初中数学图形的相似知识点总复习含答案
初中数学中考复习考点知识与题型专题讲解33 相似形(解析版)

初中数学中考复习考点知识与题型专题讲解专题33相似形【知识要点】考点知识一相似图形及比例线段相似图形:在数学上,我们把形状相同的图形称为相似图形.相似多边形:若两个边数相同的多边形,它们的对应角相等、对应边成比例,则这两个多边形叫做相似多边形。
特征:对应角相等,对应边成比例。
比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段。
考点知识二相似三角形相似图形的概念:形状相同的图形叫做相似图形。
相似图形的概念:对应角相等、对应边成比例的两个三角形叫做相似三角形。
相似用符号“∽”,读作“相似于”。
相似比的概念:相似三角形对应边的比叫做相似比相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.判定方法(五):斜边和任意一条直角边成比例的两个直角三角形相似。
相似三角形的性质:1.相似三角形的对应角相等,对应边的比相等;2.相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.3.相似三角形的面积比等于相似比的平方.相似三角形与实际应用:关键:巧妙利用相似三角形性质,构建相似三角形求解。
考点知识三位似位似图形定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:1.位似图形是相似图形的一种特殊形式。
2.位似图形的对应顶点的连线所在直线相交与一点,位似图形的对应边互相平行或者共线。
位似中心的位置:形内、形外、形上。
九年级数学图形的相似带答案)

第3章图形的相似【经典例题】1.(2014湖北咸宁,6,3分)如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E点的坐标为().A .(2,0)B .(23,23)C .(2,2)D .(2,2)【解析】由已知得,E 点的坐标就是点A 坐标的2倍.【答案】C【点评】本题着重考查了位似图形的坐标特点,注意本题是同向位似.2.(2014山东日照,8,3分)在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F, 若EC =2BE ,则FD BF 的值是( ) A.21 B.31 C.41 D.51 解析:如图,由菱形ABCD 得AD ∥BE,,所以△BEF ∽△ADF, 又由EC =2BE ,得AD=BC=3BE ,故FD BF =AD BE =31. 解答:选B .点评:本题主要考查了棱形的性质、相似三角形的判定与性质,正确画出图形是解题的关键.3.(2014·湖南省张家界市·10题·3分)已知ABC △与DEF △相似且面积比为4∶25,则ABC △与DEF △的相似比为 .【分析】相似三角形相似比等于面积比的算术平方根.【解答】ABC △与DEF △的相似比为254=52. 【点评】相似三角形面积比等于相似比的平方.4.(2014山东省滨州,18,4分)如图,锐角三角形ABC 的边AB ,AC 上的高线CE 和BF 相交于点D ,请写出图中的两对相似三角形: (用相似符号连接).【解析】(1)由于∠BDE=∠CDF ∠BED=∠CFD=90°,可得△BDE ∽△CDF 。
由于∠A=∠A ,∠AFB=∠AEC=90°,可得△ABF ∽△ACE 。
解:(1)在△BDE 和△CDF 中∠BDE=∠CDF ∠BED=∠CFD=90°,∴△BDE ∽△CDF .(2)在△ABF 和△ACE 中,∵∠A=∠A ,∠AFB=∠AEC=90°,∴△ABF ∽△ACE .【答案】△BDE ∽△CDF ,△ABF ∽△ACEABC D FE (第6题) yxAO C B D EF【点评】本题考查相似三角形的判定方法.三角形相似的判定方法有,AA ,AAS 、ASA 、SAS 等.5.(2014贵州黔西南州,17,3分)如图5,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,若AD=1,BC=3,△AOD 的面积为3,则△BOC 的面积为___________.【解析】由题意知AD ∥BC ,所以∠OAD=∠OCB ,∠ODA=∠OBC ,所以△OAD ∽△OCB .又AD=1,BC=3,所以△OAD 与△OCB 的相似比为1:3,面积之比为1:9,而△AOD 的面积为3,所以△BOC 的面积为27.【答案】27.【点评】理解相似三角形的相似比与周长比、面积比之间的关系,是解决本题的关键.6.(2014贵州遵义,7,3分)如图,在△ABC 中,EF∥BC,=,S 四边形BCFE =8,则S △ABC =( )A . 9B . 10C . 12D . 13 解析:求出的值,推出△AEF∽△ABC,得出=,把S 四边形BCFE =8代入求出即可. 解:∵=, ∴==,∵EF∥BC,∴△AEF∽△ABC,∴==,∴9S △AE F =S △ABC ,∵S 四边形BCFE =8,∴9(S △ABC ﹣8)=S △ABC ,解得:S △ABC =9.故选A .答案: A点评: 本题考查了相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方,题型较好,但是一道比较容易出错的题目.7.(2014南京市,15,2)如图,在平行四边形ABCD 中,AD=10厘米,CD=6厘米,E 为AD 上一点,且BE=BC,CE=CD ,则DE= 厘米.C A E解析:△BCE 与△CDE 均为等腰三角形,且两个底角∠DEC=∠BCE ,∴△BCE ∽△CDE ,∴CD BC =DECE ,∴ 610=DE6,∴DE=3.6厘米. 答案:3.6.点评:在图形中,利用相似,得出比例式,可以求出线段的长.8.(2014山东日照,21,9分) 如图,在正方形ABCD 中,E 是BC 上的一点,连结AE ,作BF ⊥AE ,垂足为H ,交CD 于F ,作CG ∥AE ,交BF 于G .(1)求证CG =BH ;(2)FC 2=BF·GF ; (3) 22ABFC =GB GF .解析:(1)可证△ABH ≌△BCG ;(2)证△CFG ∽△BFC 可得;(3)先证△B CG ∽△BFC 得BC 2=BF·BG ,结合AB=BC 可得.证明: (1)∵BF ⊥AE ,CG ∥AE , CG ⊥BF ,∴ CG ⊥BF .∵在正方形ABCD 中,∠ABH+∠CBG =90o , ∠CBG+∠BCG =90o,∠BAH+∠ABH =90o ,∴∠BAH=∠CBG, ∠ABH=∠BCG, AB=BC,∴△ABH ≌△BCG ,∴CG=BH ;(2) ∵∠BFC=∠CFG, ∠BCF=∠CGF=90 o ,∴△CFG ∽△BFC ,∴FCGF BF FC =, 即FC 2=BF ·GF ; (3) 由(2)可知,BC 2=BG ·BF ,∵AB=BC ,∴AB 2=BG ·BF , ∴22BC FC =BF BG BF FG ••=BGFGAF即22AB FC =GBGF 点评:本题考查了正方形的性质、全等三角形和相似三角形的判定与性质,解题的关键是找到全等(或相似)三角形,并找到三角形全等(或相似)的条件.9.(2014海南省,12,3分)12、如图3,在△ABC 中,∠ACB=090,CD ⊥AB ,于点D ,则图中相似三角形共有( )C D B AA 、1对B 、2对C 、3对D 、4对【解题思路】由射影定理可知图中相似三角形共有三对:△BDC ~△BCA ~△CDA【答案】C .【点评】本题主要考查相似三角形基本图形中的一种,也是很重要的一种:射影定理。
中考数学总复习《图形的相似》专项提升训练(带有答案)

中考数学总复习《图形的相似》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.两个相似三角形的相似比是1:2,则其对应中线之比是( )A .1:1B .1:2C .1:3D .1:42.如图,在ABC 中2AC =,BC=4,D 为BC 边上的一点,且CAD B ∠=∠.若ADC △的面积为2,则ABD △的面积为( )A .4B .5C .6D .73.若35a b =,则下列各式一定成立的是( )A .53a b =B .35a b =C .65a b a +=D .145a b += 4.如图,在ABC 中DE BC ∥,AD=1,BD=2,AC=6,则CE 的长为( )A .2B .3C .4D .55.如图,在等边ABC 中,点D ,E 分别是BC AC ,上的点72AB CD ==,,60ADE ∠=︒则AE 等于( )A .5B .397C .6D .4176.下列命题正确的是( )A .方程210x x --=没有实数根B .两边成比例及一角对应相等的两个三角形相似C .平分弦的直径垂直于弦D .反比函数的图像不会与坐标轴相交7.已知ABC DEF ∽△△,:1:2AB DE =且ABC 的周长为6,则DEF 的周长为( ) A .3 B .6 C .12 D .248.在平面直角坐标系xOy 中,已知点()()()0,0,1,2,0,3O A B .若OA B ''△与OAB 是原点O 为位似中心的位似图形,且点B 的对应点为()0,9B '-,则点A 的对应点A '坐标为( ) A .()3,6 B .()3,6-- C .()3,6- D .()3,6- 9.如图,D 是ABC 边AB 上一点,添加一个条件后,仍不能使ACD ABC △∽△的是( )A .ACDB ∠=∠ B .ADC ACB ∠=∠ C .AD CD AC BC = D .AC AB AD AC = 10.如图,已知ABC DAC △∽△,37B ∠=︒和116∠=︒D ,则BAD ∠的度数为( )A .37︒B .116︒C .153︒D .143︒二、填空题11.如图,在矩形ABCD 中,8AB =和4BC =,连接AC ,EF AC ⊥于点O ,分别与AB 、CD 交于点E 、F ,连接AF 、CE ,则AF CE +的最小值为 .12.如图,在ABC 中,点D 、E 分别为AB 、AC 的中点,点F 为DE 中点,连接BF 并延长交AC 于点G ,则:AG GE = .13.如图AC ,AD 和CE 是正五边形ABCDE 的对角线,AD 与CE 相交于点F .下列结论:(1)CA 平分BCF ∠;(2)2CF EF =;(3)四边形ABCF 是菱形;(4)2AB AD EF =⋅.其中正确的结论是 .(填写所有正确结论的序号)14.如图AC 、BD 交于点O ,连接AB 和CD ,若要使AOB COD ∽,可以添加条件 .