汽车振动能量回收悬架

汽车振动能量回收悬架
汽车振动能量回收悬架

汽车振动能量回收悬架

近年来,节能已经成为一个非常重要的问题。限制能量耗散的一种可用方法是回收那部分耗散的能量。实现能量回收的一种最有效的方法是将机械振动转化为储存在蓄电池里的有用电能,,然后将这部分能量用于驱动传感器或主动系统或辅助电气负载。

这篇文章提出了道路车辆悬架系统能量收集装置的应用。该系统包括一个共振质量阻尼器,一个线性永磁交流发电机和功率因数可控整流器(电磁振动驱动发电机)。

在研究的第一阶段,道路诱发悬架簧下质量振动的能量回收装置的性能还在探讨中。考虑到物理约束的应用(悬架几何、电磁振动驱动发电机质量,等等),也为了优化能量回收,对该装置的参数进行了调整。

电磁振动驱动发电机

在本节中用图形描述电磁振动驱动发电机的基本理论。

振动驱动发电机(VDG)一般包括一个大的振动质量(M),通过弹簧连接(k)到一个刚性的外壳上。随着外壳的振动,振动质量质量和外壳之间也产生相对运动。移动质量产生的机械动能(m)大规模的转化为磁铁相对于线圈转动产生的电能。这可以得到一个移动的磁铁或移动的线圈结构。在实践中,为了避免电连接质量,一个移动的磁铁配置的制造更为简单。在任何情况下,电压线圈中感应由于不同的磁链,与

合成电流造成部分反对磁铁和线圈之间的相对运动。因此,VDG的运动可以通过系

统质量-弹簧系统图来描述,如图2所示。

图2:VDG方案

质量为m 相对壳体运动的基本方程: t mz cz kz mx ++=- (1)

其中z 是质量和外壳之间的相对位移(即在磁铁和线圈之间),t x 是相对壳体的振

动,c 是一种考虑电磁阻尼的等效阻尼系数(转换成电能的机械阻尼质量)和由于空气阻力和物质损失产生的寄生阻尼。

可以看出,VDG 是一个惯性发生器,即它只需要被锚定在一个移动体产生电力和阻尼器(c ),它代表了能量提取机制。

为了与一个预定的应用环境的自然频率同步(即对壳体的振动频率),这种发电机是在共振条件和最佳的能量条件下提取操作应设计。事实上,假设发电机由谐波励磁驱动sin()t t x X t ω=,平均功率耗散(d P )在阻尼器上(即通过传导机制提取的能

量)([3]、[4]、[5]):

233222(1)(2)

t c d c c m X P ζωωωζω=-+ (2) 其中

是阻尼比,和是VDG 的固有频率。因此,当装置在频率(即)运行时,最大功率耗散在发电机上,在这种情况下:

234t n d mX P ωζ

= (3) 方程(3)表明了能量耗散功率在增加:

线性的质量m ;

固有频率n ω的立方;

振幅t X 的平方;

当阻尼比?趋近于0; 这只会发生如果运动源能够提供无穷的动力,相对位移不受限制、无寄生阻尼存在的系统。实际上,这些条件是不可实现的。特别是,减小阻尼比增加的质量位移。因此,阻尼比必须足够高,以防止质量位移极超过极限max Z ;如果惯性质量的位移是

有限的,方程(3)变成了:

32max 1()2d n t t

Z P m X X ω= (4) 阻尼比最大耗散功率:

opt ζ=(5) 发电机阻尼因子可能会进一步受到有害的寄生阻尼p c 。事实上,可以通过包括寄生阻

尼比p ζ的计算来获得通过传导机制提取的最大功率:

232

4()e t n e e p m X P ζωζζ=+ (6) 当

e p ζζ=时,最大功率传递到电气领域,即当电气领域的阻尼()e ζ上升到等于机械损失()p ζ时,在这种情况下,方程(6)变为:

2316t n e e

mX P ω= (7)

图3 EVDG 方案

由于阻尼电磁转导e c 可作为估计([5]):

