数学北师大版九年级上册图形的相似
九年级数学上册 第四章 图形的相似知识归纳 北师大版

图形的相似1. 比例线段的有关概念==在比例式::中,、叫外项,、叫内项,、叫前项,a c(a b c d )a d b c a c b db 、d 叫后项,d 叫第四比例项,如果b =c ,那么b 叫做a 、d 的比例中项. 2. 比例性质①基本性质:a b cdad bc =⇔= ②更比性质(交换比例的内项或外项):()()()()⎧=⎪⎪⎪=⎪=⇒⎨⎪=⎪⎪⎪=⎩交换内项交换外项同时交换内外项同时交换比的前项和后项a bc d d c a cb a d b b dc a b da c②合比性质:±±a b c d a b b c d d =⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n ab===+++⇒++++++=()03. 黄金分割在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB ×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.其中AB AC 215-=≈0.618AB . 4. 平行线分线段成比例定理①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3.则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 5. 相似三角形的判定①两角对应相等,两个三角形相似;②两边对应成比例且夹角相等,两三角形相似; ③三边对应成比例,两三角形相似. 6. 相似三角形的性质①相似三角形的对应角相等,对应边成比例;②相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;面积的比等于相似比的平方. 7. 六种相似基本模型:CABD CABDE E D BACDE ∥BC∠B ∠AED∠B ∠ACDADBCDOBACO DCBAX 型母子型AC ∥BD∠B ∠CAD 是Rt △ABC 斜边上的高8. 射影定理由_____________,得______________,即_______________; 由_____________,得______________,即_______________; 由_____________,得______________,即_______________.9. 中位线1) 三角形的中位线:连结三角形两边中点的线段. 三角形的中位线平行于第三边并且等于第三边的一半. 三角形三条边上的中线交于一点,这个点就是三角形的重心,重心与一边中点的线段的长是对应中线长的31. 2) 梯形的中位线:连结梯形两腰中点的线段.梯形的中位线平行于两底边,并且等于两底边和的一半. 10. 位似①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比. ②位似图形上任意一对对应点到位似中心的距离之比等于位似比.AD B C。
北师大版九年级上册数学《相似三角形判定定理的证明》图形的相似说课教学复习课件

探究
判定定理1是从三角形的三个
角来证明三角形相似,能不能从
三角形的角和边一起考虑,来证
明相似呢?
B
角和边!
A A'
C B' C'
思 考
已知:在△ABC 和△A ' B ' C ' 中,
A
A'
A A', A' B ' A'C '
AB
AC
D
E
求证:ΔABC∽ ΔA ' B ' C '
B
C B' C'
如果
AB AB
BC BC
AC , AC
那么,△ABC∽△A′B′C′.
B′
边
√ 边
边 A′
C′
A
B
C
画一画
任意画一个三角形,再画一个三 角形,使它的各边长都是原来三角 形各边长的k倍,度量这两个三角 形的对应角,它们相等吗?这两个 三角形相似吗?与同桌交流一下, 看看是否有同样的结论.
已知:在ABC和A' B'C'中,AB BC AC .
分析:在AB,AC上分别截AD=A'B',AE=A'C',要证题 目结论,只需要证明ADE∽ABC.
根据预备定理,只要证明DE//BC,题意即证.
由AD=A'B',AE=A'C'及条件
A' B' AB
A' C ' AC
有:AADB
AE AC
思
能否由
AD AB
AE AC
推出DE//BC?
北师大版九年级数学上册第四章 图形的相似 黄金分割