(只需写出一个条件即可)15.如图,在ABC 中4AC AB ==和30C ∠=︒,D 为边BC 上一点,且3CD =,E 为AB 上一点,若30ADE ∠=︒,则BE 的长为 .16.在ABC 中,6810AC BC AB D ===,,,是AB 的中点,P 是CD 上的动点,若点P 到ABC 的一边的距离为2,则CP 的长为 .17.如图,M 是Rt ABC △斜边AB 上的中点,将Rt ABC △绕点B 旋转,使得点C 落在射线CM 上的点D 处,点A 落在点E 处,边ED 的延长线交边AC 于点F .如果3BC =.4AC =那么BE 的长为 ;CF 的长为 .18.如图,在ABC 中,D 是AC 的中点,点F 在BD 上,连接AF 并延长交BC 于点E ,若:3:1BF FD =,8BC =则CE 的长为 .三、解答题19.已知O 为ABCD 两对角线的交点,直线l 过顶点D ,且绕点D 顺时针旋转,过点A ,C 分别作直线l 的垂线,垂足为点E ,F .(1)如图1,若直线l 过点B ,求证:OE OF =;(2)如图2,若EFO FCA ∠=∠,2FC AE =求CFO ∠的度数;(3)如图3,若ABCD 为菱形4AE =,6AO =和8EO =直接写出CF 的长. 20.如图,在ABC 中2BAC C ∠=∠,利用尺规作图法在BC 上求作一点D ,使得ABDCBA .(不写作法,保留作图痕迹)21.如图,在Rt ABC △中90ACB ∠=︒,D 是AB 的中点,连接CD ,过点A 作AE CD ⊥于点E ,过点E 作EF CB ∥交BD 于点F .(1)求证:ACE BAC ∽△△;(2)若5AC =,5AB =求CE 及EF 的长.22.如图,在直角梯形OABC 中BC AO ∥,=90AOC ︒∠点A 、B 的坐标分别为()5,0、()2,6点D 为AB 上一点,且2BD AD =.双曲线()0k y x x=>经过点D ,交BC 于点E .求点E 的坐标.23.如图,点P 是菱形ABCD 的对角线BD 上一点,连结CP 并延长,交AD 于E ,交BA 的延长线点F .求证:APE FPA △∽△.24.如图1,菱形AGBD 边长为3,延长DB 至点C ,使得5BC =.连接AB ,AB AD =点E ,F 分别在线段AD 和AB 上,且满足DE AF =,连接BE ,DF 交于点O ,过点B 作BM BE ⊥,交DF 延长线于点M ,连接CM .图1 图2(1)求OB 与BM 之间的数量关系;(2)当DMB DCM △∽△时,求DO 的长度;(3)如图2,过点M 作MN CD ⊥交CD 于N ,求MN MC的最大值. 1.B2.C3.A4.C5.B6.D7.C8.B9.C10.C11.1012.2:113.①①①14.A C ∠=∠(答案不唯一)15.9416.103或52或3512 17. 59418.16519.(2)60CFO ∠=︒(3)CF 的长为7 21.(2)1CE = 655EF =. 22.4,63⎛⎫ ⎪⎝⎭/11,63⎛⎫ ⎪⎝⎭ 24.(1)3BM OB =(2)1OD =(3)1014101911316206517MN CN ++=。
中考数学复习----《相似三角形的性质》知识点总结与专项练习题(含答案)

中考数学复习----《相似三角形的性质》知识点总结与专项练习题(含答案) 知识点总结1. 相似图形的概念:把形状相同的图形称为相似图形。
2. 相似三角形的概念:如果两个三角形的对应边的比相等,对应角相等,那么这两个三角形相似。
3. 相似三角形的性质:①相似三角形的对应角相等,对应边的比相等。
对应边的比叫做相似比。
②相似三角形的周长比等于相似比,面积比等于相似比的平方。
相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比。
练习题1、(2022•兰州)已知△ABC ∽△DEF ,21=DE AB ,若BC =2,则EF =( ) A .4 B .6 C .8 D .16【分析】利用相似三角形的性质可得,代入即可得出EF 的长.【解答】解:∵△ABC ∽△DEF ,∴, ∵=,BC =2, ∴, ∴EF =4,故选:A .2、(2022•贺州)如图,在△ABC 中,DE ∥BC ,DE =2,BC =5,则S △ADE :S △ABC 的值是( )A .253B .254C .52D .53 【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵DE ∥BC ,∴S △ADE ∽S △ABC ,∵DE =2,BC =5,∴S △ADE :S △ABC 的值为, 故选:B .3、(2022•甘肃)若△ABC ∽△DEF ,BC =6,EF =4,则DF AC =( ) A .94 B .49 C .32 D .23 【分析】根据△ABC ∽△DEF ,可以得到,然后根据BC =6,EF =4,即可得到的值.【解答】解:∵△ABC ∽△DEF ,∴, ∵BC =6,EF =4,∴=,故选:D .4、(2022•绍兴)将一张以AB 为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD ,其中∠A =90°,AB =9,BC =7,CD =6,AD =2,则剪掉的两个直角三角形的斜边长不可能是( )A .225B .445C .10D .435 【分析】根据题意,画出相应的图形,然后利用相似三角形的性质和分类讨论的方法,求出剪掉的两个直角三角形的斜边长,然后即可判断哪个选项符合题意.【解答】解:如右图1所示,由已知可得,△DFE ∽△ECB ,则,设DF=x,CE=y,则,解得,∴DE=CD+CE=6+=,故选项B不符合题意;EB=DF+AD=+2=,故选项D不符合题意;如图2所示,由已知可得,△DCF∽△FEB,则,设FC=m,FD=n,则,解得,∴FD=10,故选项C不符合题意;BF=FC+BC=8+7=15;如图3所示:此时两个直角三角形的斜边长为6和7;故选:A.5、(2022•连云港)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是()A.54B.36C.27D.21【分析】(1)方法一:设2对应的边是x,3对应的边是y,根据相似三角形的对应边的比相等列等式,解出即可;方式二:根据相似三角形的周长的比等于相似比,列出等式计算.【解答】解:方法一:设2对应的边是x,3对应的边是y,∵△ABC∽△DEF,∴==,∴x=6,y=9,∴△DEF的周长是27;方式二:∵△ABC∽△DEF,∴=,∴=,∴C△DEF=27;故选:C.。
初中数学图形的相似知识点总复习附答案

初中数学图形的相似知识点总复习附答案一、选择题1.如图,点E 为ABC ∆的内心,过点E 作MN BC P 交AB 于点M ,交AC 于点N ,若7AB =,5AC =,6BC =,则MN 的长为( )A .3.5B .4C .5D .5.5【答案】B 【解析】 【分析】连接EB 、EC ,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME ,同理可得NC=NE ,接着证明△AMN ∽△ABC ,所以767MN BM -=,则BM=7-76MN①,同理可得CN=5-56MN②,把两式相加得到MN 的方程,然后解方程即可. 【详解】连接EB 、EC ,如图,∵点E 为△ABC 的内心,∴EB 平分∠ABC ,EC 平分∠ACB , ∴∠1=∠2,∵MN ∥BC , ∴∠2=∠3, ∴∠1=∠3, ∴BM=ME , 同理可得NC=NE , ∵MN ∥BC , ∴△AMN ∽△ABC , ∴MN AM BC AB = ,即767MN BM -=,则BM=7-76MN①, 同理可得CN=5-56MN②,①+②得MN=12-2MN , ∴MN=4. 故选:B . 【点睛】此题考查三角形的内切圆与内心,相似三角形的判定与性质,解题关键在于掌握与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.2.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x=-、2y x =的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变【答案】D 【解析】 【分析】如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a-),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠OAB=22为定值,即可解决问题. 【详解】解:分别过B 和A 作BE ⊥x 轴于点E ,AF ⊥x 轴于点F , 则△BEO ∽△OFA , ∴BE OEOF AF=, 设点B 为(a ,1a-),A 为(b ,2b ),则OE=-a ,EB=1a-,OF=b ,AF=2b ,可代入比例式求得222a b =,即222a b =,根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b +=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b bb++==++=222214()24b b b b ++=22∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变. 故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.3.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上.若正方形ABCD 的边长为2,则点F 坐标为( )A .(8,6)B .(9,6)C .19,62⎛⎫ ⎪⎝⎭D .(10,6)【答案】B 【解析】 【分析】直接利用位似图形的性质结合相似比得出EF 的长,进而得出△OBC ∽△OEF ,进而得出EO 的长,即可得出答案. 【详解】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴13 BC OBEF EO==,∵BC=2,∴EF=BE=6,∵BC∥EF,∴△OBC∽△OEF,∴136BOBO=+,解得:OB=3,∴EO=9,∴F点坐标为:(9,6),故选:B.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出OB的长是解题关键.4.