2

()e c c NlB c R L j ω

=+ (8) 其中N 为发电机线圈的匝数,l 为线圈的长度,c R ,c L 为电阻和线圈的电感(见图3),B 为磁通密度。

在下面,提出了以前暴露对汽车主动悬架标准的应用。考虑一个简化的车辆模型

(四分之一汽车模型),对谐振式电磁振动驱动发电机设计的物理限制的说明和设备的预期性能进行估计。

图4:各种路面不平度的PDS([11]) 图5: 乘用车的振幅实验FRF

应用概述

本文提出的电磁振动驱动发电机应用于一种车辆悬架。正如大家所熟知的,由于路面不平度,振动从地面传输到车辆中心(非簧载质量)和底盘(簧上质量)。典型的道路提供宽带随机激励,其特征是位移功率谱密度(PSD)呈现出振幅随空间频率n降低,(参见图4,[11]), 而由于车辆底盘的上下,俯仰和滚转运动的范围和共振峰10-15Hz 与轮胎的垂直运动相关联([ 10 ],见图5),轿车普遍存在的共振峰在1到 2.5Hz之间。理论上,EVDG可以连接到汽车底盘或非簧载质量它的固有频率可以汽车的簧载质量或非簧载质量同步。虽然最合适的同步频率似乎是由路面引起振动的振幅高频率低的簧载质量的固有频率,在实践中,振动通过汽车悬架传递给底盘。因此,EGVD必须固定在非簧载质量,在这里,只有轻微的共振峰值与底盘固有频率可以观察到的(参见图5)。这些因素导致与一个非簧载质量相连的EVDG的固有频率同步。因此,EVDG的振动质量m不能超过3kg,以避免给汽车操作稳定性带来的负面影响。此外为了避免干扰弹簧和簧下质量,EVDG的最大振荡必须限制在一定范围之内,特别是,最大振荡被限制在的悬架最大挠度的三分之一。

从这个假设出发,为了优化能量回收装置的参数和评估其性能,建立了一个简单的车辆模型。

车辆和路面不平度模型

为了评估从路面振动回收能量,我们建立了四分之一汽车模型([12],如图6所示)。该系统简化为2自由度集中参数模型,其代表一种车辆的四个车轮。该模型包括簧载质量m,轮胎簧下质量

m。两个物体之间通过弹簧阻尼单元分别代表悬架和轮胎刚度

t

和阻尼的地面连接。

图6:四分之一汽车车辆模型图7:四分之一汽车车辆模型+ EGDV 该汽车四分之一模型的参数已从以往的研究中获得([ 13 ])。图8显示了簧上/簧下质量的产生的垂直加速度和路面施加的垂直加速度之间的频响函数(FRF)。数值结果(图8.1b)与四分之一检测车辆在试验台上的测量值(如图8.1a)进行了比较。在实验测试中,八个加速度计被放置在四个汽车轮毂对应的悬架和车身之间。特别的,也测量了被施加的位移,频响函数表示了测试车辆的左前角,如图8所示。可以看到一个很好的四分之一汽车模型和实验测量之间关系。

图8:四分之一汽车模型的频响函数:(a )实验 (b )数值

为了激励EGVD 的四分之一汽车系统,用随机信号代表典型路面([14])。道路剖面W 可以使用下面的位移功率谱密度(PSD )生成函数()G n :

00()()n G n G n n γ-??= ??? 2(/)m c y c l e s m ??????

(9) 其中n 表示空间频率(周/m ),0n 表示参考空间频率;γ是一个合适描述路面不平

度的严重性的常数。ISO 建议00.1n =和2γ= ([14])。ISO 根据道路表面情况将其分为五类。道路和分类推荐的参数在表1。而对于很好,平均和很差的道路剖面的最低限在图4中描述。根据ISO 分类,一些道路轮廓生成了0Hz 到30 Hz 的频率。实际上,空间频率n 由/f v 给出,其中f 表示振动频率,v 表示车速,逆快速傅里叶变换可用于确定在时域里的路面高度([15])。

表1:不同类型的路面粗糙度系数范围

当EGDV 被运用的四分之一汽车车辆模型的运动方程可以写成:

()()0()()0()()()()()()0s s s s t s s t s a a t a t t t s s t

s s t a t a t t t s t m x c x x k x x m x c x x k x x m x c x x k x x c x x k x x c x k x ωω+-+-=??+-+-=??--------+-+-=? (10) 其中/s t k k 表示悬架/轮胎刚度,/s t c c 表示悬架/轮胎阻尼;/s t x x 表示簧载质量/

非簧载质量的垂直位移。

正如所看到的,EGDV 固定在非簧载质量。

注意,如果应用下面的坐标变换,方程组(10)的第二个方程等价于方程(1):

a t x z x =+ (11)

a x 表示垂直位移。

正如预期的,EVDG 的固有频率已与一个簧载质量同步。在不影响悬架物理约束的前提下,对该装置的参数进行了调整,以最大限度地提高能源回收。

图9:平均路面:能量回收与阻尼比 图10:平均路面,速度80km/h:能量回收与同步频率

回收振动能量发电的汽车减震器总体设计说明书

本科毕业设计(论文) ( 2014届 ) 题目:回收振动能量发电的汽车减振器总体设计学院:工学院、职业技术教育学院 专业:汽车维修工程教育 学生姓名:孙挺学号: 10520129 指导教师:曹振新职称:副教授 合作导师:职称: 完成时间:2014 年月日 成绩:

