做优弧;课堂精讲精练【例题1】下列说法错误的是()。

A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧【答案】B【解析】本题考查了与圆有关的概念,A、直径是圆中最长的弦,所以A选项的说法正确;B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项的说法错误;C、面积相等的两个圆的半径相等,则它们是等圆,所以C选项的说法正确;D、半径相等的两个半圆是等弧,所以D选项的说法正确,故选:B.讲解用时:3分钟解题思路:根据直径的定义对A进行判断;根据等弧的定义对B进行判断;根据等圆的定义对C进行判断;根据半圆和等弧的定义对D进行判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

义务教育课程标准人教版数学讲义九年级上册2015—2016学年度第一学期2010—2011学年度第一学期九年级数学教学进度表说明:2011年1月22日(农历十二月十九日,星期六)寒假开始,2月12日(农历正月初十日,星期六)寒假结束。

2011年2月13日(农历正月十一日,星期日)春季开学,2月14日(农历正月十二日,星期一)正式上课,共21周。

目录第二十一章二次根式21.1二次根式 (1)21.2二次根式的乘除(第1课时) (3)21.2二次根式的乘除(第2课时) (5)21.2二次根式的加减(第1课时) (7)21.2二次根式的加减(第2课时) (9)小结 (11)第二十二章一元二次方程22.1 一元二次方程 (13)22.2.1配方法(第1课时) (15)22.2.1配方法(第2课时) (17)22.2.1公式法 (19)22.2.3因式分解法 (21)22.2.4 一元二次方程的根与系数关系 (23)22.3 实际问题与一元二次方程(第1课时) (25)22.3 实际问题与一元二次方程(第2课时) (27)小结 (29)第二十三章旋转23.1 图形的旋转(1) (33)23.1 图形的旋转(2) (36)23.1 图形的旋转(3) (39)23.2.1中心对称(1) (42)23.2.1中心对称(2) (45)23.2.1中心对称(3) (48)22.2 中心对称图形,关于原点对称的点的坐标 (51)23.3 课题学习图案设计 (55)小结 (57)第二十四章圆24.1.1 圆 (59)24.1.2 垂直于弦的直径 (62)24.1.3 弧、弦、圆心角 (66)24.1.4 圆周角 (70)24.2.2 直线和圆的位置关系 (77)24.2.3 圆和圆的位置关系 (80)24.3 正多边形和圆 (85)24.4圆锥的侧面积和全面积 (90)小结 (93)第二十五章概率25.1.1随机事件(第一课时) (96)25.1.1 随机事件(第二课时) (98)25.1.2 概率的意义 (100)25.2 用列举法求概率(第一课时) (104)25.2 用列举法求概率(第二课时) (107)25.2 用列举法求概率(第三课时) (109)25.3.1利用频率估计概率 (111)25.3.2利用频率估计概率 (113)25.4课题学习键盘上字母的排列规律 (115)小结 (117)教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计练习:○1课本例4,之后补充 (3)27)64148(÷- ○2课本例5,之后补充 2)5225(+ 分析说明:○1中补充(3)是不能除尽(含分数线)的类型。

○2中补充完全平方公式应用. 归纳:二次根式混合运算时,乘法公式仍然适用,仔细观察式子的特征,灵活运用完全平方公式、平方差公式来简化运算. (二)二次根式混合运算的应用1.若x=12-,则x 2+x+1=2.已知23,23-=+=y x ,求()1yx x y +;()22622y xy x ++的值.3.如图,四边形ABCD 中,AB ⊥BC,AD ⊥AB,AB=1,BC=CD=2,求四边形ABCD 的面 积.三、课堂训练完成课本练习 .补充: 1.海伦——秦九韶公式:如果一个三角形的三边长分别是a ,b,c,设p =2c b a ++, 则三角形的面积为S=)())((c p b p a p p ---公式运用:在ABC ∆中,BC=4,AC=5,AB=6,求ABC ∆的面积。

