八年级数学上册第十二章全等三角形12.2三角形全等的判定第3课时课件 新人教版
合集下载
浮山县一中八年级数学上册 第十二章 全等三角形12.2 三角形全等的判定第3课时 角边角 角角边教学

12.2 三角形全等的判定〔3〕
旧知回顾
1.什么是全等三角形 ?
2.判定两个三角形全等要具备什么
条件? 边边边 :
三边対应相等的两个三角形全等。
边角边 :
有两边和它们夹角対应相等的两个三角形全等。
一张教学用的三角形硬纸板不小心 被撕坏了 , 如下图 , 你能制作一张与原来 同样大小的新教具 ?能恢复原来三角形 的原貌吗 ?
8.在△ABC中 , AB=n2+1 , AC=2n , BC=n2-1(n>1) , 那么这个三角
形是( C )
A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形
9.如下图 , 在△ABC中 , AB=13 , AC=5 , BC=12.点O为∠ABC与∠CAB 的平分线的交点 , 那么点O到边AB的距离OP为______.2
解得 x=1270 ,则 AC=70-x=3770 ,
答:该点将绳子分成长度分别为1720 cm 和3770 cm 的两段
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油!奥利给~
看看远处,要保护好眼睛哦~站起来动一动 对身体不好哦~
课堂小结
〔1〕学习了角边角、角角边 〔2〕注意角角边、角边角中两角与边的区别。 〔3〕会根据已知两角画三角形 〔4〕进一步学会用推理证明。
作业 这节课我们学习到这里 , 再见 !
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
10.(泰州中考)如下图 , 在长方形ABCD中 , AB=8 , BC=6 , P为AD上一 点 , 将△ABP沿BP翻折至△EBP, PE与CD相交于点O , 且OE=OD , 那么 AP的长为4_.8_____.
旧知回顾
1.什么是全等三角形 ?
2.判定两个三角形全等要具备什么
条件? 边边边 :
三边対应相等的两个三角形全等。
边角边 :
有两边和它们夹角対应相等的两个三角形全等。
一张教学用的三角形硬纸板不小心 被撕坏了 , 如下图 , 你能制作一张与原来 同样大小的新教具 ?能恢复原来三角形 的原貌吗 ?
8.在△ABC中 , AB=n2+1 , AC=2n , BC=n2-1(n>1) , 那么这个三角
形是( C )
A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形
9.如下图 , 在△ABC中 , AB=13 , AC=5 , BC=12.点O为∠ABC与∠CAB 的平分线的交点 , 那么点O到边AB的距离OP为______.2
解得 x=1270 ,则 AC=70-x=3770 ,
答:该点将绳子分成长度分别为1720 cm 和3770 cm 的两段
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油!奥利给~
看看远处,要保护好眼睛哦~站起来动一动 对身体不好哦~
课堂小结
〔1〕学习了角边角、角角边 〔2〕注意角角边、角边角中两角与边的区别。 〔3〕会根据已知两角画三角形 〔4〕进一步学会用推理证明。
作业 这节课我们学习到这里 , 再见 !
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
10.(泰州中考)如下图 , 在长方形ABCD中 , AB=8 , BC=6 , P为AD上一 点 , 将△ABP沿BP翻折至△EBP, PE与CD相交于点O , 且OE=OD , 那么 AP的长为4_.8_____.
2022年人教版八年级上册数学第十二章全等三角形第2节 第3课时判定三角形全等ASA,AAS)

基基础础巩巩固固
能力提升
核心素养
-10-
第3课时 利用两角一边判定三角形全等(ASA,AAS)
8.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两张 凳子之间(凳子与地面垂直).已知DC=a,CE=b,则两张凳子 的高度之和为 a+b .
基基础础巩巩固固
能力提升
核心素养
-11-
第3课时 利用两角一边判定三角形全等(ASA,AAS)
∴△ABC≌△DCB(ASA),∴AB=DC.
