九年级数学上图形的相似

合集下载

华师版九年级数学上册第23章 图形的相似5 位似图形

华师版九年级数学上册第23章 图形的相似5 位似图形

2.下列关于位似图形的三个表述中正确的有( C ) ①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心; ③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同 一个点,那么这两个图形是位似图形. A.0个 B.1个 C.2个 D.3个
3.如图,△OAB 和△OCD 是位似图形,AB 与 CD 平行吗?为什么?
A A′
D′ D O C C′
B B′
A
C′
B
O
B′
C
A′
知识要点2
位似图形的性质 位似图形上任意一对对应点到位似中心的距离之比等于相似比.
典例讲解
1
例1..把四边形 ABCD 缩小到原来的 2. (1) 在四边形外任选一点 O (如图);
(2) 分别在线段 OA、OB、OC、OD 上
A
取点 A' 、B' 、 C' 、D' ,使得;
OA' OB' OC' OD' 1
B
D
A'
OA OB OC OD 2
B' D'
C
(3) 顺次连接点 A' 、B' 、C' 、D' ,所
O
C'
得四边形 A' B' C' D' 就是所要求的图形
知识要点3
画位似图形的一般步骤 ① 确定位似中心; ② 分别连接并延长位似中心和能代表原图的关键点; ③ 根据相似比,确定能代表所作的位似图形的关键点; ④ 顺次连接上述各点,得到放大或缩小的图形.
第23章 图形的相似
位似图形
活动一 照相机把人物的影像缩小到底片上,这种相似有什么特征?

九年级数学相似的知识点

九年级数学相似的知识点

九年级数学相似的知识点
1. 相似三角形:了解相似三角形的定义和性质,掌握判定两个三角形是否相似的几何条件,了解相似三角形的比例关系以及应用。

2. 相似多边形:了解相似多边形的定义和性质,掌握判断两个多边形是否相似的几何条件,了解相似多边形的比例关系以及应用。

3. 相似比例:学习相似比例的定义,掌握相似比例的计算和应用,了解相似比例与比例的关系。

4. 相似形状的尺寸关系:通过相似性的特点和比例关系,掌握计算相似形状的尺寸关系,实际应用中解决实际问题。

5. 相似图形的面积和体积:了解相似图形的面积和体积之间的关系,掌握计算相似图形的面积和体积的方法。

6. 相似三角形的三线合一定理:了解相似三角形的三线合一定理,掌握计算相似三角形的高、中线、角平分线以及重心、垂心和外心的方法。

7. 三角形的判定:了解判定三角形是否相似的几何条件,掌握相似三角形中角的性质和边的关系,应用相似三角形解决实际问题。

8. 相似函数的性质:了解相似函数的定义和性质,掌握相似函数的图像特点和变化规律,应用相似函数解决实际问题。

9. 相似变换:了解平移、旋转、翻折和缩放等相似变换的性质,掌握相似变换的基本概念、性质和运算法则,应用相似变换解决实际问题。

10. 相似图形中的角度关系:通过相似图形的角度关系,学习解决相似图形中的角度问题。

以上是九年级数学中与相似相关的知识点,希望对你有帮助!。

九年级数学相似的知识点

九年级数学相似的知识点

九年级数学相似的知识点1. 相似三角形:相似三角形是指具有相同形状但大小不同的三角形。

相似三角形的性质包括对应角相等、对应边成比例等。

通过相似三角形,可以解决一些几何问题,如计算不可测量的长度或距离。

2. 比例与相似:比例是指两个量之间的相对关系。

在相似三角形中,对应边的长度之比等于对应角的边之比。

比例与相似问题常用于解决物体的放大缩小、图形的变换等。

3. 相似多边形:相似多边形是指具有相同形状但大小不同的多边形。

相似多边形的性质包括对应角相等、对应边成比例等。

通过相似多边形,可以解决一些面积和体积比较的问题。

4. 黄金分割:黄金分割是指一条线段分割成两部分,较长部分与整体的比例等于整体与较短部分的比例。

黄金分割在艺术、建筑、设计等领域中广泛应用。

5. 图形的相似性变换:图形的相似性变换是指通过平移、旋转、镜像和缩放等变换操作使两个图形成为相似图形。

相似性变换常用于解决图形的构造、定位和证明问题。

6. 相似三角形的勾股定理:相似三角形的勾股定理是指在两个相似三角形中,两个直角边的平方的比等于两个斜边的平方的比。

7. 外接圆和内切圆:在相似三角形和相似多边形中,外接圆和内切圆分别是能够通过所有顶点(或顶点所在的边)的圆和能够被所有边(或边上的顶点)所切的圆。

外接圆和内切圆之间存在着一定的关系,如半径比例等。

8. 相似三角形的角平分线定理和中线定理:相似三角形的角平分线定理是指两个相似三角形中,两个对应角的角平分线也相似;相似三角形的中线定理是指两个相似三角形中,两个对应中位线也相似。