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC 上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P与点B 之间的距离为()A.1 B.54C.1或 3 D.54或5【答案】D【解析】【分析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得12BD BE DEAB BC AC===,可求BE,DE的长,由勾股定理可求PB的长.【详解】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴AB=225AC BC+=∵点D是AB的中点,∴BD=12BA=52∵B1D⊥BC,∠C=90°∴B1D∥AC∴12 BD BE DEAB BC AC===∴BE=EC=12BC=2,DE=12AC=32∵折叠∴B1D=BD=52,B1P=BP∴B1E=B1D-DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2-BP)2,∴BP=5 4如图,若点B1在BC右侧,∵B1E=DE+B1D=32+52,∴B1E=4在Rt△EB1P中,B1P2=B1E2+EP2,∴BP2=16+(BP-2)2,∴BP=5故选:D.【点睛】本题考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.5.如图Rt ABC V 中,90ABC ∠=︒,4AB =,3BC =,D 为BC 上一动点,DE BC ⊥,当BD CE =时,BE 的长为( ).A .52B .125C 515D 341【答案】D 【解析】 【分析】利用90ABC ∠=︒,DE BC ⊥得到相似三角形,利用相似三角形的性质求解,,BD DE 再利用勾股定理计算即可. 【详解】解:90,ABC ∠=︒Q DE BC ⊥,//,DE BA ∴ ,CED CAB ∴∆∆:,CE CD EDCA CB AB∴== 90,4,3,ABC AB BC ∠=︒==Q 5,AC ∴=设,BD x = Q BD CE =,,3,BD CE x CD x ∴===-3,534x x ED -∴== 3155,x x ∴=- 15,8x ∴=158,54ED ∴=3,2ED ∴=Q DE BC ⊥,2222153341()().828BE DB DE ∴=+=+=故选D . 【点睛】本题考查的是三角形相似的判定与性质,勾股定理的计算求解,掌握相关知识点是解题关键.6.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,2CD =,1BD =,则AD 的长是( )A .1.B 2C .2D .4【答案】D 【解析】 【分析】由在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,根据同角的余角相等,可得∠ACD=∠B ,又由∠CDB=∠ACB=90°,可证得△ACD ∽△CBD ,然后利用相似三角形的对应边成比例,即可求得答案. 【详解】∵在Rt △ABC 中,∠ACB=90°,CD ⊥AB , ∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°, ∴∠ACD=∠B , ∴△ACD ∽△CBD , ∴=AD CDCD BD, ∵CD=2,BD=1,∴2=21 AD,∴AD=4.故选D.【点睛】此题考查相似三角形的判定与性质,解题关键在于证得△ACD∽△CBD.7.在平面直角坐标系中,把△ABC的各顶点的横坐标都除以14,纵坐标都乘13,得到△DEF,把△DEF与△ABC相比,下列说法中正确的是()A.横向扩大为原来的4倍,纵向缩小为原来的1 3B.横向缩小为原来的14,纵向扩大为原来的3倍C.△DEF的面积为△ABC面积的12倍D.△DEF的面积为△ABC面积的1 12【答案】A 【解析】【分析】【详解】解:△DEF与△ABC相比,横向扩大为原来的4倍,纵向缩小为原来的13;△DEF的面积为△ABC面积的169,故选A.8.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18)D .(―1,2)或(1,―2) 【答案】D 【解析】 【分析】 【详解】试题分析:方法一:∵△ABO 和△A ′B ′O 关于原点位似,∴△ ABO ∽△A ′B ′O 且OA'OA =13.∴A E AD '=0E 0D =13.∴A ′E =13AD =2,OE =13OD =1.∴A ′(-1,2).同理可得A′′(1,―2).方法二:∵点A (―3,6)且相似比为13,∴点A 的对应点A′的坐标是(―3×13,6×13),∴A ′(-1,2). ∵点A′′和点A′(-1,2)关于原点O 对称,∴A ′′(1,―2). 故答案选D.考点:位似变换.9.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( ) A .2∶3 B .4∶9C 23D .3∶2【答案】B 【解析】 【分析】根据两相似三角形的面积比等于相似比的平方,所以224()39ABC DEF S S ==V V . 【详解】因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,所以S△ABC:S△DEF=(23)2=49,故选B.【点睛】本题考查了相似三角形的性质,解题的关键是掌握:两个相似三角形面积比等于相似比的平方.10.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【答案】C 【解析】【分析】直接利用相似三角形的判定与性质得出13BCOAODSS=VV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°3∴13BCOAODSS=VV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S△AOD=2是解题关键.11.把Rt ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A.扩大为原来的3倍B.缩小为原来的13C.扩大为原来的9倍D.不变【答案】D【解析】【分析】根据相似三角形的性质解答.【详解】三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A的大小不变,∴锐角A的余弦值不变,故选:D.【点睛】此题考查相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.12.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12 CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD=3 2【答案】D 【解析】【分析】由AE=12AD=12BC,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【详解】解:A、∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFFC,∵AE=12AD=12BC,∴AFFC=12,故A正确,不符合题意;B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意.D、设AD=a,AB=b由△BAE∽△ADC,有ba=2a.∵tan∠CAD=CDAD=ba=22,故D错误,符合题意.故选:D.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.13.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=48 3x-+.故选C.14.如图,E是矩形ABCD中AD边的中点,BE交AC于点,F ABFV的面积为2,则四边形CDEF的面积为()A.4B.5C .6D .7【答案】B【解析】【分析】设AEF S x =△,根据相似三角形的面积比等于相似比的平方,得出4BCF S x =V ,求出x 即可解答.【详解】解:∵AD ∥BC ,E 是矩形ABCD 中AD 边的中点,∴AEF ~CBF V V ,设AEF S x =△,那么4BCF S x =V ,∵2ABF S =V , ∴()1x 2422x +=+, 解得:x 1=, ∴325CDEF S x =+=四边形,故选:B.【点睛】此题主要考查相似三角形的相似比与面积比之间的关系,灵活运用关系是解题关键.15.如图,在正方形ABCD 中,E 为AB 的中点,G ,F 分别为AD 、BC 边上的点,若AG=1,BF=2,∠GEF=90°,则GF 的长为( )A .2B .3C .4D .5【答案】B【解析】 ∵四边形ABCD 是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB ,∠AEG=∠EFB ,∴△AEG ∽△BFE ,∴AE AG BF BE=, 又∵AE=BE , ∴AE 2=AG•BF=2,∴AE=2(舍负),∴GF 2=GE 2+EF 2=AG 2+AE 2+BE 2+BF 2=1+2+2+4=9,∴GF 的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG ∽△BFE .16.如图,正方形ABDC 中,AB =6,E 在CD 上,DE =2,将△ADE 沿AE 折叠至△AFE ,延长EF 交BC 于G ,连AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG ∥CF ;④S ∆FCG =3,其中正确的有( ).A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 利用折叠性质和HL 定理证明Rt △ABG ≌Rt △AFG ,从而判断①;设BG=FG=x ,则CG=6-x ,GE=x+2,根据勾股定理列方程求解,从而判断②;由②求得△FGC 为等腰三角形,由此推出1802FGC FCG -∠∠=o ,由①可得1802FGC AGB -∠∠=o ,从而判断③;过点F 作FM ⊥CE ,用平行线分线段成比例定理求得FM 的长,然后求得△ECF 和△EGC 的面积,从而求出△FCG 的面积,判断④.