基基础础巩巩固固
能力提升
核心素养
-5-
第3课时 利用两角一边判定三角形全等(ASA,AAS)
知识点2 三角形全等的判定方法(AAS) 4.如图,在△ABC中,∠C=90°,D是AB上的一点,DM⊥AB,且DM =AC,过点M作ME∥BC交AB于点E,则△ACB≌△MDE , 判定依据是 AAS(答案不唯一) .(用字母表示)
-8-
第3课时 利用两角一边判定三角形全等(ASA,AAS)
解:∵AB∥DE,∴∠ABC=∠DEF.
∠ABC=∠DEF, 在△ABC 和△DEF 中, ∠A=∠D,
AC=DF,
∴△ABC≌△DEF(AAS),
∴BC=EF,∴EC=BF=3 m,
∴FC=10-3-3=4(m).
基基础础巩巩固固
能力提升
第3课时 利用两角一边判定三角形全 等(ASA,AAS)
第3课时 利用两角一边判定三角形全等(ASA,AAS)
限时:15分钟
知识点1 三角形全等的判定方法(ASA)
1.如图,已知∠1=∠2,则不一定能使△ABC≌△ABD的条件
是( B )
A.AC=AD
B.BC=BDC.∠C=∠来自 D.∠3=∠4第1题图
人教版2020-2021学年八年级数学上册12.2 三角形全等的判定 “边边边”定理 课件

所画的弧交于点D′;
(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
依据是什 么?
课堂检测
基础题
1. 如图,D、F是线段BC上的两点,AB=CE,AF=DE, 要
使△ABF≌△ECD ,还需要条件 BF=CD___ (填一个
条件即可).
A
E
B
D
F
C
2.如图,AB=CD,AD=BC, 则下列结论:
AB=AC, BD=CD, AD=AD, AB=AC, BH=CH, AH=AH,
BH=CH, BD=CD, DH=DH,
△ABD≌△ACD(SSS)
A
△ABH≌△ACH(SSS)
D
B
HC
△BDH≌△CDH(SSS)
亲亲爱爱的的读读者者:: 1、学 盛 生而 年 活不思 重 相则 来 信罔 , 眼, 一 泪思 日 ,而 难 眼不 再 泪学 晨 并则 。 不殆及代。时表宜软20自弱.7.勉。12,270.岁.172.月1.22不072.待1020人.92:。025。00929:0:0.575:.001392J:7u0.l51-2:00.320J09u2:l0-250090:095:059:05:03Jul-2009:05 春亲去爱春的又读回者,: 2、一 千 世年 里 上之 没计 行 有在 , 绝于 始 望春 于 的, 足 处一 下 境日 。 ,之 只20计 有20在对年于处7月晨境1。绝2日二望星〇的期二人日〇。年二七〇月二十〇二年日七月20十20二年日7月201220日年星7月期1日2日星期日 春去春又回,新新桃桃换换旧旧符符。。在在那那桃桃花花盛盛开开的的地地方方,, 3、莫 少 成等 年 功闲 易 都, 学 永白 老 远了 难 不少 成 会年 , 言头 一 弃, 寸空 光 放悲 阴 弃切不者。可永轻远09。不:05。会7成.12功.2。02009:057.12.202009:0509:05:037.12.202009:057.12.2020 春去春又回,新桃换旧符。在那桃花盛开的地方, 40、9:0桃57花.1潭2.水20深20千09尺:0,57不.1及2.汪20伦20送09我:0情50。9:70.51:20.3270.21027.2.102.020092:00597:.01520.290:025009:05:0309:05:03 在在这这醉醉人人芬芬芳芳的的季季节节,,愿愿你你生生活活像像春春天天一一样样阳阳光光,,心心情情 54、少 敏 不壮 而 要不 好 为努 学 它力 , 的, 不 结老 耻 束大 下 而徒 问 哭伤 。 ,悲 。 应。 当7.1为S2u.它2n0d的2a0y开,7J.始1u2l而y.21笑022。,020709.21:025J.2u00l9y2:0205070S.19u2:n0.2d50a:02y30,00J9u9:l:0y0551:0293, :200520097:0/152:0/230290:05:03
人教版 八年级数学课件PPT第十二章利用斜边、直角边判定直角三角形全等

探究培优
证明:在△ABF和△DAG中, ∵BF⊥AE,DG⊥AE,∴∠AFB=∠DGA=90°. 又∵∠DAG+∠FAB=∠DAG+∠ADG=90°, ∴∠FAB=∠GDA. 又AB=AD,∴△ABF≌△DAG(AAS). ∴BF=AG,AF=DG. ∴BF-DG=AG-AF=FG.