浙江师范大学本科毕业设计(论文)正文 目录 摘要 (1) 关键词 (1) 英文摘要 (1) 英文关键词 (1) 1 引言………………………………………………………………………………X 2 汽车减振器的国内外状…………………………………………………………X 2.1 汽车减振器的国内现状……………………………………………………X 2.2 汽车减振器的国外现状……………………………………………………X 3 理论基础…………………………………………………………………………X 3.1 减振器的概述………………………………………………………………X 3.2 减振器相对阻尼系数和阻尼系数的确定…………………………………X 3.2.1 悬架弹性特性的选择………………………………………………………X 3.2.2 相对阻尼系数的选择………………………………………………………X 3.2.3 减振器阻尼系数的确定……………………………………………………X

回收振动能量发电的汽车减振器总体设计工学院、职业技术教育学院汽车维修工程教育专业 孙挺(10520129) 指导老师:曹振新(副教授) 摘要:减振器是汽车悬架系统中的重要组成部件,工作过程中通过液压油往返流经阀体和间隙产生阻尼,吸收汽车在不平路面上行驶产生的振动能量,从而衰减车辆的振动,并将这部分能量以热的形式耗散掉。液电馈能式减振器采用机-电-液混合系统,通过单向阀组成的液压回路将由路面不平引起的车身与道路间的往复振动变成流动方向不变的液压油流动,由液压油驱动液压马达进而带动发电机发电,从而将振动机械能转化为电能,可为汽车空调以及其他电器系统提供电能。本项目通过建立机-电-液混合系统动力学模型及仿真,分析机械能、液能和电能的相互转换的动态特性,在此基础上开展汽车振动能量回收模型的研究,液电馈能式减振器的能量转换机理研究和原理样机的研制。同时研究基于该种形式减振器所建立的悬架系统,对能量回收利用的程度,以及通过相关控制算法实现悬架系统主动或半主动控制的可行性。 关键词:汽车减振器;回收发电;振动能量 The vibration energy recycled for overall design of automobile shock absorber Sun Ting Director:CAO Zhen-xin (Engineering College、Vocational and Technical Education College,Zhejiang Normal University, No.10520129) Abstract:Shock absorber is an important component of the automobile suspension system, in the process of working through the hydraulic oil flows through the body back and forth and damping clearance, to absorb the vibration energy in driving on rough road surface cars, thus attenuation vibration of the vehicle, and this part of the energy in the form of heat dissipation. Liquid can feed type shock absorber using machine - electric - hydraulic hybrid system, through the check valve of hydraulic circuit will be caused by surface uneven body between the road and reciprocating vibration into a flow of hydraulic oil flow direction, driven by hydraulic oil hydraulic motor to drive the generator power, thus the vibration of

纯电动汽车制动能量回收技术

纯电动汽车制动能量回 收技术 Document number:PBGCG-0857-BTDO-0089-PTT1998

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过

改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式

汽车减震器能量回收装置设计概要

目录 1 绪论 (1) 1.1 能量回收装置简介 (1) 1.2 研究的背景及意义 (1) 1.3 国内外发展现状及趋势 (2) 1.3.1国外发展现状 (2) 1.3.2国内发展趋势 (2) 2 理论基础 (3) 2.1 减震器 (3) 2.2 电磁发电技术 (4) 2.2.1法拉第电磁感应定律 (4) 2.2.2电磁感应发电装置结构 (4) 2.3 压电发电技术 (5) 2.3.1压电材料 (5) 2.3.2压电效应 (5) 3 基于压电叠堆储能的新式能量回收装置的结构及工作原理 (7) 3.1 压电叠堆发电装置的结构 (7) 3.2 能量回收装置的工作原理 (7) 4 能量回收装置的等效模型分析 (8) 4.1 模型假设 (8) 4.2 等效模型 (8) 4.3 发电装置的性能分析 (8) 4.4油压频率f对回收装置输出特性的影响 (9) 4.5 压电叠堆长度对输出特性的影响 (9) 4.6 压电叠堆截面面积S对输出特性的影响 (10) 4.7 本章小结 (11) 5 能量回收装置输出电路 (11) 6 结论与展望 (12) 参考文献 (13)