大自然与黄金分割
图中主叶脉与叶柄和主叶脉的 长度之和比约为 0.618.
蝴蝶身长与双翅展开后 的长度之比,普通树叶的 宽与长之比也接近 0.618.
人体肚脐不但是黄金点美化身型,有时
还是医疗效果黄金点,许多民间名医在肚
脐上贴药治好了某些疾病. 人体最感舒适的
人
温度是 23℃ (体温),也是正常人体温(37℃)
离地面的高度 h = 3×0.618 = 1.854 m
4.如图所示,乐器上的一根弦 AB = 80 cm,两个端点 A、B 固定在乐器板面上,支撑点 C 是靠近点 B 的黄 金分割点,支撑点 D 是靠近点 A 的黄金分割点,则 AC =__________cm,DC =___________cm.
都接近于0.618.
东方明珠塔,塔高 468 米. 设计师在 263 米处设计了一 个球体,使平直单调的塔身 变得丰富多彩,非常协调、 美观.
当堂小结
黄金 分割
定义
点 C 把线段 AB 分成两条线段 AC 和BC,
如果
AC AB
BC AC
,那么称线段
AB
被点
C
黄金分割.点 C 叫做线段 AB 的黄金分割
2
D
②连接 AD,在 AD 上截取 DE = DB.
E
③在 AB 上截取 AC = AE.
A
CB
思考:点 C 是线段 AB 的黄金分割点吗?
令BD = 1 ,则AD = 2
12
1 2
2
=
5 ,AC = AE = 2
5 -1 22
= 5 -1,BC = 1- AC = 1- 5 -1 = 3 - 5 ;
B.S1<S2
C.S1 = S2
北师大版九年级数学上册第四章 图形的相似 利用两边及夹角判定三角形相似

BC AB 4
44
想一想
如果 △ABC 与 △A'B'C' 两边成比例,且其中
一边所对的角相等,那么这两个三角形一定相似吗?
小明和小颖分别画出了如图所示的三
角形.由此你能得到什么结论?
4 cm 3.2 cm
如果两个三角形两边对应成比例, 50°
但相等的角不是两条对应边的夹角,
那么两个三角形不一定相似,相等的 2 cm 1.6 cm
A
∴ AB AE . 又∵∠DAB =∠CAE, D AC AD
∴∠ DAB +∠BAE =∠CAE +∠BAE ,
即∠DAE =∠BAC .
B
∴ △ABC ∽△AED .
E C
解:∵ AB 7, AC 14 = 7, ∴ AB AC .
A' B' 3 A'C' 6 3
A' B' A' C'
又 ∠A′ = ∠A,∴ △ABC ∽ △A′B′C′.
练一练
1. 如图,△ABC 与 △ADE 都是等腰三角形,AD = AE,
AB = AC,∠DAB = ∠CAE. 求证:△ABC ∽△ADE.
(×)
(3) 两个等腰直角三角形相似
(√)
(4) 有一个角是 50° 的两个等腰三角形相似 (×)
2. 如图,D 是 △ABC 一边 BC 上一点,连接 AD,
使 △ABC ∽ △DBA 的条件 ( D )
A
A. AC : BC=AD : BD
B. AC : BC=AB : AD
C. AB2 = CD ·BC D. AB2 = BD ·BC → AB BC
北师大版九年级上册相似三角形判定定理证明课件

定 定理2:两边成比例且夹角相等的
理 证
两个三角形类似.
明
类似三角形
定理3:三边成比例的两个三
判定定理的
角形类似.
证明
定理的运用
再见
∴BACB=BBDE , 即:BBCE=BADB .
在△DBE和△ABC中,∠CBE=∠ABD, ∴∠CBE+∠DBC=∠ABD+∠DBC, ∴∠DBE=∠ABC且 BBCE=BADB. ∴△DBE∽△ABC.
练习 1.如图,在等边三角形ABC中,D,E,F分别是 三边上的点,AE=BF=CD,那么△ABC与△DEF类似 吗?请证明你的结论.
∴ ΔADE≌ΔA'B'C', ∴ ∠ADE=∠B',
A A'
又∵ ∠B'=∠B,
∴ ∠ADE=∠B, ∴ DE//BC, ∴ ΔADE∽ΔABC。
D
E
B
C B'
C'
∴ Δ A'B'C' ∽ΔABC
定理2:两边成比例且夹角相等的两个三角形类似.
如图,在△ABC与△A′B′C′中,已知∠A= ∠A′,
分析:由已知条件∠ABD=∠CBE, ∠DBC公用,所以∠DBE=∠ABC,要证 的△DBE和△ABC,有一对角相等,要证 两个三角形类似,可再找一对角相等,或
者找夹这个角的两边对应成比例.从已知条件中可看 到△CBE∽△ABD,这样既有相等的角,又有成比例 的线段,问题就可以得到解决.
证明:在△CBE和△ABD中,∠CBE=∠ABD, ∠BCE=∠BAD,∴△CBE∽△ABD,
2.如图,在正方形ABCD中,E是CD的中 点,点F在BC上,且FC= 1 BC.图中类似
北师大版数学九年级上册第四章图形的相似专题一本章易错点例析课件