【详解】解:在正方形ABCD 中,由折叠性质可知DE=EF=2,AF=AD=AB=BC=CD=6,∠B=∠D=∠AFG=∠BCD=90°又∵AG=AG∴Rt △ABG ≌Rt △AFG ,故①正确;由Rt △ABG ≌Rt △AFG∴设BG=FG=x ,则CG=6-x ,GE=GF+EF=x+2,CE=CD-DE=4∴在Rt △EGC 中,222(6)4(2)x x -+=+解得:x=3∴BG=3,CG=6-3=3∴BG=CG,故②正确;又BG=CG,∴1802FGC FCG-∠∠=o又∵Rt△ABG≌Rt△AFG∴1802FGC AGB-∠∠=o∴∠FCG=∠AGB∴AG∥CF,故③正确;过点F作FM⊥CE,∴FM∥CG∴△EFM∽△EGC∴FM EFGC EG=即235FM=解得65 FM=∴S∆FCG=116344 3.6225ECG ECFS S-=⨯⨯-⨯⨯=V V,故④错误正确的共3个故选:C.【点睛】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.17.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A .AD AE BD EC= B .AF DF AE BE = C .AE AF EC FE = D .DE AF BC FE = 【答案】D【解析】【分析】 由平行线分线段成比例和相似三角形的性质进行判断. 【详解】∵DE //BC ,∴AD AE BD EC= ,故A 正确; ∵DF //BE ,∴△ADF ∽△ABF , ∴AF DF AE BE =,故B 正确; ∵DF //BE ,∴ AD AF BD FE =,∵AD AE BD EC= ,∴AE AF EC FE =,故C 正确; ∵DE //BC ,∴△ADE ∽△ABC ,∴DE AD BC AB =,∵DF //BE ,∴AF AD AE AB =,∴DE AF BC AE =,故D 错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.18.若△ABC 的每条边长增加各自的50%得△A 'B 'C ',若△ABC 的面积为4,则△A 'B 'C '的面积是( )A .9B .6C .5D .2 【答案】A【解析】【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,根据相似三角形的性质即可得到结论.【详解】解:∵△ABC 的每条边长增加各自的50%得△A ′B ′C ′,∴△ABC 与△A ′B ′C ′的三边对应成比例,∴△ABC ∽△A ′B ′C ′, ∴214()150%9ABC A B C S S '''==+V V , ∵△ABC 的面积为4,则△A'B'C'的面积是9.故选:A .【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定是解题的关键.19.如图,在ABC ∆中,,D E 分别是边,AB AC 的中点,ADE ∆和四边形BCED 的面积分别记为12,S S,那么12S S 的值为( )A .12B .14C .13D .23【答案】C【解析】【分析】根据已知可得到△ADE ∽△ABC ,从而可求得其面积比,则不难求得12S S 的值. 【详解】∵,D E 分别是边,AB AC 的中点,∴DE ∥BC ,∴△ADE ∽△ABC ,∴DE :BC=1:2,所以它们的面积比是1:4,所以1211=413S S =-, 故选C .【点睛】本题考查了三角形的中位线定理和相似三角形的性质:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.20.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】根据题意得,▱ABCD∽▱OECF,且AO=OC=12AC,故四边形OECF的面积是▱ABCD面积的14【详解】解:如图,由平移的性质得,▱ABCD∽▱OECF,且AO=OC=12 AC故四边形OECF的面积是▱ABCD面积1 4即图中阴影部分的面积为4cm2.故选:C【点睛】此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是应用相似多边形的性质解答问题.。
九年级数学下册第二十七章相似易错知识点总结(带答案)

九年级数学下册第二十七章相似易错知识点总结单选题1、如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法正确的有()个①S△ABC:S△A′B′C′=1:2②AB:A′B′=1:2③点A,O,A′三点在同一条直线上④BC∥B′C′A.1B.2C.3D.4答案:C分析:根据位似图形的概念和相似三角形的性质判断即可.解:以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,则△ABC∽△A′B′C′,且相似比为1:2,∴S△ABC:S△A′B′C′=1:4,故①选项说法错误;∴AB:A′B′=1:2,点A,O,A′三点在同一条直线上,BC∥B′C′,②③④说法正确;故选C.小提示:本题考查的是位似变换的概念和性质、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.2、如图,在△ABC中,点D、E分别在边AB、AC上,下列条件不能满足△ADE∽△ACB的条件是()A.∠AED=∠B B.ADAC =AEABC.AD·BC= DE·AC D.DE//BC答案:C分析:根据相似三角形的判定定理去判断分析即可.∵∠AED=∠B,∠A=∠A,∴△ADE∽△ACB,故A不符合题意;∵ADAC =AEAB,∠A=∠A,∴△ADE∽△ACB,故B不符合题意;∵AD·BC= DE·AC,无夹角相等,∴不能判定△ADE∽△ACB,故C符合题意;∵DE//BC,∴△ADE∽△ACB,故D不符合题意;故选C.小提示:本题考查了三角形相似的判定条件,熟练掌握判定三角形相似的基本方法是解题的关键.3、如图所示,网格中相似的两个三角形是()A.①与②B.①与③C.③与④D.②与③答案:B分析:分别根据网格的特点求得各三角形三边的长,根据三边对应成比例判断两三角形相似即可.解:根据网格的特点,①号三角形的三边长分别为:√2,2,√10,②号三角形的三边长分别为:√2,√5,3,③号三角形的三边长分别为:2,2√2,2√5,④号三角形的三边长分别为:√2,3,√17,∵√22=2√2=√102√5√22,∴①与③相似,故B选项正确,符合题意;其他选项不正确故选:B.小提示:本题考查了网格中判断相似三角形,分别求得各三角形的边长是解题的关键.4、如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是( )A.17.5m B.17m C.16.5m D.18m答案:A分析:先求得AC,再说明△ABE∽△ACD,最后根据相似三角形的性质列方程解答即可.解:∵AB=1.2m,BC=12.8m∴AC=1.2m+12.8m=14m∵标杆BE 和建筑物CD 均垂直于地面∴BE//CD∴△ABE ∽△ACD∴AB BE =AC CD ,即1.21.5=14CD ,解得CD=17.5m . 故答案为A .小提示:本题考查了相似三角形的应用,正确判定相似三角形并利用相似三角形的性质列方程计算是解答本题的关键.5、线段AB 的长为2,点C 是线段AB 的黄金分割点,则线段AC 的长可能是( )A .√5+1B .2﹣√5C .3﹣√5D .√5﹣2答案:C分析:根据黄金分割点的定义,知AC 可能是较长线段,也可能是较短线段,分别求出即可.解:分两种情况讨论(1)如图,∵点C 是线段AB 的黄金分割点,AB =2,∴AC =√5−12AB =√5−12×2=√5﹣1, 或如图,AC =2﹣(√5﹣1)=3﹣√5,故选:C .小提示:本题主要考查了黄金分割的定义,熟记黄金分割的比值是解题的关键.6、如图,将ΔABC 沿BC 边上的中线AD 平移到ΔA ′B ′C ′的位置.已知ΔABC 的面积为16,阴影部分三角形的面积9.若AA ′=1,则A ′D 等于( )A.2B.3C.4D.32答案:B分析:由S△ABC=16、S△A′EF=9且AD为BC边的中线知SΔA′DE=12SΔA′EF=92,SΔABD=12SΔABC=8,根据△DA′E∽△DAB知(A′DAD )2=SΔA′DESΔABD,据此求解可得.∵SΔABC=16、SΔA′EF=9,且AD为BC边的中线,∴SΔA′DE=12SΔA′EF=92,SΔABD=12SΔABC=8,∵将ΔABC沿BC边上的中线AD平移得到ΔA′B′C′,∴A′E//AB,∴ΔDA′E∼ΔDAB,则(A′DAD )2=SΔA′DESΔABD,即(A′DA′D+1)2=298=916,解得A′D=3或A′D=−37(舍),故选B.小提示:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.7、如图,在等腰△ABC中,∠ABC=∠ACB=α,BC=12,点D是边AB上一点,且BD=4,点P是边BC上一动点,作∠DPE=α,射线PE交边AC于点E,当CE=9时,则满足条件的P点的个数是()A.1B.2C.3D.以上都有可能答案:A分析:由已知得∠ABC=∠ACB=α,再证明∠EPC=∠PDB,则可判断△PDB∽△EPC,利用相似比得到BD:PC =PB:CE,设PB=x,则PC=10﹣x,CE=9时,所以x2﹣12x+36=0,根据判别式的意义得到Δ=0,即原方程只有一个实数根即可选出答案.解:∵△ABC为等腰三角形,∴∠ABC=∠ACB=α,∵∠DPC=∠B+∠PDB,即∠DPE+∠EPC=∠B+∠PDB,而∠DPE=α,∴∠EPC=∠PDB,而∠ABC=∠ACB,∴△PDB∽△EPC,∴BDPC =PBCE,设PB=x,则PC=12﹣x,当CE=9时,∴412−x =x9,∴x2﹣12x+36=0,∵Δ=(﹣12)2﹣4×36=0,原方程只有一个实数根,∴点P有且只有一个,故选A.小提示:本题主要考查了三角形外角的性质,等腰三角形的性质,相似三角形的性质与判定,一元二次方程根的判别式,解题的关键在于能够熟练掌握相关知识进行求解.8、如图,直线AB ∥CD ∥EF ,若AC =3,CE =4,则BD BF 的值是( )A .34B .43C .37D .47 答案:C分析:由平行线分线段成比例直接得到答案.解:∵AB ∥CD ∥EF∴BD BF =AC AE ∵AC =3,CE =4∴BD BF =37, 故选C .小提示:本题考查的是平行线分线段成比例,解题的关键在于能够熟练掌握平行线分线段成比例.9、神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的( )A .