汽车减震器能量回收装置设计 摘要:传统的被动悬架以及半主动悬架只能起到加速车架和车身震动的衰减作用,而起不到对振动能量回收的作用。当汽车对减震器施加力时,减震器孔壁与油液间的摩擦及液体分子内的摩擦便形成对振动的阻尼力,使车身和车架的振动能量转化为热能,被油液和减振器壳体所吸收,并散到大气中,这一部分能量被白白浪费掉。设计一种能量回收装置,能量回收装备将减震器内部的部分压力能转化为电能储存起来。通过查阅大量关于能源转化的资料,并对各种能量回收方案进行比较,最终确定用压电叠堆能量回收的装置对减震器内部的压力能进行回收。本文主要对压电能量回收装置的工作原理、理论设计、及数学模型的分析进行概述。 关键词:能量回收;储存;压电叠堆 1绪论 1.1能量回收装置简介 目前,大多数的混合动力车和电动车都配有制动能量回收装置,该装置有推广到非混合动力车的趋势,国际汽联也希望通过KERS系统在F1中的推广,树立环保先锋的形象。制动能量的回收通常有两种途径,一是以高速旋转的飞轮储存能量,二是车轮在制动时带动发电机,产生的电能储存于电池组中。制动产生的额外能量可以回收,那么汽车行驶中产生的其它能量也可以回收。减震器是悬架的重要组成部分,悬架的好坏关系到汽车的舒适性。在能源短缺的今天,节能减排越来越受到人们的重视。消费者在选择汽车时,在考虑动力性、舒适性、美观的同时,经济性也是一个重要的原因。减震器能量回收装置,能够回收减震器在伸张、压缩行程产生的能量,通过压电能量回收原理将机械能转变为电能储存于蓄电池之中,为其他用电设备供电。1.2研究的背景及意义 从汽车发明以来,汽车工业带动了各个国家经济的发展,但在其发展过程中,一系列的问题不断出现。能源短缺、环境污染、气候变暖成为各个国家面临的共同挑战。如何采用新的技术创造出一种新型的汽车成为各国企业不断攻克的难题。 当前内燃机汽车普遍采用的是普通的液力减震器。由于传统的减震器只起到缓解汽车振动的作用,并不能回收汽车在振动过程中的能量,这就造成了能量的浪费。 众所周知,在经过不平的路面时,汽车车身会发生振动,并且路面越不平稳,汽车振动的越厉害。通常情况下,振动的能量会以减震器内部机油摩擦生热而损耗,如果能将汽车振动作用在减震器上的能量加以回收再利用,为汽车的其他电器提供能量,已达到节能的目的。

纯电动汽车制动能量回收技术

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽 车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车

制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式 液压混合动力系统的系统传动方式有四种:串联式;并联式;混联式;轮边式。 串联式混合动力驱动系统。串联式混合动力驱动系统,动力源有:发动机和高压蓄能器。 这种方式只适合整车质量小、车速不能过高的小型公交车等。 并联式混合动力驱动系统。并联式混合动力驱动系统动力源是发动机和高压蓄能器。但并联式车辆在制动能量再生系统不工作或出故障时可以由发动机单独直接驱动车辆。 并联式系统的驱动路线有两条,一条是由发动机传给变速器,

汽车振动能量回收悬架

汽车振动能量回收悬架 近年来,节能已经成为一个非常重要的问题。限制能量耗散的一种可用方法是回收那部分耗散的能量。实现能量回收的一种最有效的方法是将机械振动转化为储存在蓄电池里的有用电能,,然后将这部分能量用于驱动传感器或主动系统或辅助电气负载。 这篇文章提出了道路车辆悬架系统能量收集装置的应用。该系统包括一个共振质量阻尼器,一个线性永磁交流发电机和功率因数可控整流器(电磁振动驱动发电机)。 在研究的第一阶段,道路诱发悬架簧下质量振动的能量回收装置的性能还在探讨中。考虑到物理约束的应用(悬架几何、电磁振动驱动发电机质量,等等),也为了优化能量回收,对该装置的参数进行了调整。 电磁振动驱动发电机 在本节中用图形描述电磁振动驱动发电机的基本理论。 振动驱动发电机(VDG)一般包括一个大的振动质量(M),通过弹簧连接(k)到一个刚性的外壳上。随着外壳的振动,振动质量质量和外壳之间也产生相对运动。移动质量产生的机械动能(m)大规模的转化为磁铁相对于线圈转动产生的电能。这可以得到一个移动的磁铁或移动的线圈结构。在实践中,为了避免电连接质量,一个移动的磁铁配置的制造更为简单。在任何情况下,电压线圈中感应由于不同的磁链,与 合成电流造成部分反对磁铁和线圈之间的相对运动。因此,VDG的运动可以通过系 统质量-弹簧系统图来描述,如图2所示。 图2:VDG方案