这些是九年级数学中与相似有关的知识点,希望对你有帮助!。

九年级数学《图形的相似》总复习课件-PPT

九年级数学《图形的相似》总复习课件-PPT

6或2/3或1.5
6
2.比例中项:
当两个比例内项相等时,即
a b=
cb(,或 a:b=b:c),
那么线段 b 叫做a 和 c 的比例中项.
即: b2 ac
数2与8的比例中项是 ___4_ .线段2cm与8cm的
比例中项是 _4__c_m.
7
3.黄金分割: A
C
B
把一条线段(AB)分成两条线段,使其中较长线段(AC)是 原线段(AB)与较短线段(BC)的比例中项,就叫做把这条 线段黄金分割。
y
·P
O B· C·
x
·A
28
9、如图, 在△ABC中,AB=5,AC=4,E是AB上一点,AE=2,
在AC上取一点F,使以A、E、F为顶点的三角形与
△ABC相似,那么AF=___85_或___52_
A
.E
F1
F2
DC
B
C
A
B
10、 如图, 在直角梯形中, ∠BAD=∠D=∠ACB=90。,
CD= 4, AB= 9, 则 AC=__6____
P
A
C
D
B
33
15、 如图D,E分别AB,AC是上的点, ∠AED=72o, ∠A=58o,∠B=50o, 那么△ADE和△ABC相似吗?
若AE=2,AC=4,则BC是DE的
倍.
A
E D
C B
34
16、若△ ACP∽△ABC,AP=4,BP=5,则AC=___6____,△
ACP与△ABC的相似比是_____2__:,3周长之比是_______,
1
1. 成比例的数(线段):
若 a c 或a : b c : d , 那么 a ,b, c , d 叫做四个数成比例。

数学图形相似九年级知识点

数学图形相似九年级知识点

数学图形相似九年级知识点数学中的图形相似是指两个或多个图形在形状上相似,即它们的对应角度相等,对应边的比例相等。

图形相似在几何学中有重要的应用,能够帮助我们分析和解决各种数学问题。

本文将介绍九年级数学中关于图形相似的知识点。

1. 判断图形相似的条件在九年级数学中,判断两个图形是否相似,需要满足以下三个条件:(1)对应角相等:两个图形的对应角度相等。

(2)对应边比例相等:两个图形中,对应边的长度之比相等。

(3)对应边平行:两个图形中,对应边之间相互平行。

2. 图形相似的性质图形相似具有以下性质:(1)对应角的性质:相似图形的对应角相等,即它们的内角相等,外角相等。

(2)对应边的比例:相似图形的对应边之比等于它们的周长、面积之比。

即若图形A与图形B相似,那么两个图形的对应边AB与A'B'的比例等于它们的周长或面积之比。

3. 相似三角形的定理在相似三角形中,我们可以应用以下定理来求解各种问题:(1)AAA相似定理:如果两个三角形的三个内角分别相等,则这两个三角形相似。

(2)AA相似定理:如果两个三角形的一个内角相等,并且两个三角形的对应边比例相等,则这两个三角形相似。

(3)SAS相似定理:如果两个三角形的一个内角相等,并且两个三角形的一个对边与这个角的对边的比例相等,则这两个三角形相似。

4. 图形相似应用图形相似在实际问题中有广泛的应用,比如:(1)计算高塔的高度:通过相似三角形的定理,我们可以计算高塔的高度。

例如,利用影子定理可以测量高塔的高度,其中就用到了相似三角形的概念。

(2)建模问题:在建模问题中,相似图形的概念可以帮助我们将实际物体或建筑的比例缩小或放大,以便进行实际测量或设计。

总结:数学图形相似是九年级数学中的重要知识点,它可以帮助我们分析和解决各种数学问题。

相似图形的判断条件、性质以及应用都需要我们掌握。

通过学习相似图形的知识,我们可以更好地理解几何学中的概念和应用,提升数学解题能力。

北师大版数学九年级上册第四单元图形的相似单元复习课件

北师大版数学九年级上册第四单元图形的相似单元复习课件
11.如图, 是 的中线, 是线段 上的一点,且 ,连接 并延长,交 于点 .若 ,
(1) 求 的值;
(2) 求 的长.
(1) 求 的值;
解: , . .
(2) 求 的长.
[答案] 如图,过点 作 ,交 的延长线于点 .
, , . . 是 的中线,
A
A. B. C. D.
3.如图,点 , 在 的边 上,点 在边 上,且 , .
(1) 求证: .
(2) 如果 ,求证: .
(1) 求证: .
证明: , . , . . .
(2) 如果 ,求证: .
[答案] , . , .又 , . . , . . .
6.如图,在 中, , ,则图中类似三角形有( )
C
A.2对 B.3对 C.4对 D.5对
Ⅳ.“旋转型”
7.如图,在 和 中, , .
(1) 写出图中两对类似三角形(不得添加字母和线);
(2) 请说明其中一对三角形类似的理由.
(1) 写出图中两对类似三角形(不得添加字母和线);
Ⅱ.斜“A字形”(不平行)
4.如图, , 两点分别在 的边 , 上, 与 不平行.当添加条件_______________(写出一个即可)时, .