夯实基础
2.如图,OD⊥AB于点D,OP⊥AC于点P,且OD=OP, 则△AOD与△AOP全等的理由是( D )
A.SSS B.ASA C.SSA D.HL
夯实基础
3.如图,在△ABC中,∠C=90°,ED⊥AB于点D, BD=BC,若AC=6 cm,则AE+DE等于( C )
A.4 cm B.5 cm C.6 cm D.7 cm
夯实基础
(2)若∠ABC=35°,则∠CAO=____2_0_°__. 【点拨】在使用HL证明两直角三角形全等时,一定 要说明是直角三角形,本题易忽视指出△ACB和 △BDA为直角三角形,而直接用HL证明.
整合方法
10.如图,在△ABC中,AB=CB,∠ABC=90°,F为 AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:△ABE≌△CBF. 证明:∵∠ABC=90°, ∴∠CBF=∠ABE=90°. 在Rt△ABE和Rt△CBF中, AE=CF,AB=CB, ∴Rt△ABE≌Rt△CBF(HL).
整合方法
(2)若∠CAE=30°,求∠ACF的度数. 解:∵AB=BC,∠ABC=90°, ∴∠CAB=∠ACB=45°. ∴∠BAE=∠CAB-∠CAE=45°-30°=15°. 由(1)知Rt△ABE≌Rt△CBF, ∴∠BCF=∠BAE=15°, ∴∠ACF=∠BCF+∠ACB=15°+45°=60°.
人教版八年级数学上册教学课件三角形全等的判定

AB = CD
A EB
∴△ADE≌△CBF ( SSS )
② ∵ △ADE≌△CBF
∴ ∠A=∠C (
全等三角形 对应角相等 )
课堂小结
内容
有三边对应相等的两个三角形 全等(简写成 “SSS”)
谈谈本节课你有思哪路些分析收获以结现合有及图条形件存找,在隐证含准的条备件条困和件惑?
边边边 应 用
书写步骤
学习目标
1.通过三角形的稳定性,体验三角形全等的 “边边边”条件.
2.掌握并会运用“边边边”定理判定两个三 角形的全等.
学习重、难点
重点:寻求三角形全等的条件的方法. 难点:寻求三角形全等的条件的依据.
尝试发现,探索新知
生生 互动
已知△ABC ≌△ DEF,找出其中相等的边与角:
谈谈本节课你有哪些收获以及存在的困惑?
A
A′
B
C
B′
C′
想一想: 作图的结果反映了什么规律?你能用文
字语言和符号语言概括吗?
知识要点
“边边边”判定方法
文字语言:三边对应相等的两个三角形全等。
(简写为“边边边”或“SSS”) A
几何语言:
在△ABC和△ DEF中,
AB=DE, BC=EF,
BD
C
CA=FD,
∴ △ABC ≌△ DEF(SSS). E
∴ ∠A=∠C (
)
重点:寻求三角形全等的条件的方法.
活,用智慧点亮人
生!
一部分,是否也能保证两个三角形全等呢?从这节课开始,我们来探究全等三角形的判定.
∴△ABC≌△FDE(SSS);
=,
∴ △ABD ≌ △ACD ( SSS ).
情景问题
人教版数学八年级上册第12章课时4 三角形全等的判定方法-HL(18页)

∴ Rt△EBC≌Rt△DCB (HL).
B
D
C
课堂小结
内容
“斜边、
直角边”
前
提
条
件
使用方法
斜边和一条直角边对应相
等的两个直角三角形全等.
在直角三角形中
只须找除直角外的两个条件即
可(两个条件中至少有一个条
件是一对对应边相等)
BE=CF.求证:AE=DF.