质量为m 相对壳体运动的基本方程: t mz cz kz mx ++=- (1) 其中z 是质量和外壳之间的相对位移(即在磁铁和线圈之间),t x 是相对壳体的振 动,c 是一种考虑电磁阻尼的等效阻尼系数(转换成电能的机械阻尼质量)和由于空气阻力和物质损失产生的寄生阻尼。 可以看出,VDG 是一个惯性发生器,即它只需要被锚定在一个移动体产生电力和阻尼器(c ),它代表了能量提取机制。 为了与一个预定的应用环境的自然频率同步(即对壳体的振动频率),这种发电机是在共振条件和最佳的能量条件下提取操作应设计。事实上,假设发电机由谐波励磁驱动sin()t t x X t ω=,平均功率耗散(d P )在阻尼器上(即通过传导机制提取的能 量)([3]、[4]、[5]): 233222(1)(2) t c d c c m X P ζωωωζω=-+ (2) 其中 是阻尼比,和是VDG 的固有频率。因此,当装置在频率(即)运行时,最大功率耗散在发电机上,在这种情况下: 234t n d mX P ωζ = (3) 方程(3)表明了能量耗散功率在增加: 线性的质量m ; 固有频率n ω的立方; 振幅t X 的平方; 当阻尼比?趋近于0; 这只会发生如果运动源能够提供无穷的动力,相对位移不受限制、无寄生阻尼存在的系统。实际上,这些条件是不可实现的。特别是,减小阻尼比增加的质量位移。因此,阻尼比必须足够高,以防止质量位移极超过极限max Z ;如果惯性质量的位移是

车辆制动能量回收

低碳世博,能源再利用—— 基于超级电容的城市轨道车辆制动能量回收 1 概述 由于城市轨道车辆具有运量大、速度快、安全、准点、保护环境、节约能源和用地等特点,世界各国普遍认识到,解决城市交通问题的根本出路在于优先发展以轨道交通为骨干的城市公共交通系统。随着我国经济的高速发展、城市化进程的不断加快,城市轨道交通将在我国城市公共交通运输中占有越来越越重要的地位。到目前为止我国已有北京、上海、广州、深圳、武汉等城市已经运行,截至2009年9月,我国有27个城市正在筹备建设城市轨道交通,其中22个城市的轨道交通建设规划已经获得国务院批复。至2015年,北京、上海、广州、深圳等22个城市将建设79条轨道交通线路,总长度为2259.84公里,计划总投资8820.03亿元。 城市轨道交通列车的特点就是线路的站间距短,列车运行时频繁地起动、制动,基本上在列车达到最高速时很快就会制动。目前,我国地铁列车大都采用接触网/轨直流供电, 牵引系统大都是变压变频的交流传动系统。列车牵引时从电网吸收能量,制动时采用反馈制动把制动能量反馈回电网, 根据经验,地铁再生制动产生的能量除了一定比例(一般为20%~80%,根据列车运行密度和区间距离的不同而异)被其他相邻列车吸收利用外,剩余部分将主要被列车的吸收电阻以发热的方式消耗掉或被线路上的吸收装置吸收。当列车发车密度较低时,再生能量被其他车辆吸收的概率将大大降低。资料表明,当列车发车间隔大于10 min 时,再生制动能量被吸收的概率几乎为零,此时绝大部分制动能量将被车辆吸收电阻吸收,变成热能并向四外散发,这必将使隧道和站内的温度升高。目前国内城市轨道交通在地面采用电阻能耗吸收装置处理列车运行过程中的再生能量,这不仅浪费能量,而且也增加了站内空调通风装置的负担,并使城轨建设费用和运行费用增加。如能将这部分能量储存再利用,这些问题将迎刃而解。 2 可行性分析 城市轨道交通车辆制动能量是否具有回收的可行性,需要对制动能量进行合理计算,并根据其大小确定制动能量是否具有实际回收价值。现以一列上海轨道交通2号线6节车辆编组为例(4节动车,2节拖车),设轨道车辆的制动初速度为70km/h (V1) ,制动末速度为8km/h (V2),M为车辆和载客质量,则利用公式(1)计算电制动能量。(1)

电动车制动能量回收.

电控制动是趋势谈电动车制动解决方案 [汽车之家技术] 围绕电动车的话题更多的集中在续航里程、电池类型、充电方式及时间等一些使用的问题上,今天我们来聊聊别的话题,电动技术在代替了传统动力技术后,引发的变革确实是巨大的,这也影响到了车辆的技术开发,制动系统就是要谋变的其中一环。 图中所示为传统制动系统,驾驶员控制踏板,与踏板相连的是真空助力器,它负责将驾驶员施予踏板的力放大并推动主泵活塞进行制动压力,最后,制动分泵由活塞推动制动片夹紧制动盘,从而实现制动力。 这里面涉及到一个很重要的部件——真空助力器,如果它的工作状态不好,驾驶员踩制动踏板时就会觉得很硬,没有经验的驾驶员就会误以为没有制动功能了。而真空助力器的真空环境是由发动机提供的,较为传统的方式是从进气歧管处引出一根气管通向真空助力器,为了确保真空环境的稳定性,有些发动机还专门为