平移B .旋转C .轴对称D .黄金分割答案:D分析:根据黄金分割的定义即可求解.解:动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割.故选:D小提示:本题考查了黄金分割的定义,黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小,约等于0.618,这个比例被公认为是最能引起美感的比例,因此被称部分与较大部分的比值,其比值为√5−12为黄金分割.熟知黄金分割的定义是解题关键.10、生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感,若图中b为2米,则a约为()A.1.24米B.1.38米C.1.42米D.1.62米答案:A分析:根据a:b≈0.618,且b=2即可求解.解:由题意可知,a:b≈0.618,代入b=2,∴a≈2×0.618=1.236≈1.24.所以答案是:A小提示:本题考查了黄金分割比的定义,根据题中所给信息即可求解,本题属于基础题.填空题11、如图,已知△ABC与△DEF位似,位似中心为O,且△ABC的面积与△DEF的面积之比是16:9,则AO:OD=_____.答案:4:3##43分析:根据位似图形具有相似三角形的性质即可得出结果.解:∵△ABC与△DEF位似,位似中心为O,且△ABC的面积与△DEF的面积之比是16:9,∴AO:OD=4:3,所以答案是:4:3.小提示:本题考查了位似变换,正确掌握位似变换的性质是解题的关键.12、如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件_________,使△ADE∽△ABC.答案:∠ADE=∠B(答案不唯一).分析:已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定.解∶∵∠A=∠A,∴根据两角相等的两个三角形相似,可添加条件∠ADE=∠B或∠AED=∠C证△ADE∽△ABC相似;根据两边对应成比例且夹角相等,可添加条件ADAB =AEAC证△ADE∽△ABC相似.故答案为∶∠ADE=∠B(答案不唯一).小提示:此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法.13、△AOB三个顶点的坐标分别为A(5,0),O(0,0),B(3,6),以原点O为位似中心,相似比为23,将△AOB缩小,则点B的对应点B′的坐标是________.答案:(2,4)或(-2,-4)##(-2,-4)或(2,4).分析:根据位似变换的性质解答即可.解:∵△AOB 顶点B 的坐标为(3,6),以原点O 为位似中心,相似比为23,将△AOB 缩小, ∴点B 的对应点B ′的坐标为(3×23,6×23)或(3×(-23),6×(-23)),即(2,4)或(-2,-4), 所以答案是:(2,4)或(-2,-4).小提示:本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .14、如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =1,CD =3,则EF 的长为_______.答案:34 分析:易证△DEF ∽△DAB ,△BEF ∽△BCD ,根据相似三角形的性质可得EF AB =DF DB ,EF CD =BF BD ,从而可得EF AB +EF CD =BF BD+DF BD =1,然后把AB =1,CD =3代入即可求出EF 的值. 解:∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF ,∴△DEF ∽△DAB ,△BEF ∽△BCD ,∴EF AB =DF DB ,EF CD =BF BD , ∴EF AB +EF CD =BF BD +DF BD =1,∵AB =1,CD =3,∴EF 1+EF 3=1, ∴EF =34,所以答案是:34.小提示:本题考查相似三角形的判定与性质,解决本题的关键是掌握相似三角形对应边成比例.15、如图,D是ΔABC边AB延长线上一点,请添加一个条件_______,使ΔACD∽ΔABC.答案:AC=AB•AD(答案不唯一)分析:根据相似三角形的判定添加适当的条件即可.解:添加:AC=AB•AD∵AC=AB•AD∴ACAB =ADAC∵∠A=∠A∴ΔACD∽ΔABC.所以答案是:AC=AB•AD(答案不唯一).小提示:本题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.解答题16、如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的△ABC 和格点0.(1)以点O为位似中心,将△ABC放大2倍得到ΔA1B1C1,在网格中画出ΔA1B1C1;(2)将△ABC绕点0逆时针旋转90°得ΔA2B2C2,画出ΔA2B2C2;答案:(1)作图见解析(2)作图见解析分析:(1)利用相似变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)利用旋转变换的性质分别作出A,B,C的对应点A2,B2,C2即可.(1)解:如图,△A1B1C1即为所求;(2)解:如图,△A2B2C2即为所求.小提示:本题考查作图﹣旋转变换,相似变换等知识,解题的关键是掌握旋转变换,相似变换的性质,属于中考常考题型.17、已知:a:b:c=2:3:5.(1)求代数式3a−b+c2a+3b−c的值;(2)如果3a−b+c=24,求a,b,c的值.答案:(1)1;(2)a=6,b=9,c=15分析:(1)设a=2k,b=3k,c=5k(k≠0),代入代数式3a−b+c2a+3b−c,即可求出答案;(2)把a、b、c的值代入,求出即可.∵a:b:c=2:3:5∴设a=2k,b=3k,c=5k(k≠0),(1)3a−b+c2a+3b−c =6k−3k+5k4k+9k−5k=8k8k=1;(2)∵3a−b+c=24∴6k-3k+5k=24,∴k=3,∴a=2×3=6,b=3×3=9,c=5×3=15.小提示:本题考查了比例的性质的应用,主要考查学生的计算能力.18、若xa−b =yb−c=zc−a,求x+y+z的值.答案:0分析:设xa−b =yb−c=zc−a=k,则x=k(a−b),y=k(b−c),z=k(c−a),然后计算即可得到答案.解:∵xa−b =yb−c=zc−a,设xa−b =yb−c=zc−a=k,∴x=k(a−b),y=k(b−c),z=k(c−a),∴x+y+z=k(a−b)+k(b−c)+k(c−a)=ka−kb+kb−kc+kc−ka=0;小提示:本题考查了比例的性质,求代数式的值,解题的关键是熟练掌握比例的性质进行解题.。
(完整word版)九年级数学相似三角形知识点及习题

相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。
九年级数学下册第二十七章相似知识集锦(带答案)

九年级数学下册第二十七章相似知识集锦单选题1、如图,△ABC与△A1B1C1位似,位似中心是点O,若OA:OA1=1:2,则△ABC与△A1B1C1的周长比是()A.1:2B.1:3C.1:4D.1:√2答案:A分析:根据位似图形的概念得到ΔABC∽△A1B1C1,AC//A1C1,进而得出ΔAOC∽△A1OC1,根据相似三角形的性质解答即可.解:∵ΔABC与△A1B1C1位似,∴ΔABC∽△A1B1C1,AC//A1C1,∴ΔAOC∽△A1OC1,∴ACA′C′=OAOA′=12,∴ΔABC与△A1B1C1的周长比为1:2,故选:A.小提示:本题考查的是位似图形的概念、相似三角形的性质,掌握位似图形是相似图形、位似图形的对应边平行是解题的关键.2、一个四边形的各边之比为1∶2∶3∶4,和它相似的另一个四边形的最小边长为5cm,则它的最大边长为()A.10cm B.15cm C.20cm D.25cm答案:C分析:设它的最大边长为x cm,根据相似图形的性质求解即可得到答案解:设它的最大边长为x cm,∵两个四边形相似,∴15=4x,解得x=20,即该四边形的最大边长为20cm.故选C.小提示:本题考查了相似多边形的性质,牢记“相似多边形对应边的比相等”是解题的关键.3、如图,小明周末晚上陪父母在马路上散步,他由灯下A处前进4米到达B处时,测得影子BC长为1米,已知小明身高1.6米,他若继续往前走4米到达D处,此时影子DE长为()A.1米B.2米C.3米D.4米答案:B分析:利用相似三角形的性质即可求得DE的长.如图,∵FB∥PA,GD∥PA,∴△CFB∽△CPA,△EGD∽△EPA.∴FBPA =BCAC,GDPA=DEAE.∵FB=GD=1.6米,AB=BD=4米,BC=1米,∴AC=AB+BC=4+1=5(米),AE=AB+BD+DE=4+4+DE=(8+DE)米,∴BCAC =DEAE=15.∴AE=5DE,即8+DE=5DE,解得:DE =2.即此时影长为2米.故选:B .小提示:本题考查了相似三角形的实际应用,掌握相似三角形的判定与性质是解题的关键.4、如图,在平行四边形ABCD 中,点E 是AD 上一点,AE =2ED ,连接BE 交AC 于点G ,延长BE 交CD 的延长线于点F ,则BG GF 的值为( )A .23B .12C .13D .34 答案:A分析:先根据平行四边形的性质得到AB ∥CD ,则可判断△ABG ∽△CFG ,△ABE ∽△DFE ,于是根据相似三角形的性质和AE =2ED 即可得结果.解:∵四边形ABCD 为平行四边形,∴AB ∥CD ,∴△ABG ∽△CFG ,∴BG GF =AB CF ∵△ABE ∽△DFE ,∴AE DE =AB DF ,∵AE=2ED,∴AB=2DF,∴ABCF =23,∴BGGF =23.故选:A.小提示:本题考查了平行四边形的性质,相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质进行解题.5、如图,将一张矩形纸片沿两长边中点所在的直线对折,如果得到的两个矩形都与原矩形相似,则原矩形长与宽的比是()A.2:1B.1:2C.3:2D.√2:1答案:D分析:表示出对折后的矩形的长和宽,再根据相似矩形对应边成比例列出比例式,然后求解即可.解:设原来矩形的长为x,宽为y,如图,则对折后的矩形的长为y,宽为x2,∵得到的两个矩形都和原矩形相似,∴x:y=y:x2,解得x:y=√2:1.故选:D.