九年级数学图形的相似

合集下载

九年级数学图形相似知识点

九年级数学图形相似知识点

九年级数学图形相似知识点在九年级数学课上,我们学习了许多有趣的数学知识,其中包括图形的相似性质。

相似是数学中重要的概念,它可以帮助我们更好地理解和分析各种图形之间的关系。

在本文中,我们将探讨九年级数学课程中涉及的一些重要的图形相似知识点。

一、相似图形的定义两个图形如果满足以下三个条件,我们就称它们是相似的。

1. 对应角相等:图形中相等的角分别对应相等。

2. 对应边成比例:图形中对应的边的长度成比例。

3. 相似比例:两个相似图形的边的长度的比值称为相似比例。

通过相似的定义,我们可以得出一些重要的结论。

例如,如果两个三角形相似,那么它们的对应边长比相等;如果两个正方形相似,那么它们的边长比也相等。

二、相似三角形的性质相似三角形是九年级数学课程中一个重要的概念。

我们经常用相似三角形来解决实际问题,尤其是涉及到测量和工程方面的计算。

下面是一些相似三角形的性质。

1. AAA相似定理:如果两个三角形的三个角分别相等,那么它们是相似的。

根据AAA相似定理,我们可以快速判断两个三角形是否相似。

只需确认它们的三个角分别相等即可。

2. SSS相似定理:如果两个三角形的对应边长成比例,那么它们是相似的。

SSS相似定理告诉我们,只要两个三角形的对应边长比例相等,那么它们就是相似的。

这些相似三角形的性质非常有用,可以帮助我们在实际问题中进行快速计算和推导。

例如,在测量不便的情况下,我们可以通过测量一个三角形的某些部分,然后利用相似三角形的性质来计算其他部分的长度。

三、相似比例的计算在相似图形中,相似比例是一个重要的概念。

我们经常使用相似比例来计算图形的各种长度和面积。

下面是一些常用的相似比例计算方法。

1. 边长比例计算:如果两个相似图形的边长比例为a:b,那么两个图形的面积比例为a²:b²。

这个计算方法告诉我们,如果两个相似图形的边长比例为a:b,那么它们的面积比例为a²:b²。

例如,如果一个三角形的边长比为2:3,那么它的面积比为4:9。

《图形的相似》相似PPT优质课件

《图形的相似》相似PPT优质课件

《图形的相似》相似PPT优质课件
人教版九年级数学下册《图形的相似》相似PPT优质课件,共37页。

学习目标
1.了解相似图形和相似比的概念.
2.理解相似多边形的定义.
3.能根据多边形相似进行相关的计算.
探究新知
相似图形的定义
指能够完全重合的两个图形,即它们的形状和大小完全相同.
相似图形的关系
两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.
相似多边形的定义和相似比的概念
下图是两个等边三角形,它们相似吗?它们的对应角、对应边分别有什么关系?
两个等边三角形相似,它们的对应角相等,对应边成比例.
下图是两个正六边形,它们相似吗?它们的对应角、对应边分别有什么关系?
两个正六边形相似,它们的对应角相等,对应边成比例.
两个边数相等的正多边形相似,且对应角相等、对应边成比例.
归纳:
相似多边形的定义:
各角分别相等、各边成比例的两个多边形叫做相似多边形.
相似多边形的特征:
相似多边形的对应角相等,对应边成比例.
相似比:
相似多边形的对应边的比叫做相似比.
课堂小结
形状相同的图形叫做相似图形
相似图形的大小不一定相同
对应角相等,对应边成比例
相似多边形对应边的比叫做相似比
... ... ...
关键词:图形的相似PPT课件免费下载,相似PPT下载,.PPTX格式;。

九年级数学相似的知识点

九年级数学相似的知识点

九年级数学相似的知识点
1. 相似三角形:了解相似三角形的定义和性质,掌握判定两个三角形是否相似的几何条件,了解相似三角形的比例关系以及应用。

2. 相似多边形:了解相似多边形的定义和性质,掌握判断两个多边形是否相似的几何条件,了解相似多边形的比例关系以及应用。

3. 相似比例:学习相似比例的定义,掌握相似比例的计算和应用,了解相似比例与比例的关系。

4. 相似形状的尺寸关系:通过相似性的特点和比例关系,掌握计算相似形状的尺寸关系,实际应用中解决实际问题。

5. 相似图形的面积和体积:了解相似图形的面积和体积之间的关系,掌握计算相似图形的面积和体积的方法。

6. 相似三角形的三线合一定理:了解相似三角形的三线合一定理,掌握计算相似三角形的高、中线、角平分线以及重心、垂心和外心的方法。

7. 三角形的判定:了解判定三角形是否相似的几何条件,掌握相似三角形中角的性质和边的关系,应用相似三角形解决实际问题。

8. 相似函数的性质:了解相似函数的定义和性质,掌握相似函数的图像特点和变化规律,应用相似函数解决实际问题。

9. 相似变换:了解平移、旋转、翻折和缩放等相似变换的性质,掌握相似变换的基本概念、性质和运算法则,应用相似变换解决实际问题。

10. 相似图形中的角度关系:通过相似图形的角度关系,学习解决相似图形中的角度问题。

以上是九年级数学中与相似相关的知识点,希望对你有帮助!。

九年级数学相似的知识点

九年级数学相似的知识点

九年级数学相似的知识点1. 相似三角形:相似三角形是指具有相同形状但大小不同的三角形。

相似三角形的性质包括对应角相等、对应边成比例等。

通过相似三角形,可以解决一些几何问题,如计算不可测量的长度或距离。

2. 比例与相似:比例是指两个量之间的相对关系。

在相似三角形中,对应边的长度之比等于对应角的边之比。

比例与相似问题常用于解决物体的放大缩小、图形的变换等。

3. 相似多边形:相似多边形是指具有相同形状但大小不同的多边形。

相似多边形的性质包括对应角相等、对应边成比例等。

通过相似多边形,可以解决一些面积和体积比较的问题。

4. 黄金分割:黄金分割是指一条线段分割成两部分,较长部分与整体的比例等于整体与较短部分的比例。

黄金分割在艺术、建筑、设计等领域中广泛应用。

5. 图形的相似性变换:图形的相似性变换是指通过平移、旋转、镜像和缩放等变换操作使两个图形成为相似图形。

相似性变换常用于解决图形的构造、定位和证明问题。

6. 相似三角形的勾股定理:相似三角形的勾股定理是指在两个相似三角形中,两个直角边的平方的比等于两个斜边的平方的比。

7. 外接圆和内切圆:在相似三角形和相似多边形中,外接圆和内切圆分别是能够通过所有顶点(或顶点所在的边)的圆和能够被所有边(或边上的顶点)所切的圆。

外接圆和内切圆之间存在着一定的关系,如半径比例等。

8. 相似三角形的角平分线定理和中线定理:相似三角形的角平分线定理是指两个相似三角形中,两个对应角的角平分线也相似;相似三角形的中线定理是指两个相似三角形中,两个对应中位线也相似。

这些是九年级数学中与相似有关的知识点,希望对你有帮助!。

九年级数学 相似图形

九年级数学 相似图形

相似图形•主要性质:1.对应内角相等2.两个图形对应边成比例如果是正方形,则只要边长成比例就可以,所以所有的正方形,正三角形都相似长方形是长和高对应成比例3.相似多边形的周长比等于相似比,面积比等于相似比的平方。

•相似图形基本法则:1. 如果选用同一个长度单位量得的两条线段AB,CD的长度分别是m,n那么就说这两条线段的比AB:CD=m:n,或写成AB/CD=m/n。

分别叫做这个线段比的前项后项。

2. 在地图或工程图纸上,图上长度与实际长度的比通常称为比例尺。

3. 四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a/b=c/d,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段。

4. 如果a/b=c/d,那么ad=bc. 如果ad=bc(a,b,c,d都不等于0),那么a/b=c/d.5. 如果a/b=c/d,那么(a±b)/b=(c±d)/d;那么(a±kb)/b=(c±kd)/d;那么a/b±ka=c/d±kc6如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b.7 如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,(√5-1)/2叫做黄金比。

8. 长于宽的比等于黄金比的矩形叫做黄金矩形。

9. 三角形ABC与三角形A’B’C’是形状形同的图形,其中10 各角对应相等、各边对应成比例的两个多边形叫做<a>相似多边形。

11.相似多边形的比叫做相似比。

12.三角对应相等,三边对应成比例的两个三角形叫做相似三角形。

若三角形ABC 与三角形DEF相似,记作:△ABC∽△DEF,把对应顶点的字母写在相应的位置上13.探索三角形相似的条件:①两角对应相等的两个三角形相似。

②三边对应成比例的两个三角形相似。

③两边对应成比例且夹角相等的两个三角相似。

九年级下册数学《相似》重点知识整理

九年级下册数学《相似》重点知识整理

九年级下册数学《相似》重点知识整理《相似》重点知识27.1 图形的相似1、相似的定义如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。

(相似的符号:∽)2、相似的判定如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。

3、相似比相似多边形的对应边的比叫相似比。

相似比为1时,相似的两个图形全等相似多边形的对应角相等,对应边的比相等。

相似多边形的周长比等于相似比。

相似多边形的面积比等于相似比的平方。

27.2 相似三角形1、相似三角形的判定(★重难点)(1).平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似(2)三边对应成比例(3)两边对应成比例,且夹角相等(4)两个三角形的两个角对应相等★常考题型:1、利用三角形的相似测量塔高、河宽2、相似三角形判定的常用模型A字型、8字型、三等角模型3、相似的性质1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

2.相似三角形周长的比等于相似比。

3.相似三角形面积的比等于相似比的平方4.多边形的面积的比等于相似比的平方,周长比等于相似比。

27.3 位似1、定义:如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

2、位似的相关性质(1)位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。

(2)位似多边形的对应边平行或共线。

(3)位似可以将一个图形放大或缩小。

(4)位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。

(5)根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。

★易错点1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;2、两个位似图形的位似中心只有一个;3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;5、平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形位似。

数学图形相似九年级知识点

数学图形相似九年级知识点

数学图形相似九年级知识点数学中的图形相似是指两个或多个图形在形状上相似,即它们的对应角度相等,对应边的比例相等。

图形相似在几何学中有重要的应用,能够帮助我们分析和解决各种数学问题。

本文将介绍九年级数学中关于图形相似的知识点。

1. 判断图形相似的条件在九年级数学中,判断两个图形是否相似,需要满足以下三个条件:(1)对应角相等:两个图形的对应角度相等。

(2)对应边比例相等:两个图形中,对应边的长度之比相等。

(3)对应边平行:两个图形中,对应边之间相互平行。

2. 图形相似的性质图形相似具有以下性质:(1)对应角的性质:相似图形的对应角相等,即它们的内角相等,外角相等。

(2)对应边的比例:相似图形的对应边之比等于它们的周长、面积之比。

即若图形A与图形B相似,那么两个图形的对应边AB与A'B'的比例等于它们的周长或面积之比。

3. 相似三角形的定理在相似三角形中,我们可以应用以下定理来求解各种问题:(1)AAA相似定理:如果两个三角形的三个内角分别相等,则这两个三角形相似。

(2)AA相似定理:如果两个三角形的一个内角相等,并且两个三角形的对应边比例相等,则这两个三角形相似。

(3)SAS相似定理:如果两个三角形的一个内角相等,并且两个三角形的一个对边与这个角的对边的比例相等,则这两个三角形相似。

4. 图形相似应用图形相似在实际问题中有广泛的应用,比如:(1)计算高塔的高度:通过相似三角形的定理,我们可以计算高塔的高度。

例如,利用影子定理可以测量高塔的高度,其中就用到了相似三角形的概念。

(2)建模问题:在建模问题中,相似图形的概念可以帮助我们将实际物体或建筑的比例缩小或放大,以便进行实际测量或设计。

总结:数学图形相似是九年级数学中的重要知识点,它可以帮助我们分析和解决各种数学问题。

相似图形的判断条件、性质以及应用都需要我们掌握。

通过学习相似图形的知识,我们可以更好地理解几何学中的概念和应用,提升数学解题能力。

23.2 相似图形(数学华师大版九年级上册)

23.2 相似图形(数学华师大版九年级上册)

相似多边形的对应边成比例,对应角相等。
两个边数相同的多边形,如果各边对应成比例, 各角对应相等,那么这两个多边形相似。
这个定义是我们判断两个多边 形是否相似的准确方法。
(1)两个三角形一定相似吗?(

(2)两个等腰三角形一定相似吗?(

(3)两个等边三角形一定相似吗?(

(4)两个正方形一定相似吗?(
18
解:∵两个四边形相似
∴18 x 12 18
∴ x 27
根据对应角相等,可得
例 2 如图,把矩形ABCD中的AB边向上翻折到AD边上,当点B与点F
重合时,折痕与BC边交于点E,连结EF,若四边形EFDC与矩形ABCD 恰好相似,若AB=1,求AD的长。
A
FD
A
F
D
B
EC
B
E
C
拓展:如图,把矩形ABCD对折,折痕为FE,矩形DFEC与矩形ABCD相 似,已知AB=1,求AD的长。
形状相同,大小不一定相同的图形叫做相似图形。 (简称相似形)
(1)相似图形只与图形的形状有关,与图形的大小、位置无关; (2)全等图形是相似图形的特例; (3)两个图形相似,其中一个图形可以看作是由另一个图形放大或
缩小得到。
下列图形是相似形吗?
(1)
(2)
(3)
下列各组图形相似吗?
(1)
(2)
A' B' =__2_,B' C' =_1___,C' D' =__2__,A' D' =__5__.
AB BC CD AD A'B' B'C' C'D' A'D'
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

情境引入
欣赏下面4组图片,说说你的想法
引出本章,及本节课题 二、自主探究 (一)相似图形
1.类比上面几幅图片,再举一些其它例子.
2.这些图片有什么共同特征?
3.从平面镜和哈哈镜里看到的不同镜像,它们相似吗?
4.已学习过的几何图形中有没有相似的?自己设计一些相似图形,在与同学交流一下.
5.完成课本35页练习. (二)相似多边形
1.观察正△ABC 和正△'''C B A 中,它们的对应角有什么关系?对应边呢?
2.能否说任意两个正三角形都相似?
3.阅读课本36页中的方框旁注,比例线段的特点是什么?
教师展示图片并提出问题,学生观察,思考 教师引导点拨的形状相同等初步感知相似图形的基本特征
学生根据生活经验举例似小组形式进行讨论探究这些图片的共同特征学生完成练习订正 教师设计问题思考分析多边形概念。

相关文档
最新文档