黄金分割
定义及相关 概念
续表
一般地,如果两个类似多边形任意一组对应顶点P, 位似多边形 P′所在直线都经过同一个点O,且有OP′=k·OP 的定义及相 (k≠0),那么这样的两个多边形叫做位似多边形,
关概念 点O叫做位似中心.实际上,k就是这两个类似多边形的 类似比
画位似图形的步骤:
图形的位似
位似图形的 画法
1.两角分别相等的两个三角形类似; 2.两边成比例且夹角相等的两个三角形类似; 3.三边成比例的两个三角形类似
续表
类似三角形
性质定理
利用类似三 角形测高
1.类似三角形对应高的比、对应角平分线的比、对应 中线的比都等于类似比; 2.类似三角形的周长比等于类似比,面积比等于类似 比的平方
1.利用阳光下的影子测高; 2.利用标杆测高; 3.利用镜子的反射测高
平行于三角形一边的直线与其他两边相交,截得的对应线段 成比例
续表
类似多边形
定义
性质 定理
各角分别相等、各边成比例的两个多边形叫做类似多边形
1.对应角相等、对应边的比等于类似比; 2.周长比等于类似比,面积比等于类似比的平方
类似三角形
定义
判定 定理
三角分别相等、三边对应成比例的两个三角形叫做类似三角 形
(1)证明:∵四边形PQMN为矩形, ∴MN∥PQ,即PQ∥BC. ∴△APQ∽△ABC. (2)解:设矩形的宽为x mm,则长为2x mm. ∵四边形PNMQ为矩形,∴PQ∥BC. ∵AD⊥BC,∴PQ⊥AD. ∵PN∶PQ=1∶2,∴PQ为长,PN为宽.
易错典例
易错点3:臆造定理造成错解
错解分析:上述错误的表现是用两对类似三角形相加,推出待 证的两个三角形类似,实际是臆造定理“若两对三角形分别类似 ,则它们的和也对应类似”.一方面这种臆造意义不明确,两个 三角形相加到底是什么相加呢?另一方面即使意义明确,也需要 进行严格的证明,这些都没有做到,因而难以让人信服.
4.8+图形的位似++课件 2024——2025学年北师大版数学九年级上册

位似多边形的定义:
如果两个相似多边形任意一组对应顶点P,P̍ 所 在的直线都经过同一点O,且OP ̍ =k· OP (k≠0),那 么这样的两个多边形叫做位似多边形,点O叫做位似 中心.其中k为这两个相似多边形的相似比.
位似多边形三层意思 1.两个多边形相似.
2.对应点的连线都经过同 一点. 3.任意一组对应点与位似
分别取点D,E,F,使OD = 2OA,OE
= 2OB,OF = 2OC;
F
3.顺序连接D,E,F,则△DEF与
E
△ABC位似,相似比为2.
D
A
B
O
C
随堂练习
已知点O在△ABC内,以点O为位似中心画一个三角形, 使它与△ABC位似,且相似比为1/2.
课堂小结
定义
如果两个相似多边形任意一组对应顶点P,P ̍ 所在的直 线都过同一点O,且OP ̍ =k· OP(k≠0),那么这样的两
OB=5.4cm OE=3cm OB'=2.54cm OE'=1.4cm
C
D
D' C'
OC=4.9cm AB=1.4cm
OC'=2.3cm A'B'=0.66cm
位似图形的概念
(1)动手用直尺连的连线交于一点O
进行演示
此时称五边形ABCDE与五边形A´B´C´D´E´是位似图形.
中心的距离之比值是一个
定值. A
A'
E
B
B'
E'
O
D C
D' C'
观察与思考 它们都是相似五边形 它们都是位似多边形吗? 为什么?
如果两个相似多边形任意一组对应顶点P,P̍ 所 在的直线都经过同一点O,且OP ̍ =k· OP (k≠0),那 么这样的两个多边形叫做位似多边形,点O叫做位似 中心.其中k为这两个相似多边形的相似比.
图形的位似课件北师大版数学九年级上册