5.如图,在 中, , , .某一时刻,动点 从点 出发沿 方向以 的速度向点 匀速运动;同时,动点 从点
Ⅱ.反“8字形”(不平行)
9.如图,在 中, 平分 交 于点 ,点 在 的延长线上,且 .
(1) 求证: .
(2) 求证: .
(1) 求证: .
证明: 平分 , . , . .
(2) 求证: .
[答案] , . , .又 , . ,即 .

九年级相似图形知识点归纳

九年级相似图形知识点归纳

九年级相似图形知识点归纳相似图形是几何学中的一个基本概念,它指的是形状相似但尺寸不同的两个或多个图形。

在九年级的数学学习中,相似图形是一个重要的知识点,涉及到比例、比例尺、相似比等概念。

本文将对九年级相似图形的相关知识进行归纳总结。

一、相似图形的定义相似图形是指在形状上相似但尺寸不同的两个或多个图形。

相似图形具有以下特点:1. 对应角相等:两个相似图形的对应角都相等;2. 对应边成比例:两个相似图形的对应边的长度成比例。

二、相似图形的判定方法1. AAA判定法:若两个图形的对应角分别相等,则它们是相似图形。

2. AA判定法:若两个图形的两组对应角分别相等,则它们是相似图形。

三、相似图形的性质和定理1. 三角形的相似定理:a. AA相似定理:如果两个三角形的两组对应角相等,则这两个三角形是相似的。

b. SSS相似定理:如果两个三角形的三组对边成比例,则这两个三角形是相似的。

c. SAS相似定理:如果两个三角形的一组对边成比例且对应角相等,则这两个三角形是相似的。

2. 相似三角形的性质:a. 对应边成比例:相似三角形的对应边的长度成比例。

b. 三角形内角对应:相似三角形的内角都对应相等。

四、相似图形的应用相似图形的知识在实际生活和实际问题中有广泛应用,例如:1. 测量:利用相似图形的知识可以进行测量,如通过测量一个三角形的边长和另一个相似三角形的边长,可以得到未知边长的长度。

2. 设计:在设计中,相似图形的概念可以应用于建筑、道路等方面,通过对已知图形进行放大或缩小,使其与实际需求相适应。

3. 地图测绘:地图上的比例尺就是利用相似图形的原理进行测绘的。

五、示例题目1. 已知两个三角形的对边成比例,但两个三角形的对应角不全等,是否可以判定这两个三角形是相似的?2. 若一个平面图形与一个已知的相似图形所对应的角相等,并且对应边成比例,能否判断这两个图形是相似的?六、总结九年级相似图形是一个重要的几何学知识点,它涵盖了相似图形的定义、判定方法、性质和应用等方面。

2024秋九年级数学上册第3章图形的相似3

2024秋九年级数学上册第3章图形的相似3

3.6 位似
第1课时位似图形的概念及画法
1下列图中的两个图形不是位似图形的是()
A.B.
C.D.
2下列四图中的两个三角形是位似三角形的是()
A.图(3)、图(4)
B.B.图(2)、图(3)、图(4)
C.C.图(2)、图(3)
D.D.图(1)、图(2)
3.如图,三个正六边形全等,其中成位似图形关系的有()
A.0对B.1对
C.2对D.3对
学问点二位似图形的性质
4.如图所示,△ABC和△A′B′C′是位似图形,且OA′=OA,则AB:A′B′等于()A.3:2 B.2:3
C.3:5 D.5:3
第4题图第6题图
5.(玉林中考)△ABC 与△'''A B C 是位似图形,且△ABC 与△'''A B C 的位似比是1︰2,已知△ABC 的面积是3,则△'''A B C 的面积是( )
A .3
B .6
C .9
D .12
6.如图,将△ABC 的三边缩小为原来的.任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF,下列说法正确的个数是( )
①△ABC 与△DEF 是位似图形;
②△ABC 与△DEF 是相像图形;
③△ABC 与△DEF 周长之比为2:1;
④△ABC 与△DEF 的面积之比为4:1.
A .1个
B .2个
C .3个
D .4个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 三边对应成比例,两三角形相似。
A1
即:
B
C
如果
AB A1B1

BC B1C1

AC A1C1
,
那么 △ABC∽ቤተ መጻሕፍቲ ባይዱA1B1C1.
B1
C1
请同学们与同位合作,分别画∆ABC 与∆DEF,使AB BC AC 都等于一个
DE EF DF
定值(自己设定),并设法比较∠A与
∠D的大小.∆ABC与∆DEF相似吗?说
到目前为止,我们学习了哪些识别三角 形相似的方法?
三个角对应相等
运用定义 三边对应成比例
(1)两角分别相等 (2)两边成比例且夹角相等 两三角形相似 (3)三边成比例
【例题】
如图,在△ABC和△ADE中,
AB BC AC ,∠BAD=20°,求
AD DE AE
∠CAE的度数.
A
B
C
D
E
例 如图在△ABC和△ADE中 AB BC AC . ∠ BAD=20°求∠ CAE的度数AD DE AE
解:∵
AB AD

BC DE

AC . AE
A
∴△ABC∽△ADE
△ABC的边AC,AB上的
点,请你添加一个条件, D
使△ADE∽△ABC.
C
E B
(判定定理1:两角分别相等的两个三角形相似)
(判定定理2:两边成比例且夹角相等的两个三角形相似)
三角形全等的判定方法有哪些?
SAS ASA AAS SSS (HL )
根据“三角形全等的判定方法”, 你猜测什么条件下,也能有三角形 相似?
B
(三边成比例的两个三角形相似)
C
∴ ∠BAC=∠DAE
D
∴∠BAC-∠DAC=∠DAE-∠DAC
E
即∠BAD=∠CAE
∵∠BAD=20°
∴∠CAE=20°
巩固训练
1.如图,△ABC与△ A′B′C′相似 吗?你有哪些判断方法?
A
B
C
A′
B′
C′
2.如图,小正方形的边长均为1,则下 图中的三角形(阴影部分)与△ABC相似的 为( )
说你的理由.
F
C
26 34
2 26
2 34
A4 B
∵ AB BC AC
DE EF DF
D
8
E
∴ ΔABC ∽ ΔDEF
合作探究
如果两个三角形的三组对应边的比 相等,那么这两个三角形相似。
三边对应成比例,两三角形相似。
A
A1
即:
B
C
如果
AB A1B1

BC B1C1

AC A1C1
,
那么 △ABC∽△A1B1C1.
九年级数学(上)第四章 图形的相似
4.探索三角形相似的条件(3)
• 掌握三角形相似的判定定理3,并会用判定 定理3进行判断、证明及计算.
• 通过对判定方法的探索,发展学生思维的灵 活性,进一步培养逻辑推理能力.
• 通过探索相似三角形的判定方法3,体现数学 活动充满着探索性和创造性.
回顾与思考
A
如图,D,E分别是
猜想:三边成比例,两三角形相似
探索三角形系相似的条件
观看演示:若△ABC与△A`B`C`满足条件: AB BC AC 2
你能发现这两个三角形相似?
AB BC AC 1
演示
相似三角形判定:三边对应成比例的两个三角形相似.
知识要点
边S
边S
√ 判定三角形相似的定理之一 边 S
如果两个三角形的三组对应边的比 相等,那么这两个三角形相似。
A
B
C
A
B
C
D
3.在四边形ABCD中,AB=2, BC=3, CD=6, AC=4, DA=8,AC平分 ∠BAD吗?说明你的理由.
C
B
D
A
测试评价
1.依据下列各组条件,判定△ABC与 △A′B′C′是不是相似,并说明理由. (1)∠A=120°,AB=7cm,BC=14cm, ∠A’=120°,A’B’=3cm, B’C’=6cm; (2)AB=4cm,BC=6cm,AC=8cm, A’B’=12cm,B’C’=18cm, B’C’=24cm.
测试评价
2.下列每组的两个三角形是否相似?为什么?
3.在如图所示的网格图中,画出一 个与图中三角形相似的三角形
备选题:
如图在△ABC中,∠C=90°,BC=8cm, AC=6cm,点Q从B出发,沿BC方向以2cm/s 的速度移动,点P从C出发,沿CA方向以 1cm/s的速度移动.若Q、P分别同时从B、 C 出发,试探究经过多少秒 后,以点C、P、 Q为顶点 的三角形与△CBA相似?
B1
C1
随堂小练
已知△ABC和△DEF,根据下列条件判
断它们是否相似.
(1)AB=3,BC=4,AC=6 DE=6,EF=8,DF=9

(2)AB=4,BC=8,AC=10 DE=20,EF=16,DF=8

(3) AB=12,BC=15,AC=24 DE=16,EF=20,DF=30

(注意:大对大,小对小,中对中)
相关文档
最新文档