四、小结归纳 1.进行二次根式混合运算的一般步骤.2.二次根式混合运算时,仔细观察式子的特征,灵活运用运算法则、运算律、公式来简化运算.2.二次根式混合运算的应用.五、作业设计必做: P18:4、6、7 选做: P18:8、9 1.已知236.25≈,求45544555+-的近似值. 2.如图21.3-3在平行四边形ABCD 中,得DE ⊥AB,E 点在AB 上,DE=AE=EB=a ,求平行四边形ABCD 的周长.学生板演,并说明每一步的依据,然后师生订正.引导学生先观察、分析,找学生说明解题思路,解题后养成说明理由的反思习惯.学生独立完成练习,巩固新知,师生订正指导学生交流,教师总结感受二次根式混合运算的应用熟练计算和解题纳入知识系统教 学 反 思E D C B A教学过程设计5.计算:○16)123242(÷-; ○21212731+-○3)(62)32(-⨯+; ○4)()(6262)12(2+-++ 归纳:此组题与上组题考察内容相同,但问法不同,更具技巧性. (二)综合运用1.当m 时,mm --534有意义.2.能使33-=-x x x x 成立的x 的取值范围是 . 3.若12-=a a ,则a 的取值范围是 .4.若()()的值,则m b a m b a +=-+-++,021232是 .5.当a <-3时,化简()()22312++-a a 的结果是 .6.整数x 满足下列两个条件:○1式子13-x 和x -20都有意义○2x 的值是整数,则x 的值是 . 7.以下结论正确的是 .(填序号即可) ○1 ()2a =a 对一切实数a 都成立 ○2 a a =2对一切实数a 都成立○3式子a 叫做二次根式 ○4一个数的平方根和它的绝对值都是非负数 8. 在实数范围内分解因式:2594-x 的结果是 . 9.)(2223)32(-⨯+的计算结果是 . 10.已知,32,321+=+=y x 求22xy y x +的值. 11.如图,有一艘船在点O 处测得一小岛上的电视塔A 在北偏西600 的方向上,前进20海 里到达B 处,测得A 在船的西北方向,问再向西航行多少海里,船离电视塔最近?归纳:这组题是本章知识的深化运用,有一定的难度,与实数,有理式,勾股定理等知识综合运用. (三)构建知识体系三、小结归纳1.复习巩固二次根式知识,及于其他相关知识的联系.2.进一步理解本章知识,熟练解决相关问题.3.补充课本未明确给出的概念及相关题目,拓展知识与能力.4.构建知识体系,纳入知识系统.四、作业设计必做: P22:1-8选做: P22:9-11师生总结引导学生先观察、分析,小组讨论,再找学生说明解题思路,解题后养成说明理由的反思习惯.学生解题后, 师生订正 指导学生交流,谈收获,体会,师生总结 让学生构建本章知识体系,教师展示学生的结构图,学生之间进行交流,肯定最优建构 让学生阐述本节课有哪些收获,有何体会,教师指导从考查知识,易错题目,典型题,解题技巧,思想方法等方面总结增加问题难度,综合性,使学生进一步理解知识,培养综合分析能力. 总结二次根式、绝对值、平方的共同特点是非负补充分母有理化因式和分母有理化化简方法,拓宽知识,为后续学习打好准备使学生系统感知本章知识,掌握各知识之间的内在联系纳入知识系统 教 学 反 思二次根式 概念 性质 运算乘除运算 加减运算 混合运算教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计第二十二章《一元二次方程》小结一、本章知识结构框图二、本章知识点概括1、相关概念(1)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

(2)一元二次方程的一般形式:ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

(3)一元二次方程的根:一元二次方程的解也叫一元二次方程的根。

用“夹逼”法估算出一元二次方程的根的取值范围.一次方程:一元一次方程,二元一次方程,三元方程整式方程二次方程:一元二次方程,二元二次方程*(4)有理方程高次方程:分式方程2、降次——解一元二次方程(1)配方法:通过配成完全平方形式来解一元二次方程的方法,叫配方法.配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.其步骤是:①方程化为一般形式;②移项,使方程左边为二次项和一次项,右边为常数项;③化二次项系数为1;④配方,方程两边都加上一次项系数一半的平方,使方程左边是完全平方式,从而原方程化为(mx+n)2=p的形式;⑤如果p≥0就可以用开平方降次来求出方程的解了,如果p<0,则原方程无实数根。

(2)公式法:利用求根公式解一元二次方程的方法叫公式法.其方法为:先将一元二次方程化为一般形式ax2+bx+c=0,当⊿=b2-4ac≥0时,•将a、b、c代入求根公式x=a2ac 4bb2-±-(b2-4ac≥0)就得到方程的根.(3)分解因式法:先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而降次.这种解法叫做因式分解法.步骤是: ①通过移项将方程右边化为0;②通过因式分解将方程左边化为两个一次因式乘积; ③令每个因式等于0,得到两个一元一次方程; ④解这两个一元一次方程,得一元二次方程的解。

3、一元二次方程根的判别式(1)⊿=b 2-4ac 叫一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式。

(2)运用根的判别式,在不解方程的前提下判别根的情况:①⊿=b 2-4ac >方程有两个不相等实数根;②⊿=b 2-方程有两个相等实数根;③⊿=b 2-4ac <方程没有实数根;④⊿=b 2-4ac ≥方程有两个实数根。

(3)应用:①不解方程,判别方程根的情况;②已知方程根的情况确定方程中字母系数的取值范围; ③应用判别式证明方程的根的状况(常用到配方法);注意:运用根的判别式的前提是该方程是一元二次方程,即:a ≠0。

*4、一元二次方程根与系数的关系(本部分内容为选学内容) (1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个实数根是21,x x ,那么ac x x a b x x =-=+2121, (2)应用:①验根,不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; ②已知方程的一个根,求另一根及未知系数的值;③已知方程的两根满足某种关系,求方程中字母系数的值或取值范围; ④不解方程可以求某些关于21,x x 的对称式的值,通常利用到:2122122212)(x x x x x x -+=+212212214)()(x x x x x x -+=-()|a |x x 4x x ||2122121∆=-+=-x x 当21x x +=0且21x x ≤0,两根互为相反数;当⊿≥0且21x x =1,两根互为倒数。

(重点强调:一元二次方程根与系数的关系是在二次项系数a ≠0,⊿≥0前提条件下应用的,解题中一定要注意检验)⑩用公式法因式分解二次三项式ax 2+bx+c(a ≠0):ax 2+bx+c=a (x-x 1)(x-x 2)其中21,x x 是方程ax 2+bx+c=0(a ≠0)的两个实数根。

相关文档
最新文档