真空助力器设计了一个由凸轮轴驱动的机械真空泵,在此之前,还有厂商用电子真空泵来弥补“真空”。 传统动力汽车,制动系统可以从发动机处获得真空源从而让真空助力器为驾驶员提供辅助作用,那电动车的动力系统不具备制造真空的能力,制动助力的问题将如何解决? 解决这个问题现在有两种模式,一种是在现有的结构基础上去解决真空 源的问题,另一种则是采用新的技术原理,彻底舍弃真空在制动系统中的用途,重新设计制动系统技术结构。不仅是汽车行业,在各行各业面临新老更替时都少不了这样的做事逻辑。 ● 利用现有基础进行技术改进 利用现有结构基础进行技术改进的方式是目前绝大多数厂商在新能源车中采用的方式,原有的真空助力器以及相关管路得到保留,管路的另一端连接的电子真空助力泵,当传感器监测到助力器真空度不足时,电子真空泵开始工作维持真空环境,通过这样的方式,确保真空助力器能够像原先一样为驾驶员提供辅助作用。不过,这样的电子真空助力泵的噪音较大,此外更重要的是,电子真空泵的工作稳定性以及寿命都不太适合当做主要及唯一的真空源供应部件(原先在传统汽车上,它只是辅助维持真空环境)。显然,这样的方案是来自传统的汽车研发理念,而并非是站在新能源车的开发角度来解决问题。 ● 舍弃真空在制动系统中的用途

纯电动汽车ABS制动能量回收讲解

基于自寻优控制的纯电动汽车制动能量 回收策略可行性分析 倪兰青,南京航空航天大学 本课题应从三部分入手,一是汽车建模部分;二是ABS 自寻优控制部分;三是再生制动部分。 一:车辆动力学建模(以单轮模型为例) 1.1 单轮车辆模型 车辆运动方程:Fx v M -=? 车辆运动方程:Tb Tg Tb rFx I -=-=? ω 车轮纵向摩擦力:=x F μN 其中,M:汽车质量,Fx:轮胎和底面间的附着力,I :车轮转动惯量,ω:车轮角速度,r:车轮有效半径,Tg:地面制动力矩,Tb :制动器制动力矩,μ:地面摩擦系数,N :车轮对地面压力 1.2 轮胎模型 ⑴由于主要研究纵向制动特性,可以选用参数较少并能反映纵向附着系数μb 与滑移率S 关系的Burckhardt 模型。 s c e c s c 31)1(2 --=-μ 式中c1、c2、c3为参考系数,下表给出了其在不同路面条件下的取值及该路面最佳滑移率Sopt 和最大附着系数μmax 。 ⑵双线性模型 在一些情况下,为了获得一种解析解,用这种双线形模型来简化轮胎模型, 如下图所示:

c s s h μμ= c g h c h g s s s s --- --= 11h μμμμμ,其中,c s :最佳滑移率,g μ:滑移率为1时的附着系 数:s:车轮滑移率; h μ:峰值附着系数。 1.3 液压制动系统部分 液压制动系统包括两部分:一部分是液压传动系统;另一部分是制动器。为进行实时模拟计算,可以建立经验式的l 、2阶模型系统。为简化系统,忽略了电磁阀弹簧的非线性因素及压力传送的延迟,其传递函数为: ) 1(+= TS S K G 式中:K 为系统的增益,K=100;T 为系统时间常数,T=0.01。制动器力学模型描述了制动轮缸压力输入及制动力矩输出间的力学特性。为了简化仿真研究,在进行仿真时假设制动器为理想元件,如果忽略非线性和温度的影响,制动力矩瓦可以看作是制动压力P 的线性函数: Tb=kP 式中:Tb 为车轮制动力矩;k 为制动器制动效能因数(通过试验可以得到);P 为液压传动系统输出压力。 1.4 滑移率的计算 滑移即为汽车制动时出现车轮速度小于汽车车身速度而导致车轮即滚动又滑动的现象。车轮的滑移率定义为: %100?-=v r v ωλ