小提示:本题主要利用相似多边形对应边成比例的性质,需要熟练掌握.6、如图,△ABC中,DE//FG//BC,且AD:DF:FB=1:1:1,则△ABC被分成的三部分面积之比S1:S2:S3=()A.1∶1∶1B.1∶2∶3C.1∶3∶5D.1:√2:√3答案:C分析:由已知证得△ADE∽△AFG∽△ABC,其相似比分别是1:2:3,则面积的比是1:4:9,可求S1:S2:S3=1:3:5.解:根据DE//FG//BC,得到△ADE∽△AFG∽△ABC,∵AD:DF:FB=1:1:1,∴AD:AF:AB=1:2:3,即△ADE、△AFG、△ABC的相似比是1∶2∶3,∴△ADE、△AFG、△ABC的面积比是1∶4∶9,设△ADE的面积是a,则△AFG的面积是4a,△ABC的面积是9a,则S1=a,S2=4a−a=3a,S3=9a−4a=5a,∴S1:S2:S3=1:3:5.故选:C小提示:本题考查了相似三角形面积比与相似比的关系,熟知相似三角形面积比等于相似比的平方,还要熟练掌握比例的性质.7、如图,在△APM的边AP上任取两点B,C,过B作AM的平行线交PM于N,过N作MC的平行线交AP于D.若PAPB =43,则PCPD的值为().A .32B .43C .2D .3答案:B分析:根据AM ∥BN ,可以得到PM PN =PA PB =43,再根据MC ∥ND ,即可得到PC PD =PM PN =43. 解:∵AM ∥BN ,∴PM PN =PA PB =43, 又∵MC ∥ND ,∴PC PD =PM PN =43, 故选B.小提示:本题主要考查了平行线分线段成比例定理,解题的关键在于能够熟练掌握平行线分线段成比例定理.8、在比例尺为1∶100000的地图上,甲、乙两地图距是2cm ,它的实际长度约为( )A .100kmB .2000mC .10kmD .20km答案:B分析:根据实际距离=图上距离÷比例尺列出算式,再进行计算即可.解:2÷1100000=200000(cm )=2(km ),答:甲、乙两地的实际距离是2000m .故选:B .小提示:此题考查了比例线段,掌握图上距离、实际距离和比例尺的关系是解题的关键,注意单位的换算.9、如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC的周长为4,则△DEF的周长是()A.4B.6C.9D.16答案:B分析:根据周长之比等于位似比计算即可.设△DEF的周长是x,∵△ABC与△DEF位似,相似比为2:3,△ABC的周长为4,∴4:x=2:3,解得:x=6,故选:B.小提示:本题考查了位似的性质,熟练掌握位似图形的周长之比等于位似比是解题的关键.10、在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.答案:C分析:要使△ACD∽△CBD,则∠ADC=∠CDB,即可推出∠ADC=∠CDB=90°,则CD是AB边的垂线即可,由此求解即可.解:当CD是AB的垂线时,△ACD∽△CBD.∵CD⊥AB,∴∠CDA=∠BDC=90°,∵∠ACB=90°,∴∠A+∠ACD=∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD.根据作图痕迹可知,A选项中,CD是∠ACB的角平分线,不符合题意;B选项中,CD不与AB垂直,不符合题意;C选项中,CD是AB的垂线,符合题意;D选项中,CD不与AB垂直,不符合题意;故选C.小提示:本题主要考查了相似三角形的判定,作垂线,解题的关键在于能够熟练掌握相似三角形的判定条件.填空题11、如图,在平面直角坐标系中,以原点O为位似中心,在y轴的同侧作等边三角形A′B′C′,使它与△ABC位似,且相似比为3:1.若四边形OA′C′B′是边长为6的菱形,则点A的坐标为______.答案:(√3,1)分析:根据菱形的性质、等边三角形的性质求出A′(3√3,3),通过相似比即可得A的坐标.解:若四边形OA′C′B′是边长为6的菱形,.∵ΔA′B′C′是等边三角形∴∠A′OC′=30°则A′(3√3,3)∵ΔA′B′C′∼ΔABC,且相似比为3:1∴A(√3,1)所以答案是:(√3,1)小提示:本题主要考查菱形的性质、等边三角形的性质、位似图形的性质,掌握相关知识并灵活应用是解题的关键.12、如图,△ABC沿AC平到△A'B'C',A'B'交BC于点D,若AC=6,D是BC的中点,则C'C=_____.答案:3分析:证明AA′=CA′=3,即可得出结论;由平移的性质可知:AD′//AB,∵ D的为BC的中点,∴ BD=CD,∵AC=6,∴AA′=CA′=3,∴CC′=AA′=3,所以答案是:3.小提示:本题考查了平移的性质,平行线等分线段定理等知识,解题的关键是理解题意,灵活运用知识点解决问题.13、在Rt△ABC中,∠ACB=90°,AC=6,BC=8,过点B作射线BM∥AC.动点D从点A出发沿射线AC方向以每秒3个单位的速度运动,同时动点E 从点C 沿射线AC 方向以每秒2个单位的速度运动.过点E 作EF ⊥AC 交射线BM 于F ,G 是EF 中点,连接DG .设点D 运动的时间为t ,当△DEG 与△ACB 相似且点D 位于点E 左侧时,t 的值为_____________.答案:3或23##23或3分析:若ΔDEG 与ΔACB 相似,分情况讨论,则DE EG =AC BC 或DE EG =BC AC ,由相似三角形的性质可求解.解:如下图:∵EF =BC =8,G 是EF 的中点,∴GE =4.点D 位于点E 左侧时,即AD <AE ,∴3t <6+2t ,解得:t <6,∴DE =AE −AD =6+2t −3t =6−t ,若ΔDEG 与ΔACB 相似,则DE EG =AC BC 或DE EG =BC AC ,∴ 6−t 4=68或6−t 4=86, ∴t =3或t =23所以答案是:3或23. 小提示:本题考查了相似三角形的判定,解题的关键是利用分类讨论思想解决问题.14、如图,在△ABC 中,AB =8cm ,AC =16cm ,点P 从A 出发,以2cm/s 的速度向B 运动,同时点Q 从C 出发,以3cm/s 的速度向A 运动,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为t .(1)用含t的代数式表示:AQ=_______;(2)当以A,P,Q为顶点的三角形与△ABC相似时,运动时间t=________答案:16−3t##−3t+16167秒或4秒分析:(1)根据路程=速度×时间,即可表示出AQ的长度.(2)此题应分两种情况讨论.①当△APQ∽△ABC时;②当△APQ∽△ACB时.利用相似三角形的性质求解即可.解:(1)由题意可知:AQ=16−3t,(2)连接PQ,∵∠PAQ=∠BAC,∴当APAB =AQAC时,△APQ∽△ABC,即2t8=16−3t16,解得t=167;当APAC =AQAB时,△APQ∽△ACB,即2t16=16−3t8,解得t=4.∴运动时间为167秒或4秒.所以答案是:16−3t;167秒或4秒小提示:考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键,注意不要漏解.15、如图,AD⊥BC,垂足为C,BF⊥BC,点P为线段BC上一动点,连接AP,过D作DE⊥AP交BF于E,连接PE,若AC=BC=4,CD=1,则PE长的最小值为______.答案:√5分析:设DE 交AP 于点Q ,DE 交BC 于点H ,根据DE ⊥AP ,确定点Q 在以AD 为直径的圆周上运动,得到当点Q 与点P 重合时,PE 最小,此时,点Q 、点P 与点H 重合,取AD 的中点O ,连接OP ,利用勾股定理求出CP ,再证明△CDP ≌△BPE ,利用勾股定理求出答案.解:设DE 交AP 于点Q ,DE 交BC 于点H ,∵DE ⊥AP ,∴∠AQD =∠EQP =90°,∴点Q 在以AD 为直径的圆周上运动,当点Q 与点P 重合时,PE 最小,此时,点Q 、点P 与点H 重合,取AD 的中点O ,连接OP ,∴OA =OD =OP =52,OC =32,∴CP =√OP 2−OC 2=√(52)2−(32)2=2, ∵AD ∥BF ,∴△CPD ∽△BPE ,∵BP =CP =2,∴△CDP ≌△BPE ,∴PE =PD =√CD 2+CP 2=√5,所以答案是:√5.小提示:此题考查图形中的动点问题,勾股定理,全等三角形的判定及性质,相似三角形的判定,正确理解点Q的位置与点P的位置确定PE的最小值位置是解题的关键.解答题16、已知:a:b:c=3:4:5(1)求代数式3a−b+c2a+3b−c的值;(2)如果3a﹣b+c=10,求a、b、c的值.答案:(1)1013;(2)a=3,b=4,c=5分析:(1)根据比例设a=3k,b=4k,c=5k(k≠0),然后代入比例式进行计算即可得解;(2)先设a=3k,b=4k,c=5k(k≠0),然后将其代入3a-b+c=10,即可求得a、b、c的值.(1)∵a:b:c=3:4:5,∴设a=3k,b=4k,c=5k(k≠0),则3a−b+c2a+3b−c =9k−4k+5k6k+12k−5k=10k13k=1013;(2)设a=3k,b=4k,c=5k(k≠0),代入3a﹣b+c=10得:9k-4k+5k=10,解得k=1.则a=3k=3,b=4k=4,c=5k=5.小提示:本题考查了比例的性质,利用“设k法”求解更简便.17、如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF,已知四边形BFED是平行四边形,DE BC =14.(1)若AB=8,求线段AD的长.(2)若△ADE的面积为1,求平行四边形BFED的面积.答案:(1)2(2)6分析:(1)利用平行四边形对边平行证明△ADE∽△ABC,得到DEBC =ADAB即可求出;(2)利用平行条件证明△ADE∽△EFC,分别求出△ADE与△EFC、△ADE与△ABC的相似比,通过相似三角形的面积比等于相似比的平方分别求出S△EFC、S△ABC,最后通过S▱BFED=S△ABC−S△EFC−S△ADE求出.(1)∵四边形BFED是平行四边形,∴DE∽BC,∴△ADE∽△ABC,∴DEBC =ADAB,∵DEBC =14,∴ADAB =14,∴AD=14AB=14×8=2;(2)∵四边形BFED是平行四边形,∴DE∽BC,EF∽AB,DE=BF,∴∠AED=∠ECF,∠EAD=∠CEF,∴△ADE∽△EFC∴S△ADES△EFC =(DEFC)2,∵DEBC =14,DE=BF,∴FC =BC −DE =4DE −DE =3DE ,∴DE FC =DE 3DE =13, ∴S △ADE S △EFC =(DE FC )2=(13)2=19,∵△ADE ∽△ABC ,DE BC =14,∴S △ADES △ABC =(DE BC )2=(14)2=116, ∵S △ADE =1,∴S △EFC =9,S △ABC =16,∴S ▱BFED =S △ABC −S △EFC −S △ADE =16−9−1=6.