证明:∵BE=CF
∴BE+EF=CF+EF
即BF=CE
∵AE⊥BC,DF⊥BC
∴∠AEC=∠DFB=90°
在Rt△AEC和Rt△DFB中,
∴Rt△AEC ≌ Rt△DFB (HL)
=
=
∴AE=DF
当堂检测
1.判断两个直角三角形全等的方法不正确的有( D )
∴Rt△ABC ≌ Rt△ A′B′C′ (HL)
先斜边,
后直角边
典例分析
例1
如图2,AC⊥BD,DE交AC于点E,AB=DE,AC=DC.
求证:△ABC≌△DEC.
证明:∵AC⊥BD
∴∠ACB=∠DCE=90°
在Rt△ABC和Rt△DEC中,
=
=
∴Rt△ABC ≌ Rt△DEC (HL)
A.两条直角边对应相等
B.斜边和一锐角对应相等
C.斜边和一条直角边对应相等
D.两个锐角对应相等
2.如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点 E ,
AD、CE交于点H,已知EH=EB=3,AE=4,则 CH的长为
( A )
A.1
B.2
C.3
D.4
3.如图,△ABC中,AB=AC,AD是高,
B
D
C
课堂小结
内容
“斜边、
直角边”
前
提
条
件
使用方法
斜边和一条直角边对应相
等的两个直角三角形全等.
在直角三角形中
只须找除直角外的两个条件即
可(两个条件中至少有一个条
件是一对对应边相等)
BE=CF.求证:AE=DF.
证明:∵BE=CF
∴BE+EF=CF+EF
即BF=CE
∵AE⊥BC,DF⊥BC
∴∠AEC=∠DFB=90°
在Rt△AEC和Rt△DFB中,
∴Rt△AEC ≌ Rt△DFB (HL)
=
=
∴AE=DF
当堂检测
1.判断两个直角三角形全等的方法不正确的有( D )
∴Rt△ABC ≌ Rt△ A′B′C′ (HL)
先斜边,
后直角边
典例分析
例1
如图2,AC⊥BD,DE交AC于点E,AB=DE,AC=DC.
求证:△ABC≌△DEC.
证明:∵AC⊥BD
∴∠ACB=∠DCE=90°
在Rt△ABC和Rt△DEC中,
=
=
∴Rt△ABC ≌ Rt△DEC (HL)
A.两条直角边对应相等
B.斜边和一锐角对应相等
C.斜边和一条直角边对应相等
D.两个锐角对应相等
2.如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点 E ,
AD、CE交于点H,已知EH=EB=3,AE=4,则 CH的长为
( A )
A.1
B.2
C.3
D.4
3.如图,△ABC中,AB=AC,AD是高,
人教版初中数学八年级上册第十二章 全等三角形
人教版 数学 八年级 上册
12.1 全等三角形/
12.1 全等三角形
导入新知
12.1 全等三角形/
观察这些图片,你能找出形状、大小完全一样的几何 图形吗?
导入新知
12.1 全等三角形/
你能再举出生活中的一些类似例子吗?
素养目标
12.1 全等三角形/
3. 初步帮助学生建立平移、翻折、旋转三种图形 变化与全等形的关系.
12.1 全等三角形/
观察思考:每组中的两个图形有什么特点?
①
②
③
④
⑤
探究新知
12.1 全等三角形/
归纳总结
全等图形定义: 能够完全重合的两个图形叫做全等图形. 全等形性质: 如果两个图形全等,它们的形状和大小一定都相等.
探究新知 下面哪些图形是全等图形?
12.1 全等三角形/
大小、形状 完全相同
课后作业
作业 内容
12.1 全等三角形/
教材作业 从课后习题中选取 自主安排 配套练习册练习
2. 熟练掌握全等三角形的性质,并能灵活运用 全等三角形的性质解决相应的几何问题.
1. 熟记全等形及全等三角形的概念;能够正确找 出全等三角形的对应边、对应角.
探究新知
12.1 全等三角形/
知识点 1 全等图形的定义及性质
下列各组图形的形状与大小有什么特点?
(1)
(2)
(3)
(4)
(5)
探究新知
正确的结论并证明.
解:结论:EF∥NM
其他结论吗?
证明: ∵ △EFG≌△NMH,
∴ ∠E=∠N. ∴ EF∥NM.