汽车废气能量回收技术

汽车废气能量回收技术 一、前言 自20世纪70年代世界性的能源危机发生以来,能源问题受到世界各国普遍重视,各经济大国都致力于抢占能源市场的同时,对节能技术的重视程度也大大加强。随着人们生活水平的提高,汽车保有量越来越大,汽车能源消耗在总能源消耗中所占的比例越来越高,汽车节能问题也越来越受到各国关注。节能已经成为当今世界汽车工业发展的主题之一。 相关研究表明,发动机工作时,一般转化为有效功的热当量约占燃料燃烧产生热量的35%~40%,冷却水带走的热量占20%~30%,尾气带走的热量为30%~40%。而发动机的排气温度高,如果能够充分利用这部分余热,将会明显提高燃料的利用率。因此汽车废气能量回收技术已成为汽车工业发展的必然趋势。 二、技术特点 由于汽车发动机的工况复杂多变,因此汽车废气能量回收技术具有特殊的要求和特点。主要特点如下: (1)汽车废气能量品位较低,回收比较困难; (2)要求结构简单,体积小,重量轻,效率高; (3)要求抗震动、抗冲击,适应汽车运行环境,安全性好; (4)不能影响发动机的工作性能。 由于汽车废气能量回收技术具有上述特点,使得研究的成功虽多,但投入商业化生产的不多,只在废气涡轮增压和取暖方面取得了实用性进展。 三、技术现状 目前,汽车废气能量回收技术主要包括废气涡轮增压、发电、取暖、制冷、改良燃料性能以及涡轮蒸汽机等方式。下面分别从这六个方面介绍国内外相关技术的研究现状。 1、废气涡轮增压技术 废气涡轮增压是车用发动机广泛采用的一种技术,该技术利用发动机排出的废气推动涡轮机高速旋转,带动同轴的压气机对进气进行压缩以提高进气压力,进而提高空气密度、增加进气量。采用此技术不仅可改善内燃机的燃油经济性、降低有害排放物(碳烟、CO、HC 化合物等)的排放,还能在不增加气缸容积的基础上大幅度提高发动机的功率。但发动机采用废气涡轮增压技术后,也存在一定的弊端。它会提高发动机在工作过程中产生的最高爆发压力和平均温度,从而影响发动机的机械性能和润滑性能,同时因吸入气缸内的空气量增加以及燃烧室温度的升高,使得NO X的排放量增加。而且在汽油机上使用废气涡轮增压时,存在易发生爆燃,热负荷大,与增压器匹配困难等问题,这限制了它的使用范围。 2、废气余热发电 利用废气能量发电的常用方法有半导体温差发电和斯特林循环发电。 (1)半导体温差发电 半导体温差发电通过将两种不同的热电转换材料N型半导体和P型半导体,其一端相接于同一导电体上被置于废气流经的高温环境,另一端则相接于不同的导电体上被置于大气的低温环境。因热电转换材料的两端存在温差,通过其内部空穴、电子的扩散在低温回路中形成电势差,即在A、B端分别形成正、负电压,直接将热能转化为电能。如下图所示:

纯电动汽车ABS制动能量回收

纯电动汽车ABS制动能量回收

————————————————————————————————作者:————————————————————————————————日期:

基于自寻优控制的纯电动汽车制动能量 回收策略可行性分析 倪兰青,南京航空航天大学 本课题应从三部分入手,一是汽车建模部分;二是ABS 自寻优控制部分;三是再生制动部分。 一:车辆动力学建模(以单轮模型为例) 1.1 单轮车辆模型 车辆运动方程:Fx v M -=? 车辆运动方程:Tb Tg Tb rFx I -=-=? ω 车轮纵向摩擦力:=x F μN 其中,M:汽车质量,Fx:轮胎和底面间的附着力,I :车轮转动惯量,ω:车轮角速度,r:车轮有效半径,Tg:地面制动力矩,Tb :制动器制动力矩,μ:地面摩擦系数,N :车轮对地面压力 1.2 轮胎模型 ⑴由于主要研究纵向制动特性,可以选用参数较少并能反映纵向附着系数μb 与滑移率S 关系的Burckhardt 模型。 s c e c s c 31)1(2 --=-μ 式中c1、c2、c3为参考系数,下表给出了其在不同路面条件下的取值及该路面最佳滑移率Sopt 和最大附着系数μmax 。 ⑵双线性模型 在一些情况下,为了获得一种解析解,用这种双线形模型来简化轮胎模型, 如下图所示:

c s s h μμ= c g h c h g s s s s --- --= 11h μμμμμ,其中,c s :最佳滑移率,g μ:滑移率为1时的附着系 数:s:车轮滑移率;h μ:峰值附着系数。 1.3 液压制动系统部分 液压制动系统包括两部分:一部分是液压传动系统;另一部分是制动器。为进行实时模拟计算,可以建立经验式的l 、2阶模型系统。为简化系统,忽略了电磁阀弹簧的非线性因素及压力传送的延迟,其传递函数为: ) 1(+= TS S K G 式中:K 为系统的增益,K=100;T 为系统时间常数,T=0.01。制动器力学模型描述了制动轮缸压力输入及制动力矩输出间的力学特性。为了简化仿真研究,在进行仿真时假设制动器为理想元件,如果忽略非线性和温度的影响,制动力矩瓦可以看作是制动压力P 的线性函数: Tb=kP 式中:Tb 为车轮制动力矩;k 为制动器制动效能因数(通过试验可以得到);P 为液压传动系统输出压力。 1.4 滑移率的计算 滑移即为汽车制动时出现车轮速度小于汽车车身速度而导致车轮即滚动又滑动的现象。车轮的滑移率定义为: %100?-=v r v ωλ