小提示:本题考查了相似三角形,熟练掌握相似三角形的面积比等于相似比的平方、灵活运用平行条件证明三角形相似并求出相似比是解题关键.18、如图,在平行四边形ABCD 中,AB =3,点E 为线段AB 的三等分点(靠近点A ),点F 为线段CD 的三等分点(靠近点C ),且CE ⊥AB .将△BCE 沿CE 对折,BC 边与AD 边交于点G ,且DC =DG .(1)证明:四边形AECF 为矩形;(2)求四边形AECG 的面积.答案:(1)见解析;(2)7√34分析:(1)由已知可得AE =13AB ,CF =13CD ,能得到AE =CF ,AE ∥CF ,再由CE ⊥AB ,即可证明四边形AECF 为矩形;(2)由折叠可知B 'E =BE =2,求得AB '=1,先证明∠B '=∠B 'GA ,能得到AB '=AG =1,再由AB '∥CD ,得到B ′G CG =AG DG 即B ′G 4−B ′G =13,得到B 'G =1,能得到△AGB '是等边三角形,所求四边形AECG 的面积等于直角三角形EB 'C 与等边三角形AGB '的差.(1)证明:∵ABCD是平行四边形,∴AB∥CD,AB=CD,∵点E为线段AB的三等分点(靠近点A),∴AE=1AB,3∵点F为线段CD的三等分点(靠近点C),∴CF=1CD,3∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形,∵CE⊥AB,∴四边形AECF为矩形;(2)∵AB=3,∴AE=CF=1,BE=2,∵将△BCE沿CE对折得到△ECB',∴B'E=BE=2,∴AB'=1,∵DC=DG=3,∴∠DGC=∠DCG,∵BB'∥CD,∴∠DCG=∠B',∴∠B'=∠DGC,∵∠DGC=∠B'GA,∴∠B'=∠B'GA,∴AB'=AG=1,∴DA=BC=B'C=4,∵AB '∥CD ,∴B ′G CG =AG DG , ∴B ′G4−B ′G =13, ∴B 'G =1,∴△AGB '是等边三角形,∴A B '=AG =B 'G =1,作GH ⊥A B '于H ,则AH =12A B '=12,∴GH =√AG 2−GH 2=√32, 在Rt △BCE 中,BC =4,BE =2,∴EC =√BC 2−BE 2=2√3,∴S 四边形AECG=S △EB'C -S △AB 'G =12×2×2√3−12×1×√32=7√34. 小提示:本题考查平行四边形的性质,矩形的判定,等边三角形的判定与性质,勾股定理,平行线分线段成比例定理;利用平行线分线段成比例定理,确定△AGB '是等边三角形是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学图形的相似知识点总复习含答案一、选择题1.如图,已知ABC ∆和ABD ∆都O e 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆【答案】A【解析】【分析】 根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠Q ,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.2.如图,已知////AB CD EF ,:3:5AD AF =,6BC =,CE 的长为( )A .2B .4C .3D .5【答案】B【解析】【分析】 根据平行线分线段成比例定理列出比例式,计算即可.【详解】∵AD :AF=3:5,∴AD :DF=3:2,∵AB ∥CD ∥EF , ∴AD BC DF CE =,即362CE=, 解得,CE=4,故选B .【点睛】 本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.3.如图,点E 是ABCD Y 的边AD 上一点,2DE AE =,连接BE ,交AC 边于点F ,下列结论中错误的是( )A .3BC AE =B .4AC AF = C .3BF EF =D .2BC DE = 【答案】D【解析】【分析】 由平行四边形的性质和相似三角形的性质分别判断即可.【详解】解:∵在ABCD Y 中,//AD BC ,AD BC =,∴AEF CBF V :V ,∴AE AF EF CB CF BF==, ∵2DE AE = ∴332BC DE AE ==,选项A 正确,选项D 错误, ∴133AF AE AE CF CB AE ===,即:3CF AF =, ∴4AC AF =,∴选项B 正确,∴133EF AE AE BF CB AE ===,即:3BF EF =, ∴选项C 正确,故选:D .【点睛】此题主要考查了平行四边形的性质以及相似三角形的判定与性质,能熟练利用相似三角形对应边成比例是解题关键.4.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,则下列结论正确的是( )A .AD DE DB BC = B .BF EF BC AB = C .AE EC FC DE =D .EF BF AB BC = 【答案】C【解析】【分析】 根据相似三角形的判定与性质逐项分析即可.由△ADE ∽△ABC ,可判断A 的正误;由△CEF ∽△CAB ,可判定B 错误;由△ADE ~△EFC ,可判定C 正确;由△CEF ∽△CAB ,可判定D 错误.【详解】解:如图所示:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∴△ADE ∽△ABC ,∴DE AD AD BC AB DB=≠, ∴答案A 错舍去;∵EF ∥AB ,∴△CEF ∽△CAB , CF EF BC A B B BF C=≠ ∴答案B 舍去∵∠ADE =∠B ,∠CFE =∠B ,∴∠ADE =∠CFE ,又∵∠AED =∠C ,∴△ADE ~△EFC ,∴AE DE EC FC=,C 正确; 又∵EF ∥AB ,∴∠CEF =∠A ,∠CFE =∠B ,∴△CEF ∽△CAB , ∴EF CEFC BF AB AC BC BC==≠, ∴答案D 错舍去;故选C .【点睛】 本题主要考查相似三角形的判定与性质,熟练掌握两平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似是解题的关键.5.如图,将ABC ∆沿BC 边上的中线AD 平移到A B C '''∆的位置.已知ABC ∆的面积为16,阴影部分三角形的面积9.若1AA '=,则A D '等于( )A .2B .3C .4D .32【答案】B【解析】 【分析】 由 S △ABC =16、S △A ′EF =9且 AD 为 BC 边的中线知 1922A DE A EF S S '∆'∆==,182ABD ABC S S ∆∆== ,根据△DA ′E ∽△DAB 知2A DE ABDS A D AD S ∆∆'⎛⎫=' ⎪⎝⎭ ,据此求解可得. 【详解】16ABC S ∆=Q 、9A EF S ∆'=,且AD 为BC 边的中线,1922A DE A EF S S ∆∆''∴==,182ABD ABC S S ∆∆==, Q 将ABC ∆沿BC 边上的中线AD 平移得到A B C '''∆,//A E AB ∴', DA E DAB '∴∆~∆,则2A DE ABD S A D AD S ∆∆'⎛⎫=' ⎪⎝⎭,即22991816A D A D ⎛⎫== '⎪+⎝⎭', 解得3A D '=或37A D '=-(舍),【点睛】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.6.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为()A.1:3 B.1:8 C.1:9 D.1:4【答案】C【解析】【分析】根据题意,易证△DEF∽△CBF,同理可证△ADE∽△ABC,根据相似三角形面积比是对应边比例的平方即可解答.【详解】∵S△EFC=3S△DEF,∴DF:FC=1:3 (两个三角形等高,面积之比就是底边之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故选:C.【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.7.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,C′D交AB于点Q,则BQAQ的值为()A2B3C.22D3【答案】A 【解析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将BQAQ转化为BQAC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,∴△ADE是等腰直角三角形,即AE=DE=22AD,在Rt△ABC中,∵∠BAC=90°,AD是△ABC的中线,∴AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∴∠CDC′=45°+45°=90°,∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,由△AEC∽△BDQ得:BQAC=BDAE,∴BQAQ=BQAC=ADAE=2AEAE=2.故选:A.【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.8.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()A .16B .15C .12D .11【答案】B【解析】【分析】 过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE== G Q 为BE 的中点,1,2FE GE BE ∴== ∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+=故选:B.【点睛】本题通过构造K形图,考查了相似三角形的判定与性质.建立△CEF面积与AE长度的函数关系式是解题的关键.9.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.32B.92C33D.3【答案】A【解析】【分析】【详解】解:∵Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∴△ACD∽△ABC,∴AC:AB=AD:AC,∵AC=3,AB=6,∴AD=32.