内
E' O C'
部
A' B'
A
B
知识精讲
2. 位似图形的性质
(1)对应点所在的直线经过位似中心;
(2)任意一组对应点到位似中心的距离之比等于相似比;
(3)对应边平行或在同一条直线上.
D
′ ′′
=
.
D'
O
C'
E'
A'
D
C
E
B'
B
①
A
′ ′′
=
.
C
E
D'C'
E'
A A'OB' B
②
知识精讲
3. 位似图形的画法(将一个图形放大或缩小)
(1)确定位似中心和图形上的关键点;
(2)连接位似中心与关键点并延长所得线段;
(3)根据相似比确定位似图形上的关键点;
A'
(4)顺次连接位似图形上的关键点,得到位似图形.
A
画一个△A′B ′C ′,使它与∆位似,且相似比为2.
C'
C
O
B
′
分析: 设 = .
由矩形的周长
矩形与矩形′ ′ ′是位似图形
=
′ ′
D'
D
A
C'
C
B
用表示的长
用表示AB ′ , ′的长
B'
典例精讲
【例题3】如图,矩形与矩形′ ′ ′是
位似图形,为位似中心.已知矩形的周长为
24,′ = 4,′ = 2,求, 的长.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测试题:
一、选择题
1.下面四条线段成比例的是().
A. B.
C. D.
2.如图,若,则下面比例式不能成立的是().
A.B. C. D.
3.下列说法中,错误的是().
A.所有的等边三角形都相似 B.和同一图形相似的两图形也相似C.所有的等腰直角三角形都相似 D.所有的矩形都相似
4.如图,小明设计两个直角,来测量河宽BC,他量得米,米,米,则河宽BC为().
A.5米 B.4米 C.6米 D.8米
二、填空题
5.两个相似三角形的一边对应边分别为35cm14cm,它们的周长相差60cm,则这两个三角形的周长为_________.
6.如图,,若将图中的旋转(平移),则所得到的新三角形与_____________,与__________.
7.学校平面图的比例尺是1:500,平面图上校园面积为1300cm,则学校的实际面积为____.
8.把一个矩形的各边都扩大到4倍,则其对角线扩大到_________倍,其面积扩大到_______倍.
9.如图,A、B两点间有一湖泊,无法直接测量,米,米,
米,则米.
三、解答题
10.如图,在中,于D,如果,求CD、AC.
11.如图所示,五边形与五边形相似,求和的长度.
12.已知:中,,问:边AC上是否存在一点D,使∽?如果存在,请算出CD的长度.
13.如图是步枪在瞄准时的俯视图,OE是从眼睛到准星的距离80mm,AB是步枪上的准星宽度2mm,CD是目标的正面宽度50cm,求眼睛到目标的距离OF.
14.已知:于B点,于D点,,问:在DB上是否存在P点,使以C、D、P为顶点的三角形与以P、B、A为顶点的三角形相似?如果存在,求DP的长;如果不存在,说明理由.
参考答案
一、选择题
1.A 2.B 3.D 4.B
二、填空题
5.100cm,40cm 6.相似、全等 7.32500平方米 8.4,16 9.80
三、解答题
10.;
11.;
12.4;
13.20米;
14.5.6、2或12。