汽车制动能量回收系统的研究.(DOC)

1绪论 1.1研究背景 进入21世纪以来,能源和环境对人类生活、社会发展的影响越来越大。其中,交通工具在给人类带来方便的同时,也给环境造成极大负担。我国大城市的污染已经不能忽视,燃油汽车排放是主要的污染源之一,我国已有16个城市被列入全球大气污染最严重的20个城市之中,我国的汽车拥有量是每1000人平均10辆汽车,但石油资源不足,每年已经进口几万吨的石油,随着经济的发展。假如中国汽车持有量达到现在全球水平—每1000人有110辆汽车,我国汽车持有量成10倍地增加,石油进口就成为大问题,因此我过研究发展电动汽车不是一个临时的短期措施,而是意义重大的、长远的战略考虑。在社会、环境和政治的多方压力下,世界各国制定了一系列严格的法律法规限制尾气排放。为此,交通运输工具的节能减排技术日益突出,车辆的能量回收技术受到充分重视,再生制动技术就是其中一种。在环保方面,人们正在研究使用天然气、电力(包括蓄电池)、核能等汽车,但由于天然气在不同地区的分布不一样及蓄量的限制,电力汽车的电网及道路条件的限制,高能蓄电池的研究还未获得实质性的突破,燃料电池汽车的价格居高不下,氢能及核能汽车的研究及技术还不成熟,使得汽车在这方面的应用受到一定的限制。 当今地球资源(包括石油和森林资源)日趋枯竭并受到破坏,据美国《国家地理》杂志报道,全世界现在每天消耗石油8000万桶(每7桶合一吨)。目前全世界已经探明的石油储量约为1.15万亿桶。虽然这比前两年的估计数字增长了10%,但以目前的开采速度计算,地球上的石油储量只够满足全世界石油消费40~50年【1】。汽车工业厂商大量使用以下技术来节省能源和有效利用现有地球资源:采用轻型铝合金材料、减轻汽车的重量、降低汽车行驶阻力、降低燃油消耗、采用电子喷射和电子控制系统,从而提高了能源的利用率和汽车的经济性能和动力性能。从节约资源、资源再生以及环境保护与改善出发,能源的有效利用有很重要的意义,本课题从一个全新的角度来考虑能源的有效利用。 1.2研究的内容及意义 1.2.1研究基础 再生制动(Regenerative braking)亦称反馈制动,是一种使用在汽车或铁路列车上的制动技术。普通的制动方法是把车的动能,以摩擦的形式直接转化成热

制动能量回收

电动汽车制动能量回收控制策略的研究 摘要:电动汽车的驱动电机运行在再生发电状态时,既可以提供制动力,又可以给电池充电回收车体动能,从而延长电动车续驶里程。对制动模式进行了分类,并详细探讨了中轻度刹车时制动能量回收的机制和影响因素。提出了制动能量回收的最优控制策略,给出了仿真模型及结果,最后基于仿真模型及XL型纯电 动车对控制算法的效果进行了评价。 关键词:制动能量回收电动汽车镍氢电池 Simulink模型 电动汽车(EV)的研究是在环境保护问题及能源问题日益受到关注的情况下兴起的。在EV性能提高并逐步迈向产业化的过程中,提高能量的储备与利用率是迫切需要解决的两个问题。尽管蓄电池技术有了长足进步,但由于受安全性、经济性等因素的制约,近期不会有大的突破。因此如何提高EV能量利用率是 一个非常关键的问题。 制动能量回收问题对于提高EV的能量利用率具有重要意义。电动汽车采用电制动时,驱动电机运行在发电状态,将汽车的部分动能回馈给蓄电池以对其充电,对延长电动汽车的行驶距离是至关重要的。国外有关研究表明,在存在较频繁的制动与起动的城市工况运行条件下,有效地回收制动能量,可使电动汽车的 行驶距离延长百分之十到百分之三十。 目前国内关于制动能量回收的研究还处在初级阶段。制动能量回收要综合考虑汽车动力学特性、电机发电特性、电池安全保证与充电特性等多方面的问题。研制一种既具有实际效用、又符合司机操作习惯的系统是有一定难度的。本文对上述问题作了一些积极的探索,并得出了一些有益的结论。 1制动模式 电动汽车制动可分为以下三种模式,对不同情况应采用不同的控制策略。 1.1急刹车 急刹车对应于制动加速度大于2m/s2的过程。出于安全性方面的考虑,急刹车应以机械为主,电刹车同时作用。在急刹车时,可根据初始速度的不同,由车上ABS控制提供相应的机械制动力。

相关文档
最新文档