巩固练习
12.1 全等三角形/
如图,△ABC ≌△CDA,AB 与CD,BC 与DA 是对应边,
12.1 全等三角形/
12.1 全等三角形
导入新知
12.1 全等三角形/
观察这些图片,你能找出形状、大小完全一样的几何 图形吗?
导入新知
12.1 全等三角形/
你能再举出生活中的一些类似例子吗?
素养目标
12.1 全等三角形/
3. 初步帮助学生建立平移、翻折、旋转三种图形 变化与全等形的关系.
12.1 全等三角形/
观察思考:每组中的两个图形有什么特点?
①
②
③
④
⑤
探究新知
12.1 全等三角形/
归纳总结
全等图形定义: 能够完全重合的两个图形叫做全等图形. 全等形性质: 如果两个图形全等,它们的形状和大小一定都相等.
探究新知 下面哪些图形是全等图形?
12.1 全等三角形/
大小、形状 完全相同
课后作业
作业 内容
12.1 全等三角形/
教材作业 从课后习题中选取 自主安排 配套练习册练习
2. 熟练掌握全等三角形的性质,并能灵活运用 全等三角形的性质解决相应的几何问题.
1. 熟记全等形及全等三角形的概念;能够正确找 出全等三角形的对应边、对应角.
探究新知
12.1 全等三角形/
知识点 1 全等图形的定义及性质
下列各组图形的形状与大小有什么特点?
(1)
(2)
(3)
(4)
(5)
探究新知
正确的结论并证明.
解:结论:EF∥NM
其他结论吗?
证明: ∵ △EFG≌△NMH,
∴ ∠E=∠N. ∴ EF∥NM.
巩固练习
12.1 全等三角形/
如图,△ABC ≌△CDA,AB 与CD,BC 与DA 是对应边,
人教版八年级数学上册12.2三角形全等的判定
AMC CNB 90, 在△AMC和△CNB中, 1 2,
BC AC,
∴△AMC≌△CNB(AAS),∴AM=CN,MC=NB. 又∵MN=CN+MC,∴MN=AM+BN.
灿若寒星
5.如图所示,已知AB∥CD,BE,CE分别为∠ABC,∠BCD的平分线,
点E在AD上.求证BC=AB+CD.
AB=AC,AD=AE,点C,D,E三点在同一直线上,连接BD.试猜想BD,CE 有何特殊位置关系,并证明.
〔解析〕BD,CE有何特殊位置关系,从图形上可看 出是垂直关系,可向这方面努力.要证BD⊥CE,需证
∠BDE=90°,需证∠ADB+∠ADE=90°,可由全等
三角形的性质提供.
解:BD,CE特殊位置关系为BD⊥CE.证明如下:
∠B=∠C.求证∠A=∠D.
证明:∵BE=CF, ∴BE+EF=CF+EF,即BF=CE.
在△ABF与△DCE中,
BF CE, B C, AB DC,
△ABF≌△DCE(SAS),∴∠A=∠D.
灿若寒星
全等三角形的判定和性质的综合应用
如图所例示4 ,在△ABC,△ADE中,∠BAC=∠DAE=90°,
证明:在△ABC和△ABD中,
∵
BC AD, CBA DAB,
AB BA,
∴△ABC≌△BAD(SAS),∴AC=BD.
【解题归纳】 应用三角形全等的判定方法证明三角形全等时, 特别注意隐含条件的应用,如公共边、公共角、对顶角等条件.
灿若寒星
1.如图所示,点E,A,C在同一直线上,AB∥CD,AB=CE, AC=CD.求证BC=ED.
在△AEC和△BFD中,
BC AC,
∴△AMC≌△CNB(AAS),∴AM=CN,MC=NB. 又∵MN=CN+MC,∴MN=AM+BN.
灿若寒星
5.如图所示,已知AB∥CD,BE,CE分别为∠ABC,∠BCD的平分线,
点E在AD上.求证BC=AB+CD.
AB=AC,AD=AE,点C,D,E三点在同一直线上,连接BD.试猜想BD,CE 有何特殊位置关系,并证明.
〔解析〕BD,CE有何特殊位置关系,从图形上可看 出是垂直关系,可向这方面努力.要证BD⊥CE,需证
∠BDE=90°,需证∠ADB+∠ADE=90°,可由全等
三角形的性质提供.
解:BD,CE特殊位置关系为BD⊥CE.证明如下:
∠B=∠C.求证∠A=∠D.
证明:∵BE=CF, ∴BE+EF=CF+EF,即BF=CE.
在△ABF与△DCE中,
BF CE, B C, AB DC,
△ABF≌△DCE(SAS),∴∠A=∠D.
灿若寒星
全等三角形的判定和性质的综合应用
如图所例示4 ,在△ABC,△ADE中,∠BAC=∠DAE=90°,
证明:在△ABC和△ABD中,
∵
BC AD, CBA DAB,
AB BA,
∴△ABC≌△BAD(SAS),∴AC=BD.
【解题归纳】 应用三角形全等的判定方法证明三角形全等时, 特别注意隐含条件的应用,如公共边、公共角、对顶角等条件.
灿若寒星
1.如图所示,点E,A,C在同一直线上,AB∥CD,AB=CE, AC=CD.求证BC=ED.
在△AEC和△BFD中,
人教版八年级数学上册第12章:“角边角”、“角角边”
D
∴ △ABC≌△ADC(AAS),
∴AB=AD.
C
随堂即练
【学以致用】如图,小明不慎将一块三角形模具打 碎为三块,他是否可以只带其中的一块碎片到商店 去,就能配一块与原来一样的三角形模具? 如果 可以,带哪块去合适?你能说明其中理由吗?
答:带1去,因为有两角且 夹边相等的两个三角形全 等.
1 23
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B',∠ABD=∠A'B'D',AB=AB,
所以△ABD≌△A'B'D'.所以AD=A'D'.
发现:全等三角形对应边上的高也相等.
内容
课堂总结
边角边 角 角 边 应用
为证明线段和角相等 提供了新的证法
A
▼几何语言:
在△ABC和△A′ B′ C′中, ∠A=∠A′ ,
B
C
A′
AB=A′ B′ ,
∠B=∠B′ ,
B′
C′
∴ △ABC≌△ A′ B′ C′ (ASA).
新课讲解
例1 已知:∠ABC=∠DCB,∠ACB= ∠DBC, 求证:△ABC≌△DCB.
证明:在△ABC和△DCB中,
A
D
∠ABC=∠DCB,
能力提升
【拓展】已知:如图,△ABC ≌△A′B′C′ ,AD、A′ D′
分别是△ABC 和△A′B′C′的高.试说明AD= A′D′ ,并
用一句话说出你的发现.
学海风暴人教版八年级数学上册教学课件同步练12.2三角形全等的判定第3课时教学1
∠D=∠C(已知)
AB=AB(公共边)
1
A2
B
∴△ABD≌△ABC (AAS)
∴AC=AD (全等三角形对应边相等)
C
课堂练习 课本P41练习
课堂小结
1.你能总结出我们学过哪些判定三角形 全等的方法吗? 2.要根据题意选择适当的方法; 3.证明线段或角相等,就是证明它们所
在的两个三角形全等.
角形全等(简写成“角角边”或“AAS”).
符号语言:
A
在△ABC和△DEF中
∠A=∠D (已知) ∠B=∠E(已知 ) BC=EF(已知 ) ∴ △ABC≌△DEF(AAS)
B
C
D
E
F
新课讲解
练一练
已知,如图,∠1=∠2,∠C=∠D
求证:AC=AD
证明:在△ABD和△ABC中
∠1=∠2 (已知)
A
C
B
E
D F
例题分析
证明:在△ABC和△DEF中,
∠A +∠B +∠C=1800,
∠D +∠E +∠F =1800,
∵ ∠A =∠D, ∠B=∠E,
B
∴ ∠C=∠F,
在△ABC和△DEF中
∴ ∠B=∠E,
BC=EF,
E
∠C=∠F,
∴ △ABC ≌△DEF (ASA)
A C
D F
新课讲解
有两角和它们中的一边对应相等的两个三
A
D
E
O
∴△ADC≌△AEB(ASA)
B
C
∴AD=AE(全等三角形的对应边相等)
又∵AB=AC(已知)
∴AB-AD=AC-AE即BD=CE(等式性质)