故选A.考点:相似三角形的判定与性质.10.如图,点A,B是双曲线18yx图象上的两点,连接AB,线段AB经过点O,点C为双曲线kyx=在第二象限的分支上一点,当ABCV满足ACBC=且:13:24AC AB=时,k的值为().A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴2()COFAOES OCS OA∆∆=,∵CA:AB=13:24,AO=OB,∴CA :OA =13:12,∴CO :OA =5:12, ∴2()COF AOE SOC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0,∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.11.如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确的是( )A .∠ABD=∠CB .∠ADB=∠ABC C .AB CB BD CD = D .AD AB AB AC= 【答案】C【解析】【分析】 由∠A 是公共角,利用有两角对应相等的三角形相似,即可得A 与B 正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D 正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A 是公共角,∴当∠ABD=∠C 或∠ADB=∠ABC 时,△ADB ∽△ABC (有两角对应相等的三角形相似),故A 与B 正确,不符合题意要求;当AB :AD=AC :AB 时,△ADB ∽△ABC (两组对应边的比相等且夹角对应相等的两个三角形相似),故D 正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.12.如图,将图形用放大镜放大,应该属于( ).A.平移变换B.相似变换C.旋转变换D.对称变换【答案】B【解析】【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.13.要做甲、乙两个形状相同(相似)的三角形框架,已知甲三角形框架三边的长分别为50 cm、60 cm、80 cm,乙三角形框架的一边长为20 cm,则符合条件的乙三角形框架共有().A.1种B.2种C.3种D.4种【答案】C【解析】试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm的边可以当最短边,最长边和中间大小的边.故选:C.点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.14.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12 CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD=3 2【答案】D 【解析】【分析】由AE=12AD=12BC,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【详解】解:A、∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFFC,∵AE=12AD=12BC,∴AFFC=12,故A正确,不符合题意;B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意.D、设AD=a,AB=b由△BAE∽△ADC,有ba=2a.∵tan∠CAD=CDAD=ba=22,故D错误,符合题意.故选:D.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.15.(2016山西省)宽与长的比是51-(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH【答案】D【解析】【分析】先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.【详解】解:设正方形的边长为2,则CD=2,CF=1在直角三角形DCF中,22125DF+=5FG ∴=51CG ∴=-512CG CD -∴= ∴矩形DCGH 为黄金矩形故选:D .【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是51-的矩形叫做黄金矩形,图中的矩形ABGH 也为黄金矩形.16.如图,正方形ABDC 中,AB =6,E 在CD 上,DE =2,将△ADE 沿AE 折叠至△AFE ,延长EF 交BC 于G ,连AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG ∥CF ;④S ∆FCG =3,其中正确的有( ).A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 利用折叠性质和HL 定理证明Rt △ABG ≌Rt △AFG ,从而判断①;设BG=FG=x ,则CG=6-x ,GE=x+2,根据勾股定理列方程求解,从而判断②;由②求得△FGC 为等腰三角形,由此推出1802FGC FCG -∠∠=o ,由①可得1802FGC AGB -∠∠=o ,从而判断③;过点F 作FM ⊥CE ,用平行线分线段成比例定理求得FM 的长,然后求得△ECF 和△EGC 的面积,从而求出△FCG 的面积,判断④.【详解】解:在正方形ABCD 中,由折叠性质可知DE=EF=2,AF=AD=AB=BC=CD=6,∠B=∠D=∠AFG=∠BCD=90°又∵AG=AG∴Rt △ABG ≌Rt △AFG ,故①正确;由Rt △ABG ≌Rt △AFG∴设BG=FG=x ,则CG=6-x ,GE=GF+EF=x+2,CE=CD-DE=4∴在Rt △EGC 中,222(6)4(2)x x -+=+解得:x=3∴BG =3,CG=6-3=3∴BG =CG ,故②正确;又BG =CG , ∴1802FGC FCG -∠∠=o 又∵Rt △ABG ≌Rt △AFG∴1802FGC AGB -∠∠=o ∴∠FCG=∠AGB∴AG ∥CF ,故③正确; 过点F 作FM ⊥CE ,∴FM ∥CG∴△EFM ∽△EGC∴FM EF GC EG =即235FM = 解得65FM =∴S ∆FCG =116344 3.6225ECG ECF S S -=⨯⨯-⨯⨯=V V ,故④错误 正确的共3个故选:C .【点睛】 本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.17.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2y x =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D【解析】【分析】 过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD又∵3AO BO =,2OC CA = ∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V ∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V∴42k ,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.18.下列图形中,一定相似的是( )A .两个正方形B .两个菱形C .两个直角三角形D .两个等腰三角形【答案】A【解析】【分析】根据相似形的对应边成比例,对应角相等,结合正方形,菱形,直角三角形,等腰三角形的性质与特点对各选项分析判断后利用排除法.【详解】A 、两个正方形角都是直角一定相等,四条边都相等一定成比例,所以一定相似,故本选项正确;B 、两个菱形的对应边成比例,角不一定相等,所以不一定相似,故本选项错误;C 、两个直角三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误;D 、两个等腰三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误.故选A .【点睛】本题主要考查了相似图形的定义,比较简单,要从边与角两方面考虑.19.如图,已知△ABC ,D 、E 分别在边AB 、AC 上,下列条件中,不能确定△ADE ∽△ACB 的是( )A.∠AED=∠B B.∠BDE+∠C=180°C.AD•BC=AC•DE D.AD•AB=AE•AC【答案】C【解析】【分析】A、根据有两组角对应相等的两个三角形相似,进行判断即可;B:根据题意可得到∠ADE=∠C,根据有两组角对应相等的两个三角形相似,进行判断即可;C、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可;D、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可.【详解】解:A、由∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB;B、由∠BDE+∠C=180°,∠ADE+∠BDE=180°,得∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB;C、由AD•BC=AC•DE,得不能判断△ADE∽△ACB,必须两组对应边的比相等且夹角对应相等的两个三角形相似.D、由AD•AB=AE•AC得,∠A=∠A,故能确定△ADE∽△ACB,故选:C.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似(注意,一定是夹角);有两组角对应相等的两个三角形相似.20.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC -CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长是()A.1.5cm B.1.2cm C.1.8cm D.2cm【答案】B【解析】【分析】【详解】由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+, 解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .。