Electrochemical oxidation of the effluent from anaerobic digestion of dairy manure
镍酸锂分解温度

镍酸锂分解温度1. 引言镍酸锂(LiNiO2)是一种重要的正极材料,广泛应用于锂离子电池中。
了解镍酸锂的分解温度对于电池性能和安全性的评估至关重要。
本文将探讨镍酸锂的分解温度及其影响因素。
2. 镍酸锂的化学性质镍酸锂是一种属于钴酸锂结构家族的化合物,具有较高的比容量和较好的循环稳定性。
它由三种元素组成:镍(Ni)、锂(Li)和氧(O)。
其化学式为LiNiO2,摩尔质量为97.867 g/mol。
3. 镍酸锂的热稳定性镍酸锂在高温下可能发生分解反应,导致电池性能下降甚至发生热失控。
因此,了解其分解温度非常重要。
3.1 分解反应镍酸锂的分解反应可以表示为:2LiNiO2 → Li2O + NiO2 + O2该反应表明,在高温下,镍酸锂会分解为氧化锂、氧化镍和氧气。
3.2 分解温度镍酸锂的分解温度取决于多种因素,包括晶体结构、杂质、水分和加热速率等。
通常情况下,镍酸锂的分解温度在250-350℃之间。
不同研究文献中对其分解温度的报道有所差异,这可能是由于实验条件和测试方法的不同所致。
4. 影响镍酸锂分解温度的因素4.1 晶体结构镍酸锂具有层状结构,其中镍离子(Ni2+)和锂离子(Li+)交替排列。
晶体结构的稳定性会影响其热稳定性。
一些研究表明,在不同晶面上,镍酸锂的分解温度可能存在差异。
4.2 杂质杂质是指在合成过程中或后续处理中引入的其他元素。
它们可以改变晶格结构,从而影响镍酸锂的分解温度。
例如,添加过量的锰(Mn)可以降低镍酸锂的分解温度。
4.3 水分水分对镍酸锂的热稳定性有显著影响。
高水含量会导致镍酸锂在较低温度下发生分解反应。
因此,在制备和储存过程中要注意控制水分含量。
4.4 加热速率加热速率是指样品在加热过程中温度的变化率。
不同的加热速率可能导致不同的分解温度。
一般来说,较高的加热速率会使得镍酸锂在较低温度下发生分解反应。
5. 实验方法和测试技术为了确定镍酸锂的分解温度,可以使用多种实验方法和测试技术。
有机化学英文词汇

有机化学英文词汇有机化学英文词汇常见有机化学词汇Angular methyl group 角甲基Alkylidene group 亚烷基Allyl group 烯丙基Allylic 烯丙型[的]Aryl group 芳基Activating group 活化基团Auxochrome 助色团Acyl cation 酰[基]正离子Arenirm ion 芳[基]正离子Aci form 酸式Asymmetric atom 不对称原子Asymmetric carbon 不对称碳Absolute configuration 绝对构型Achiral 非手性[的]Anomer 端基[差向]异构体Anti conformation 反式构象Anti periplanar conformation 反叠构象Atropismer 阻转异构体Axial bond 直[立]键Aromaticity 芳香性Aromatic sexter 芳香六隅Antiaromaticity 反芳香性Alternant hydrocarbon 交替烃Antarafacial reaction 异面反应Ambident 两可[的]Acid-base catalyxed reaction 酸性溶剂Acid-base catalyzed reaction 酸碱催化反应Anomeric effect 端基异构效应Aromatic nucleophilic substitu-tion 芳香亲核取代Anti-Markovnikov addition 反马氏加成Addition-elimination mechanism 加成消除机理Apofacial reaction 反面反应Aryl action 芳正离子Anti-Zaitsev orientation 反札依采夫定向Anionic cleavage 负离子裂解Alkylation 烷基化Arylation 芳基化Acylation 酰化Amination 氨基化acyloxyation 酰氧基化Allylic halogenation 烯丙型卤化Additive dimerization 加成二聚Alkylolysis,alkyl cleavage 烷基裂解Acylolysis,acyl cleavage 酰基裂解Alcoholysis 醇解Aminomethylation 氨甲基化Aldol condensation 羟醛缩合Acyloin condensation 偶姻缩合Annulation,annelation 增环反应Autoxidation 自氧化Allylic hydroperoxylation 烯丙型氢过氧化Aromatization 芳构化Abstraction 夺取[反应]Aminomercuration 氨汞化Allylic migration 烯丙型重排Allylic migration 烯丙型迁移Acyl rearrangement 酰基重排Anionotropy 负离子转移Anionotropic rearrangement 负离子转移重排Aliphatic compound 脂肪族化合物Alkane 烷Alkene 烯Alkyen 炔Acetylide 炔化物Active hydrogen compounds 活泼氢化合物Allene 丙二烯Alkyl halide 卤代烷Alcohol 醇Amine 胺Amine oxide 氧化胺Aldehyde 醛Aldehyde hydrate 醛水合物Acetal 缩醛Aminal 缩醛胺Aldimine 醛亚胺Aldimine 醛肟Azine 嗪Acyl halide 酰卤Acyl fluoride 酰氟Acyl chloride 酰氯Acyl rtomide 酰溴Acyl iodide 酰碘Acyl tosylate 酰基对甲苯磺酸酐Acyl peroxide 酰基过氧化物Amide 酰胺Acyl azide 酰叠氮Amidine 脒Acyl cyanide 酰腈Allophanate 脲基甲酸酯Amino acid 氨基酸Aldol 羟醛Acyloin 偶姻Aldose 醛糖Aglycon 苷元Alditol 糖醇Alicyclic compound 脂环化合物Aromatic compound 稠环化合物Arene 芳香化合物Alkylbenzene 芳烃Aiaryl 联苄Acene 并苯Aryne 芳炔Annulene 烨烯Azulene ?Alkaloid 生物碱Azoxy compound 氧化偶氮化合物Azlactone 二氢?唑酮Azepine 氮杂?Arsine 胂Arsenic ylide 砷叶立德Azo cimpound 偶氮化物Benzyl group 苄基Benzylic 苄型[的]Bridged-ring system 桥环体系Benzylic cation 苄[基]正离子Bisecting conformation 等分构象Boat conformation 船型构象Banana bond 香蕉键Basic solvent 碱性溶剂B strain 后张力Bimolecular nucleophilic sub-stitution 双分Bimolecular nucleophilic substi-tution(withallylic rearrange-ment) 双分子亲核取代(含烯丙型重排)Bimolecular electrophilic substi-tution 双分子亲电取代Bimolecular elimination through theconjugate base 双分子共轭碱消除Bimolecular elimination 双分子消除Bimolecular elimination with for-mation of a carbonyl group 双分子羰基形成消除Bimolecular base-catalyzed acyl-oxygen cleavage双分子碱催化酰氧断裂Bimllecular base-catalyzed al-kyl-oxygen cleavage双分子碱催化烷氧断裂Borderline mechanism 边理机理Backside attack 背面进攻Briddgehead displacement 桥头取代Benzyne 苯炔Bredt rule 布雷特规则Bisamination 双氨基化Bimolecular reduction 双分子还原Benzilic rearrangement 二苯乙醇酸重排Betaine 甜菜碱Bibenzyl 烷基苯Biphenyl 联芳Biphenyl 联苯Benzvalene 盆苯Barrelene 桶烯Benzoin 苯偶姻Benzil 偶苯酰Chromophore 生色团Common ring 普通环Conjugation 共轭Conjugated-system 共轭体系Configuration 构型Chirality 手性Chiral 手性[的]Chiral center 手性中心Chiral molecule 手性分子Cahn-Ingold-Prelon sequence 顺序规则Cis-trans isomerism 顺反异构Conformation 构象Conformational 构象分析Conformational inversion 构象反转Chair conformation 椅型构象Cisoid conformation 顺向构象Conformer 构象异构体Conformational effect 构象效应Cram’srube 克拉姆规则Conformational transmission 构象传递Cross conjugation 交叉共轭Conrotatory 顺旋Cycloaddition 环加成Coordinate-covalent bond 配位共价键Conjugate base 共轭酸Conjugate base 共轭碱Counrer[gegen]ion反荷离子Carbocation 碳正离子Carbanion 碳负离子Carbenoid 卡宾体Carbene 卡宾Carbine 碳炔C-alkylation C-烷基化Carbalkoxylation 烷氧羰基化Carboamidation 氨羰基化Carboxylation 羧基化Cine substitution 移位取代Chlorosulfonation 氯磺酰化Chlorosulfenation 氯亚磺酰化Coupling reaction 偶联反应Cross-coupling reaction 交叉偶联反应Conjugate addition 共轭加成carbonylation 羧基化Cyanoethylation 氰乙基化Chiletropic reaction 螯键反应Chelation 螯环化Cyanomethylation 氰甲基化Cholromethylation 氯甲基化Condensation 缩合Cross aldol condensation 交叉羟醛缩合Cyclization 环化Catalytic hydrogenation 催化氢化Catalytic dehydrogenation 催化脱氢Cationotropic rearrangement 正离子转移重排Carbon acid 碳氢酸Ccumulene 累积多烯Cellosolve 溶纤剂Crown ether 冠醚Cyanohydrin 羟腈Carboxylic acid 羧酸Carbobenzoxy chloride 苄氧甲酰氯Carbon suboxide 二氧化三碳Carbammic acid 氨基甲酸Carbamate 氨基甲酸酯Cyanamide 氨腈Carbodiimide 碳二亚胺Carbohydrate 碳水化合物Cycloalkene 环烷Cage compound 螺烷Catenane 轮烷cyclophane 环芳Chalcone 查耳酮Chloroborane 氯硼烷carotene 胡萝卜素Charge-transfer spectrum 电荷转移光谱Chemical shift reagent 化学位移试剂Circularly polarized light 圆偏振光Cotton effect 卡滕效应Chiron,chiral building block 手性子Chiral induction 手性诱导Chiral reagent 手性试剂Chiral catalyst 手性催化剂Chiral solvent 手性溶剂Chiral auxiliary [reagent]手性助剂Convergent synthesis 汇集合成Diastereotopic 非对映异位[的]D-L system of nomenclatureD-L 命名体系Diastereomer 非对映[异构]体Delocalezed bond 离域键Diamagnetic ring cruuent 抗磁环电流Disroatatory 对旋Dielectric constant 介电常数Diaxial addition 双直键加成Deactivating group 钝化基团Demethylation 脱甲基化Decarboxylative nitration 脱羧卤化Dehalogenation 脱卤Decarboxylative nitration 脱羧硝化Nitrosation 亚硝化Desulfonation 脱磺酸基Diazotization 重氮化Diazo transfer 重氮基转移Diazonium coupling 重氮偶联Dimerization 二聚Decarbonylation 脱羰Decyanoethylation 脱氰乙基Diene synthesis 双烯合成Dienophile 亲双烯体Diels-Alder reaction 第尔斯-尔德反应Dipolar addition 偶极加成Dehydrohalogenation 脱卤化氢Deamination 脱氨基Decarboxylation 脱羧Decarboxamidation 脱酰胺Decyanation 脱氰基Dissolving metal reduction 溶解金属还原Deoxygenation 脱氧Desulfurization 脱硫Deselenization 脱硒Double bond migration 双键移位Diene 双烯Diyne 二炔Diazoalkane 重氮烷Detone 酮Dithiane 二噻烷Dewar benzene 杜瓦苯Diazo compound 重氮化合物Diazohydroxide 重氮氢氧化物Diketopiperazine 哌嗪二酮Diazine 二嗪Diterpene 二萜Diasteromeric excess,de 非对映体过量Enantiotopic 对映异位[的]Enantiomer 对映[异构]体Epimer 差向异构体Erythro configuration 赤型构型Erythro isomer 赤型异构体E isomerE 异构体Endo isomer 内型异构体Exo isomer 外型异构体Eclipsed conformation 重叠构象Envelope conformation 信封[型]构象Equatorial bond 平[伏]键Electrocyclic rearrangement 电环[化]重排Electrical effect 电场效应Electron donof-acceptor complex,EDAcomplex 电子给[体]受体络合物Eclipsing effect 重叠效应Eclipsing strain 重叠张力Electrophilic addition 亲电加成Electrophile 亲电体Electrophilic aromatic substitu-tion 亲电芳香取代Electron transfer 电子转移Electron-donating group 给电子基团Electron-Withdrawing group 吸电子基团Electrofuge 离电体Exhaustive methylation 彻底甲基化Ethylation 乙基化Endo addition 内型加成Exo addition 外型加成Ene synthesis 单烯合成elimination 消除Elimination-addition 消除-加成Esterification 酯化Ethanolysis 乙醇解Enolization 烯醇化Epoxidation 环氧化Electrochemical oxidation 电化学氧化Electrochemical reduction 电化学还原Electrophilic rearrangement 亲电重排Enyne 烯炔Ether 醚Epoxide 环氧化物Enol 烯醇Enol ether 烯醇醚Enol ester 烯醇酯Ester 酯Enantiomeric excess,ee 对映体过量Fluxional structure 循变结构Fischer projection 费歇尔投影式Field effect 场效应F strain 前张力Flash pyrolysis 闪热裂Fragmentation 碎裂Forbidden transition 禁阻跃迁Fluorene 芴fulvene 富烯Furan 呋喃Flavone 黄酮Ferocene 二铁Formal synthesis 中继合成Gauche conformation, skew con-formation 邻位交叉构象Guest 客体Glycidic acid 环氧丙酸Glycol 二醇Glycoside 糖苷Glucoside 葡[萄]糖苷Grignard reagent 格氏试剂Helical molecule 螺旋型分子Homotopic 等位[的]Heterotopic 异位[的]Half-chair conformation 半椅型构象Homolog 同系物Hyperconjugation 超共轭Huckel’rule休克尔规则Homoaromaticity 同芳香性Host 主体Hammond postulate 哈蒙德假说Homochiral 纯手性[的]Homolysis 均裂Heterolysis 异裂Heterolytic michanism 异裂机理Hofmann’srule 霍夫曼规则Hydroxylation 羟基化Hydroboration 硼氢化Hydroformylation 加氢甲酰基化Hydroacylation 加氢酰化Hydrocarboxylation 氢羧基化Homologization 同系化Hydroxymethylation 羟甲基化Hydroxyalkylation 羟烷基化Haloalkylation 卤烷基化Haloform reaction 卤仿反应Heterogeneous hydrogenation 多相氢化Homogeneous hydrogenation 均相氢化Hydrogenolysis 氢解Hydrometallation 氢金属化Homosigmatropic rearrangement 同迁移重排Hpdrocarbon 碳氢化合物Homoallylic alcohol 高烯丙醇Hydrazone 腙Hydrazide 酰肼Hydantion 乙内酰脲Helicene 螺旋烃Hydrazo compound 氢化偶氮化物Hydroquinone 氢醌Heterocyclic compound 杂环化合物Isomerism 异构[现象]Ipso position 本位Isovalent hyperconjugation 等价超共轭Inductive effect 诱导效应Imine-enamine atutomerism 亚胺-烯胺互变异构Inverse isotope effect 逆同位素效应Intermediate 中间体I strain 内张力Isoinversion 等反转Isoracemization 等消旋Internal nucleophilic substiru-tion 分子内亲核取代Ion pair 离子对Internal return 内返Inversion 反转Insertion 插入imine 亚胺Isonitrile 异腈Imide 二酰亚胺Indene 茚Imidazole 咪唑Isoquinoline 异喹啉Isoflavone 异黄酮Large ring 大环Laevo isomer 左旋异构体Leois structure 路易斯结构Linear free energy 线性自由能Large angle strain 大角张力Leaving group 离去基团Lithiation 锂化Lactone 内酯Lactol 内半缩醛Lactam 内酰胺Lipid 类脂Linear synthesis 线性合成Magnetically anisotropic group 磁各向异性基团Medium rimg 中环Mirror symmetry 镜面对称Meso compound 内消旋化合物Meta position 间位Para position 对位Molecular orbiral method 分子轨道法Mesomeric effect 中介效应Mobius system 默比乌斯体系Mechanism 机理Masked carbanion 掩蔽碳负离子Markovnikov’srube 马尔科夫尼科规则Michael addition 迈克尔加成Meta directing group 间位定位基Mitallation 金属化Mercuration 汞化Migratory aptitude 迁移倾向Migration 迁移Mercaptan 硫醇Macrolide 大环内酯Monoterpene 单萜Neoman projection 纽曼投影式No-bond resonance 无键共振Non-alternant hydrocarbon 非交替烷Non-bonded interaction 非键相互作用Nonclassical carbocation 非经典碳正离子Nitrene 氮宾Nucleophilic reaction 亲核反应Nucleophilicity 亲核体Nucleofuge 离核体Neighboring group participation 邻基基参与Neighboring proup assistance,anchimeric assistance 邻助作用Neighboring group effect 邻基效应N-alkylationN-烷基化Nitration 硝化Netro compound 硝基化合物Nitrile 腈Nitrile oxide 氧化腈N-bromo compound N-溴化物Nitrogen ylide 氮叶立德Octahedral compound 八面体化合物Optical activity 光学活性Quasi recemate 准外消旋体Ortho position 邻位Orinentation 取向Ortho-para directing group 邻对位定位基Ortho effect 邻位效应O-alkylation O-烷基化Oxyamination 羟氨基化Oxo process 羰基合成Oxonolysis 臭氧解Oxidative decarboxylation 氧化脱羧Oxymercuration 羟汞化Oxime 肟Oxime 亚硝基化合物orthoester 原酸酯Oligosaccharide 寡糖Osazone 脎Oxazine 嗪Organometallic 有机金属化合物Optical purity 光学纯度Optical induction 光学诱导Spiroannulation 螺增环Prototropic rearrangement 质了转移重排Pinacol rearrangement 频哪醇重排Prototropy 质子转移Photosensitization 光敏化photooxidation 光氧化Photoisomerization 光异构化Photochemical rearrangement 光化学重排Paraffin wax 石蜡Peracid 过酸Perester 过酸酯Peptide 肽Pyranose 吡喃糖Polysaccharide 多糖Propellane 笼型化合物Pyrrole 吡咯Pyrazole 吡唑Porphyrin 卟啉Pyridene 吡啶Piperidine 哌啶Phosphine 膦Phosphonium salt 膦盐Phosphorus ylide 磷叶立德Phospholipid 磷脂Pheromone 信息素Phytohormone 植物激素Polarized light 偏振光Partial synthesis 部分合成Protecting group 保护基Phenyl group 苯基Quinhydrone 醌Quinhydrone 醌氢醌Quinoline 喹啉Radical ion 自由基离子Radical cation 自由基正离子Radical anion 自由基负离子R-S syytem of nomenclatureR-S 命名体系Racemic mixture 外消旋混合物Racemic compound 外消旋化合物Racemic solid solution 外消旋固体溶液Rotamer 旋转异构体Retention of configuration 构型保持Regioselectivity 区域选择性Regiospecificity 区域专一性Resonance 共振Resonance effect 共振效应Reactive intermediate 活泼中间体Restricted rotation 阻碍旋转Racemization 外消旋化Ring clsure 环合Retro Diels-Alder reaction 逆第尔斯-阿尔德反应Retrograde aldol condensation 逆羟醛缩合Reductive alkylation 还原烷基化Reductive acylation 还原酰化Reductive dimerization 还原二聚Rearrangement 重排Ring contraction 环缩小[反应]Ring expansion,ring enlargement 扩环[反应]Rotazane 螺桨烷Rused ring 索烃Retrosynthesis 逆合成Relay synthesis 接替合成Spiro compound 螺环化合物Stereochemistry 立体化学Stereoisomerism 立体异构[现象]Symmetry factor 对称因素Si faceSi 面Synperiplanar conformation 顺叠构象Synclinal conformation 反错构象Synclinal conformation 顺错构象Staggered conformation 对位交叉构象Steric effect 空间效应Steric hindrance 位阻Skew boat conformation 扭船型构象Stereocelectivity 立体选择性Stereospecificty 立体专一性Stereochemical orientation 立体[化学]取向Symmetry forbidden-reaction 对称禁阻反应Synfacial reaction 同面反应Solvent effect 溶剂效应Solvated electron 溶剂化电子Secondary isotope effect 二级同位数效应Substrate 底物Small-angle strain 小角张力Substitution 取代Silylation 硅烷[基]化Seco alkylation 断裂烷基化Sulfonation 磺化Sulfenylation 亚磺酰化Sulfonylation 磺酰化sulfurization 硫化Selenylation 硒化Saponification 皂化Single electron transfer 单电子转移Semipinacol rearrangement 半频哪醇重排Sigmatropic rearrangement-迁移重排Super acid 超酸Sulfonic acid 磺酸Sulfoxide 亚砜Sulfone 砜Semicarbazone 缩氯基脲Saccharide 糖类Spirane 环烯Sydnone 悉尼酮Sulfur ylide 硫叶立德Sesquiterpene 倍半萜Steroid 甾族化合物Sex hormone 性激素Specific rotation 比旋光Synthesis 合成Synthon 合成子Tetrahedral configuration 四面体构型Threo configuration 苏型构型Threo isomer 苏型异构体Trigonal carbon 三角型碳Torsion angle 扭转角Twist conformation 扭型构象Transoid conformation 反向构象Trigonal hybridization 三角杂化Tautomerization 互变异构化tautomerism 互变异构Thermodynamic control 热力学控制Therm odynamic acidity 热力学酸度Torsional effect 扭转效应Transannular interaction 跨环相互作用Transannular strain 跨环张力Transamination 氨基交换Trimefization 三聚Transesterification 酯交换Transacetalation 缩醛交换Transfer hydrogenation 转移氢化Transannular insertion 跨环插入Transannular rearrangement 跨环重排Triene 三烯Thioester 硫代酸酯Thiol acid 硫羰酸Triazole 三唑Triazine 三嗪Thiazole 噻唑Terpene 萜Triterpene 三萜Tandem reaction sequence 连续反应过程Topochemistry 拓扑化学Unimolecular nucleophilic 单分子亲核取代Unimolecular electrophilic sub-stitution 单分子亲电取代Unimolecular elimination 单分子消除Unimolecular elimination through the conjugate base 单分子共轭碱消除Unimolecular acid-catalyzed acyl-oxygen cleavage 单分子酸催化酰氧断裂Unimolecular acid-catalyzed alkyl-oxygen cleavage 单分子酸催化烷氧断裂Umbrella effect 伞效应Umpolung 极反转Valence bond method 价键法Vinylog 插烯物Valence tautomerism 价互变异构Walden inversion 瓦尔登反转Wax 蜡Ylide 叶立德Ynamin 炔胺Z isomer Z 异构体Zaitsev rule 札依采夫规则Zwitterions 两性离子。
Titles 标题

Lecture 41.Linguistic characteristics of titles1.1 Titles should⏹Describe contents clearly and precisely, so that readers candecide whether to read the report⏹Provide key words for indexing⏹ABC principle: accuracy, brevity, clarity1.2 Titles should not⏹Include waste words such as "studies on," "an investigation of",“a Preliminary Study/Discussion on”, etc.⏹Use abbreviations and jargon/只有那些全称较长,缩写后已得到科技界公认,且在读者群中非常熟悉的,才可以使用。
如:LASER,DNA,AIDS,CT等等。
⏹Use "cute" language1.3 Length: disciplinary matter/题名不宜过长,国外科技期刊一般要求在10个词以内,不宜超过15个字。
如英国数学学会期刊要求每个题名不超过2个词,美国医学会规定题名不超过两行,每行不超过42个字符和空格。
1.4. Capitalization: all first words are capitalized; all words immediately following a colon arecapitalized; all other words are capitalized except for articles and prepositions (Agree or disagree?)1.5 目前世界上各大检索机构在题名上各有自己特有的要求,因机构不同而有所差异。
电化学氧化技术处理工业废水工艺流程

电化学氧化技术处理工业废水工艺流程1.工业废水首先要通过预处理去除悬浮物和沉淀物。
Industrial wastewater needs to be pretreated to remove suspended solids and precipitates first.2.经过预处理的废水进入电化学氧化设备。
The pretreated wastewater enters the electrochemical oxidation equipment.3.在电化学氧化设备中,废水经过阳极和阴极的电解作用产生氧气和氢气。
In the electrochemical oxidation equipment, the wastewater undergoes electrolysis at the anode and cathode to produce oxygen and hydrogen.4.过氧化物和其他活性氧化物也被产生出来,用于氧化废水中的有机物。
Peroxides and other active oxidizing agents are also generated to oxidize organic compounds in the wastewater.5.废水中的有机物被氧化成无害的物质。
Organic compounds in the wastewater are oxidized into harmless substances.6.处理后的废水经过中和和沉淀处理去除残留的氧化产物。
The treated wastewater is neutralized and subjected to precipitation to remove any remaining oxidation by-products.7.最终得到的水质符合排放标准,可以安全地排放到环境中。
The final water quality meets the discharge standards and can be safely discharged into the environment.8.废水处理过程中产生的氧气和氢气可以被回收利用。
环辛四烯

环辛四烯(COT)全称“1,3,5,7-环辛四烯”,是环辛烷的完全不饱和衍生物,化学式C8H8。
室温下为无色至金黄色液体。
属于环状多烯烃,结构与苯相似。
与苯不同的是,环辛四烯不具芳香性。
它的化学性质类似于不饱和烃,可以发生加成反应,易加氢生成环辛烷,也容易被氧化和发生聚合。
相反苯则易进行亲电取代反应。
目录:1. 历史2. 结构3. 化学性质4. 衍生出的负离子5. 天然存在形式6. 参见7. 参考资料说明环辛四烯英文名CyclooctatetraeneIUPAC英文名1,3,5,7-Cyclooctatetraene别名1,3,5,7-环辛四烯[8]-轮烯缩写COT识别CAS号629-20-9RTECS号CY1400000 SMILES C1=C/C=C\C=C/C=C\1性质化学式C8H 8摩尔质量104.15 g mol−1外观金黄色液体密度0.9250 g/cm³ (液体)熔点−5 - −3°C (268-270K) 沸点142-143°C (415-416K) 在水中的溶解度不互溶危险性EU分类可燃 (F)第一类致癌物质第二类致诱变剂有毒 (T)NFPA 70443警示性质标准词R45, R46, R11, R36/38, R48/23/24/25, R65安全建议标准词S53, S45闪点−11 °C自燃温度561 °C相关化学品相关化学品环丁二烯、苯、环辛烷若非注明,所有数据都依从国际单位制,以及来自标准状况(25 °C, 100 kPa)的条件。
1. 历史1. 1. 维尔施泰特的合成1,3,5,7-环辛四烯最初在1905年由里夏德·维尔施泰特(Willstätter)在慕尼黑合成。
[1][2]维尔施泰特(Willstatter)的制法。
上述合成中的原料伪石榴碱分子中已经有一个八元环。
在经过十三步反应之后,反应的总产率很低只有0.75%,最后分离出的产物也只有1g左右。
氟氯交换氟化合成对氟苯甲醛

氟氯交换氟化合成对氟苯甲醛吕早生;余腾飞;张琳涵;赵金龙;黄吉林;胡亚【摘要】以对氯苯甲醛(PCAD)和氟化钾为原料、以硝基苯和环丁砜(TMSO2)为溶剂、以四苯基溴化(鏻)(Ph4 PBr)和四乙二醇二甲醚(C10 H22O5)为复合催化体系,直接氟化制得对氟苯甲醛.优化的工艺条件为:n(KF):n(PCAD):n(Ph4PBr):n(C10H22O5)=4:1:0.15:0.05、反应温度210℃、反应时间8h,在此条件下对氟苯甲醛的收率为88.2%、转化率为92.8%、选择性为95.10%.%Using Ph4 PBr and C10 H22 O5 as synergism catalyst, nitrobenzene and TMSO2 as synergism solvent, 4-fluorobenzaldehyde was prepared by halogen-exchange fluorination of 4-chlorobenzaldehyde ( PC AD) with spray-dried KF. The optimum reaction conditions were obtained as follows: n (KF) : n(PCAD) : n(Ph4PBr) :n(C10H22 O5) =4 : 1: 0. 15 : 0. 05, reaction temperatur e 210 ℃,reaction time 8 h. Under above conditions,4-fluorobenzaldehyde was obtained with 88. 2% yield,92. 8% conversion,95. 1% selectivity.【期刊名称】《化学与生物工程》【年(卷),期】2012(029)001【总页数】3页(P54-56)【关键词】复合溶剂;卤素交换氟化;对氟苯甲醛【作者】吕早生;余腾飞;张琳涵;赵金龙;黄吉林;胡亚【作者单位】武汉科技大学化学工程与技术学院,湖北武汉430081;武汉科技大学化学工程与技术学院,湖北武汉430081;武汉科技大学化学工程与技术学院,湖北武汉430081;武汉科技大学化学工程与技术学院,湖北武汉430081;武汉科技大学化学工程与技术学院,湖北武汉430081;武汉科技大学化学工程与技术学院,湖北武汉430081【正文语种】中文【中图分类】TQ224.5对氟苯甲醛是重要的化工原料,同时也可作为化妆品和塑料添加剂及植物保护剂、杀菌剂、除臭剂等[1,2]。
电催化反应的英文
电催化反应的英文Electrochemical Catalysis: Unlocking the Potential of Energy Conversion and StorageElectrochemical catalysis is a rapidly evolving field that has garnered significant attention in recent years due to its pivotal role in addressing the global energy and environmental challenges. This transformative technology harnesses the power of chemical reactions driven by electrical energy, enabling the efficient conversion and storage of various forms of energy, from renewable sources to fossil fuels.At the heart of electrochemical catalysis lies the concept of using specialized catalysts to facilitate and accelerate electrochemical reactions. These catalysts, often made of precious metals or advanced materials, play a crucial role in enhancing the kinetics and selectivity of the desired reactions, ultimately improving the overall efficiency and performance of electrochemical systems.One of the primary applications of electrochemical catalysis is in the field of energy conversion. Fuel cells, for instance, rely on electrochemical catalysts to facilitate the oxidation of fuels, such ashydrogen or methanol, and the reduction of oxygen, generating electricity in a clean and efficient manner. The development of highly active and durable electrocatalysts has been a driving force behind the advancement of fuel cell technology, enabling the widespread adoption of these clean energy devices in various sectors, including transportation, stationary power generation, and portable electronics.Similarly, electrochemical catalysis plays a pivotal role in the storage and conversion of energy from renewable sources. In the case of water electrolysis, catalysts are employed to split water molecules into hydrogen and oxygen, allowing for the storage of energy in the form of hydrogen, which can then be used as a clean fuel or converted back into electricity through fuel cells. This process is particularly important for the integration of renewable energy sources, such as solar and wind, into the energy grid, as it provides a means to store excess energy generated during periods of high production.Moreover, electrochemical catalysis is essential in the developmentof advanced energy storage technologies, such as rechargeable batteries and metal-air batteries. Catalysts are used to enhance the efficiency and durability of the electrochemical reactions that occur during charging and discharging, enabling the storage and retrieval of energy with improved performance and safety.Beyond energy applications, electrochemical catalysis has also found important uses in the fields of environmental remediation and chemical synthesis. In the former, catalysts are employed to facilitate the electrochemical treatment of wastewater, enabling the removal of harmful pollutants and the recovery of valuable resources. In the latter, electrochemical catalysis is used to drive selective chemical transformations, opening up new pathways for the production of various chemicals and pharmaceuticals.The success of electrochemical catalysis is heavily dependent on the development of advanced catalytic materials and the optimization of the catalytic processes. Researchers in academia and industry are continuously exploring new strategies to design and synthesize highly active, selective, and durable catalysts, drawing inspiration from fields such as materials science, nanotechnology, and computational chemistry.One promising approach is the use of nanostructured materials, which offer a large surface area-to-volume ratio and the ability to fine-tune the electronic and structural properties of the catalysts. The incorporation of transition metals, noble metals, and their alloys into these nanostructured materials has led to significant improvements in catalytic performance, with researchers exploring innovative synthesis methods and novel catalyst architectures to further enhance activity and stability.Another area of active research is the development of non-precious metal-based catalysts, which aim to reduce the reliance on scarce and expensive precious metals, such as platinum and iridium. The exploration of earth-abundant elements, including iron, nickel, and cobalt, has yielded promising results, with researchers investigating ways to improve the catalytic activity and durability of these alternative materials.Computational modeling and simulation have also played a crucial role in the advancement of electrochemical catalysis. By coupling advanced computational techniques with experimental data, researchers can gain deeper insights into the underlying mechanisms of electrochemical reactions, enabling the rational design of more efficient and selective catalysts.As the world continues to grapple with the pressing challenges of energy security, environmental sustainability, and resource scarcity, the importance of electrochemical catalysis cannot be overstated. This transformative technology holds the potential to revolutionize the way we produce, store, and utilize energy, while also contributing to the development of more sustainable chemical processes and environmental remediation strategies.Through continued research, innovation, and collaboration amongscientists, engineers, and policymakers, the field of electrochemical catalysis is poised to play a pivotal role in shaping a more sustainable and prosperous future for our planet.。
电催化氧化法降解水中有机物的研究进展
电催化氧化法降解水中有机物的研究进展[作者:陈繁忠 傅家谟 盛国英 闵育顺 点击数:916 ]到论坛进行讨论[来源:《中国给水排水》1999年 第3期游客选项: 发表评论 收藏此页通过阳极反应直接降解有机物,或通过阳极反应产生羟基自由基(·OH)、臭氧一类的氧化剂降解有机物,这种降解途径使有机物分解更加彻底,不易产生毒害中间产物,更符合环境保护的要求。
这种方法通常被称为有机物的电催化氧化过程[1]。
长期以来,受电极材料的限制,电催化氧化降解有机物过程的电流效率很低、电耗很高,难以实用化。
80年代后,国内外许多研究者从研制高电催化活性电极材料入手,对有机物电催化氧化机理和影响降解效率的各种因素进行了研究,取得了较大突破,并开始应用于特种难生物降解有机废水的处理过程。
1 催化电极及机理研究电催化氧化过程通过阳极反应降解有机物,面临的主要竞争副反应就是阳极氧气的析出。
因而催化电极的一个必要条件是要有较高的析氧超电压。
1991年S.Stucki[2、3]等人研制开发了涂覆二氧化锡-五氧化二锑的钛基电极(SnO 2-Sb 2O 5/Ti),并考察其电化学性能。
结果表明,该电极比Pt/Ti 电极、二氧化铅电极有更高的析氧超电压。
在1mol/LH 2SO 4电解质中,当电流密度为0.1mA/cm 2时,SnO 2-Sb 2O 5/Ti 、Pt/Ti 、二氧化铅电极的析氧电位分别为1.95、1.50、1.65V ;当电流密度为10mA/cm 2时,三者的析氧电位分别为2.39、1.75、1.90V 。
研究者采用SnO 2-Sb 2O 5/Ti 作阳极,进行了各种有机物的电催化氧化降解实验(见表1)[4]。
结果表明,SnO 2-Sb 2O 5/Ti 电极作阳极氧化降解有机物,其电流效率比Pt/Ti 电极高得多。
SnO 2-Sb 2O 5/Ti 电极不仅对有机物降解具有较高的效率,同时也具备良好的导电性能和十分稳定的化学、电化学性能[4、5]。
北大考研-环境科学与工程学院研究生导师简介-倪晋仁
爱考机构-北大考研-环境科学与工程学院研究生导师简介-倪晋仁倪晋仁系所:环境工程系职称:教授联系电话:86-10-62751185,62754290E-mail:nijinren@个人简介科研工作教学工作倪晋仁,男,汉族,1962年8月生,山西山阴人。
1978~1982年在武汉大学水利学院治河工程系念大学;1982~1989年在清华大学水利工程系先后师从黄万里、钱宁教授攻读硕士、博士学位;1989~1991年在北京大学城市与环境系做博士后研究。
曾在英国牛津大学工程科学系、日本北海道大学土木工程系和瑞士联邦苏黎世高等理工学院(ETH)环境工程研究所做访问学者。
1991年在北京大学被聘为副教授,1992年被聘为教授。
致力于推进北京大学环境工程学科建设,组建了北京大学环境工程研究所(1995)、教育部水沙科学重点实验室(2000)、环境学院环境工程系(2002)、环境工程实验室(2004),结合环境科学与工程学科整合的优势获得了学科博士点;启动了深圳研究生院环境工程专业学科建设(2004),倡议并组建了国立新加坡大学-北京大学-牛津大学(SPO)水与环境技术平台(2010),建立了北京市新型污水深度处理工程技术研究中心(2012),初步形成了北京大学环境工程学科研究团队。
开设《环境科学与工程前沿》等4门课程。
主要致力于水沙两相流理论及其在水环境模拟、河流动力地貌的拓展研究,同时开展水体污染控制理论与治理技术方面的探索。
提出了水沙两相流中悬浮颗粒垂直分布的统一公式,使得Rouse等10余家著名公式成为特例;从动理论出发实现了从低到高颗粒浓度分布的统一描述,提出并解释了两种不同分布类型形成的原因;将两相流研究方法扩展应用于风沙运动、泥石流运动研究,构建了大范围、多尺度的流域渐发性和突发性泥沙灾害的快速评估方法体系。
基于多相流理论拓展建立了物理-化学-生物耦合过程的模拟方法,实现了活性污泥体系的多相流模拟与优化。
有机合成中的英文表达,写英文实验记录不愁了
有机合成中的英文表达,写英文实验记录不愁了一、有机合成中常见的类Acetal 缩醛 [化]乙缩醛, 乙缩醛二乙醇acetyl- 乙酰Acetylide 炔化物acid 酸Active hydrogen compounds 活泼氢化合物Acyl azide 酰叠氮Acyl chloride 酰氯Acyl cyanide 酰腈Acyl fluoride 酰氟Acyl halide 酰卤Acyl iodide 酰碘Acyl peroxide 酰基过氧化物Acyl bromide 酰溴Acyl tosylate 酰基对甲苯磺酸酐Acyloin 偶姻Aglycon 苷元-al 醛alcohol 醇Alcohol 醇Aldehyde hydrate 醛水合物Aldehyde 醛-aldehyde 醛Aldimine 醛肟Aldimine 醛亚胺Alditol 糖醇Aldol 羟醛Aldose 醛糖aldoxime 硝酮Alicyclic compound 脂环化合物Aliphatic compound 脂肪族化合物alkali- 碱Alkane 烷Alkene 烯alkoxy- 烷氧基Alkyne 炔Alkyl halide 卤代烷Allene 丙二烯Allophanate 脲基甲酸酯allyl 丙烯基 'Amide 酰胺-amide 酰胺Amidine 脒-amidine 脒Aminal 缩醛胺Amine oxide 氧化胺Amine 胺-amine 胺Amino acid 氨基酸amino- 氨基的-ane 烷anhydride 酐anilino- 苯胺基aquo- 含水的-ase 酶-ate 含氧酸的盐、酯-atriyne 三炔Azine 嗪azo- 偶氮benzene 苯Betaine 甜菜碱bi- 在盐类前表示酸式盐bis- 双-borane 硼烷bromo- 溴butyl 丁基 .-caboxylic acid 羧酸Cage compound 螺烷Carbamate 氨基甲酸酯Carbammic acid 氨基甲酸-carbinol 甲醇Carbobenzoxy chloride 苄氧甲酰氯Carbodiimide 碳二亚胺Carbohydrate 碳水化合物Carbon acid 碳氢酸Carbon suboxide 二氧化三碳carbonyl 羰基Carboxylic acid 羧酸Catenane 索烃Cumulene 累积多烯Cellosolve 溶纤剂centi- 10-2chloro- 氯代cis- 顺式condensed 缩合的、冷凝的Crown ether 冠醚Cyanamide 氨腈Cyanohydrin 羟腈cyclo- 环Cycloalkane 环烷deca- 十deci 10-1 Detone 酮Diazoalkane 重氮烷Diene 双烯-dine 啶Dithiane 二噻烷Diyne 二炔dodeca- 十二Enamine 烯胺-ene 烯Enol ester 烯醇酯Enol ether 烯醇醚Enol 烯醇Enyne 烯炔epi- 表Epoxide 环氧化物epoxy- 环氧Ester 酯-ester 酯Ether 醚-ether 醚ethoxy- 乙氧基ethyl 乙基fluoro- 氟代form 仿Furanose 呋喃糖Glucoside 葡[萄]糖苷Glycidic acid 环氧丙酸Glycol 二醇-glycol 二醇Glycoside 糖苷hemi- 半Hemiacetal 半缩醛hendeca- 十一hepta- 七heptadeca- 十七hexa- 六hexadeca- 十六Homoallylic alcohol 高烯丙醇Hydrocarbon 碳氢化合物Hydantion 乙内酰脲Hydrazide 酰肼Hydrazone 腙-hydrin 醇hydro- 氢或水hydroxyl 羟基hypo- 低级的,次-ic 酸的,高价金属-ide 无氧酸的盐,酰替胺,酐-il 偶酰Imide 二酰亚胺imine 亚胺-imine 亚胺Inner salt 内盐iodine 碘iodo- 碘代iso- 异,等,同Isonitrile 异腈-ite 亚酸盐Ketal 缩酮Ketene 乙烯酮Keto ester 酮酸酯keto- 酮Ketone hydrate 酮水合物ketone 酮Ketose 酮糖Lactam 内酰胺Lactol 内半缩醛Lactone 内酯-lactone 内酯Macrolide 大环内酯Mannich base 曼尼希碱mega- 106Mercaptan 硫醇meta- 间,偏methoxy- 甲氧基methyl 甲基micro- 10-6milli- 10-3mono- ( mon-) 一,单nano- 10-9N-bromo compound N-溴化物Nitro compound 硝基化合物Nitrile oxide 氧化腈Nitrile 腈nitro- 硝基nitroso- 亚硝基nona- 九nonadeca- 十九octa- 八octadeca- 十八-oic 酸的-ol 醇9 a$ f! Q, H: [5 n& G Oligosaccharide 寡糖-one 酮ortho- 邻,正,原orthoester 原酸酯Osazone 脎-ous 亚酸的,低价金属oxa- 氧杂-oxide 氧化合物Oxime 肟-oxime 肟oxo- 酮oxy- 氧化-oyl 酰para- 对位,仲Paraffin wax 石蜡penta- 五pentadeca- 十五Peptide 肽per- 高,过Peracid 过酸Perester 过酸酯petro- 石油phenol 苯酚phenyl 苯基pico- 10-12Pinacol 频哪醇poly- 聚,多Polysaccharide 多糖Propellane 笼型化合物Pyranose 吡喃糖quadri- 四Quaternaryammonium com-pound 季铵化合物quinque- 五rotaxane 轮烷Rused ring 索烃Saccharide 糖类semi- 半Semicarbazone 缩氯基脲septi- 七sesqui 一个半Spirane 环烯sulfa- 磺胺Sulfone 砜Sulfonic acid 磺酸Sulfoxide 亚砜Super acid 超酸sym- 对称syn- 顺式,同,共ter- 三 -tetra- 四tetradeca- 十四tetrakis- 四个thio- 硫代thio- 硫代Thioester 硫代酸酯Thiol acid 硫羰酸trans- 反式,超,跨trans- 反式,超,跨tri- 三tri- 三trideca- 十三Triene 三烯tris- 三个undeca- 十一 .uni- 单,一unsym- 不对称的,偏位Urea 脲Wax 蜡-yl 基-ylene 撑(二价基,价在不同原子上) Ynamine 炔胺-yne 炔Zwitterions 两性离子二、有机合成中常见术语1,4-addition 1,4-加成Absolute configuration 绝对构型Abstraction 夺取[反应]Achiral 非手性[的]Acid form 酸式acid(ic) solvent 酸性溶剂Acid-base catalyzed reaction 酸碱催化反应Activating group 活化基团Acyl cation 酰[基]正离子Acyl rearrangement 酰基重排Acylation 酰化Acyloin condensation 偶姻缩合Acylolysis,acyl cleavage 酰基裂解acyloxyation 酰氧基化Addition-elimination mechanism 加成消除机理Additive dimerization 加成二聚Alcoholysis 醇解Aldol condensation 羟醛缩合Alkylation 烷基化Alkylidene group 亚烷基Alkylolysis,alkyl cleavage 烷基裂解Allyl group 烯丙基Allylic halogenation 烯丙型卤化Allylic hydroperoxylation 烯丙型氢过氧化Allylic migration 烯丙型迁移Allylic migration 烯丙型重排Allylic 烯丙型[的]Alternant hydrocarbon 交替烃Ambident 两可[的]Amination 氨基化Aminomercuration 氨汞化Aminomethylation 氨甲基化Amphi position 远位Angular methyl group 角甲基Anionic cleavage 负离子裂解Anionic cycloaddition 负离子环加成Anionotropic rearrangement 负离子转移重排Anionotropy 负离子转移Annulation,annelation 增环反应Anomer 端基[差向]异构体Anomeric effect 端基异构效应Antarafacial reaction 异面反应Anti conformation 反式构象Anti periplanar conformation 反叠构象Antiaromaticity 反芳香性Anti-Markovnikov addition 反马氏加成Anti-Zaitsev orientation 反札依采夫定向Apofacial reaction 反面反应Arenium ion 芳[基]正离子Aromatic nucleophilic substitu-tion 芳香亲核取代Aromatic sexter 芳香六隅Aromaticity 芳香性Aromatization 芳构化Aryl cation 芳正离子Aryl group 芳基Arylation 芳基化Asymmetric atom 不对称原子Asymmetric carbon 不对称碳Atropismer 阻转异构体Autoxidation 自氧化Auxochrome 助色团Axial bond 直[立]键B strain 后张力Backside attack 背面进攻Banana bond 香蕉键Basic solvent 碱性溶剂Benzilic rearrangement 二苯乙醇酸重排Benzyl group 苄基Benzylic cation 苄[基]正离子Benzylic 苄型[的]Benzyne 苯炔Bimolecular base-catalyzed alkyl-oxygen cleavage 双分子碱催化烷氧断裂Bimolecular base-catalyzed acyl-oxygen cleavage 双分子碱催化酰氧断裂Bimolecular electrophilic substi-tution 双分子亲电取代Bimolecular elimination through the conjugate base 双分子共轭碱消除Bimolecular elimination with for-mation of a carbonyl group 双分子羰基形成消除Bimolecular elimination 双分子消除Bimolecular nucleophilic sub-stitution 双分子亲核取代Bimolecular nucleophilic substi-tution(with allylic rearrange-ment) 双分子亲核取代(含烯丙型重排)Bimolecular reduction 双分子还原Bisamination 双氨基化Bisecting conformation 等分构象Boat conformation 船型构象Borderline mechanism 边理机理Bredt rule 布雷特规则Briddgehead displacement 桥头取代Bridged-ring system 桥环体系C- alkylation C-烷基化Cahn-Ingold-Prelon sequence 顺序规则Carbalkoxylation 烷氧羰基化Carbanion 碳负离子Carbene 卡宾Carbenoid 卡宾体Carbyne 碳炔Carboamidation 氨羰基化Carbocation 碳正离子carbonylation 羧基化Carboxylation 羧基化Catalytic dehydrogenation 催化脱氢Catalytic hydrogenation 催化氢化Cationotropic rearrangement 正离子转移重排Chair conformation 椅型构象Chelation 螯环化Chiletropic reaction 螯键反应Chiral center 手性中心Chiral molecule 手性分子Chiral 手性[的]Chirality 手性Chlorocarbonylation 氯羰基化Chlorosulfenation 氯亚磺酰化Chlorosulfonation 氯磺酰化Cholromethylation 氯甲基化Chromophore 生色团Cine substitution 移位取代Cisoid conformation 顺向构象Cis-trans isomerism 顺反异构Common ring 普通环Condensation 缩合Configuration 构型Conformation 构象Conformational effect 构象效应Conformational inversion 构象反转Conformational transmission 构象传递Conformational 构象分析Conformer 构象异构体Conjugate addition 共轭加成Conjugate base 共轭碱Conjugate base 共轭酸Conjugated-system 共轭体系Conjugation 共轭Conrotatory 顺旋Coordinate-covalent bond 配位共价键Counrer[gegen]ion 反荷离子Coupling reaction 偶联反应Cram’s rube 克拉姆规则Cross aldol condensation 交叉羟醛缩合Cross conjugation 交叉共轭Cross-coupling reaction 交叉偶联反应Cyanoethylation 氰乙基化Cyanomethylation 氰甲基化Cyclization 环化Cycloaddition 环加成Deactivating group 钝化基团Deamination 脱氨基Decarbonylation 脱羰Decarboxamidation 脱酰胺Decarboxylation 脱羧Decarboxylative nitration 脱羧卤化Decarboxylative nitration 脱羧硝化Decyanation 脱氰基Decyanoethylation 脱氰乙基Dehalogenation 脱卤Dehydrohalogenation 脱卤化氢Delocalezed bond 离域键Demethylation 脱甲基化Deoxygenation 脱氧Deselenization 脱硒Desulfonation 脱磺酸基Desulfurization 脱硫Dextro isomer 右旋异构体Diamagnetic ring cruuent 抗磁环电流Diastereomer 非对映[异构]体Diastereotopic 非对映异位[的]Diaxial addition 双直键加成Diazo transfer 重氮基转移Diazonium coupling 重氮偶联Diazotization 重氮化Dielectric constant 介电常数Diels-Alder reaction 第尔斯-尔德反应Diene synthesis 双烯合成Dienophile 亲双烯体Dimerization 二聚Dipolar addition 偶极加成Disroatatory 对旋Dissolving metal reduction 溶解金属还原D-L system of nomenclature D-L命名体系Double bond migration 双键移位E isomer E异构体Eclipsed conformation 重叠构象Eclipsing effect 重叠效应Eclipsing strain 重叠张力Electrical effect 电场效应Electrochemical oxidation 电化学氧化Electrochemical reduction 电化学还原Electrocyclic rearrangement 电环[化]重排Electrofuge 离电体Electron donof-acceptor complex,EDAcomplex 电子给[体]受体络合物Electron transfer 电子转移Electron-donating group 给电子基团Electron-Withdrawing group 吸电子基团Electrophile 亲电体Electrophilic addition 亲电加成Electrophilic aromatic substitu-tion 亲电芳香取代Electrophilic rearrangement 亲电重排Electrophilic substitution 亲电取代elimination -消除-elimination -消除Elimination-addition 消除-加成Enantiomer 对映[异构]体Enantiotopic 对映异位[腯Endo addition 内型加成Endo isomer 内型异构体Ene synthesis 单烯合成Enolization 烯醇化Envelope conformation 信封[型]构象Epimer 差向异构体Epoxidation 环氧化Equatorial bond 平[伏]键Erythro configuration 赤型构型Erythro isomer 赤型异构体Esterification 酯化Ethanolysis 乙醇解Ethylation 乙基化Exhaustive methylation 彻底甲基化Exo addition 外型加成Exo isomer 外型异构体F strain 前张力Field effect 场效应Fischer projection 费歇尔投影式Flash pyrolysis 闪热裂Fluxional structure 循变结构Forbidden transition 禁阻跃迁Formylation 甲酰化Fragmentation 碎裂Gauche conformation, skew con-formation 邻位交叉构象Guest 客体Half-chair conformation 半椅型构象Haloalkylation 卤烷基化Haloform reaction 卤仿反应Hammond postulate 哈蒙德假说Helical molecule 螺旋型分子Heterogeneous hydrogenation 多相氢化Heterolysis 异裂Heterolytic michanism 异裂机理Heterotopic 异位[的]Hofmann’s rule 霍夫曼规则Homoaromaticity 同芳香性Homochiral 纯手性[的]Homogeneous hydrogenation 均相氢化Homolog 同系物Homologization 同系化Homolysis 均裂Homosigmatropic rearrangement 同迁移重排Homotopic 等位[的]Host 主体Huckel’rule休克尔规则Hydroacylation 加氢酰化Hydroboration 硼氢化Hydrocarboxylation 氢羧基化Hydroformylation 加氢甲酰基化Hydrogenolysis 氢解Hydrometallation 氢金属化Hydroxyalkylation 羟烷基化Hydroxylation 羟基化Hydroxymethylation 羟甲基化Hyperconjugation 超共轭I strain 内张力Imine-enamine atutomerism 亚胺-烯胺互变异构Inductive effect 诱导效应Initiation 引发Insertion 插入Intermediate 中间体Internal abstraction 内夺取[反应]Internal nucleophilic substiru-tion 分子内亲核取代Internal return 内返Inverse isotope effect 逆同位素效应Inversion 反转Ion pair 离子对Ipso position 本位Isoinversion 等反转Isomerism 异构[现象]Isoracemization 等消旋Isovalent hyperconjugation 等价超共轭Keto-enol tautomerism 酮-烯醇互变异构-ketol rearrangement -酮醇重排Ketyl radical 羰自由基Kinetic acidity 动力学酸度Kinetic control 动力学控制Laevo isomer 左旋异构体Large angle strain 大角张力Large ring 大环Leaving group 离去基团Leois structure 路易斯结构Linear free energy 线性自由能Lithiation 锂化Magnetically anisotropic group 磁各向异性基团Markovnikov’s rube 马尔科夫尼科规则Masked carbanion 掩蔽碳负离子Mechanism 机理Medium rimg 中环Mercuration 汞化Meso compound 内消旋化合物Mesomeric effect 中介效应Meta directing group 间位定位基Meta position 间位Michael addition 迈克尔加成Microscopic reversibility 微观可逆性Migration 迁移Migratory aptitude 迁移倾向Mirror symmetry 镜面对称Mitallation 金属化Mobius system 默比乌斯体系Molecular orbiral method 分子轨道法N-alkylation N-烷基化Neighboring group effect 邻基效应Neighboring group participation 邻基基参与Neighboring proup assistance,anchimeric assistance 邻助作用Neoman projection 纽曼投影式Nitration 硝化Nitrene 氮宾Nitrosation 亚硝化No-bond resonance 无键共振Non-alternant hydrocarbon 非交替烷Non-bonded interaction 非键相互作用Nonclassical carbocation 非经典碳正离子Nucleofuge 离核体Nucleophile-assisted unimolecu-lar electrophilic substitution 亲核体协助单分子亲电取代Nucleophilic reaction 亲核反应Nucleophilicity 亲核体Nucleophilicity 亲核性O- alkylation O-烷基化Octahedral compound 八面体化合物Optical activity 光学活性Orinentation 取向Ortho effect 邻位效应Ortho position 邻位Ortho-para directing group 邻对位定位基Oxidative decarboxylation 氧化脱羧Oxo process 羰基合成Oxonolysis 臭氧解Oxyamination 羟氨基化Oxymercuration 羟汞化Para position 对位Paramagnetic ring current 顺磁环电流Partial bond fixation 键[的]部分固定化Partial rate factor 分速度系数Pauling electronegativity scale 鲍林电负性标度Peri position 近位Pericyclic reaction 周环反应Phantom atom 虚拟原子Phase-transfer catalysis 相转移催化Phenol-keto tautomerism 酚-酮互变异构Phenyl group 苯基Photochemical rearrangement 光化学重排Photoisomerization 光异构化photooxidation 光氧化Photosensitization 光敏化Pinacol rearrangement 频哪醇重排Pitzer strain 皮策张力Plane of symmetry 对称面Polarizability 可极化性Prelog’rule普雷洛格规则Primary isotope effect 一级同位素效应Prochirality 前手性Pro-R group 前R基团Pro-S proup 前S基团Prototropic rearrangement 质了转移重排Prototropy 质子转移Pseudoasymmetric carbon 假不对称碳Pseudorotation 假旋转Puckered ring 折叠环Push-pull effect 推拉效应Pyrolytic elimination 热解消除Quasi recemate 准外消旋体Racemic compound 外消旋化合物Racemic mixture 外消旋混合物Racemic solid solution 外消旋固体溶液Racemization 外消旋化Radical anion 自由基负离子Radical cation 自由基正离子Radical ion 自由基离子Re face Re面Reactive intermediate 活泼中间体Rearrangement 重排Reductive acylation 还原酰化Reductive alkylation 还原烷基化Reductive dimerization 还原二聚Regioselectivity 区域选择性Regiospecificity 区域专一性Resonance effect 共振效应Resonance 共振Restricted rotation 阻碍旋转Retention of configuration 构型保持Retro Diels-Alder reaction 逆第尔斯-阿尔德反应Retrograde aldol condensation 逆羟醛缩合Retropinacol rearrangement 逆频哪醇重排Ring clsure 环合Ring contraction 环缩小[反应]Ring expansion,ring enlargement 扩环[反应] Ring-chain tautomerism 环-链互变异构Rotamer 旋转异构体R-S syytem of nomenclature R-S命名体系Saponification 皂化Seco alkylation 断裂烷基化Secondary isotope effect 二级同位数效应Selenylation 硒化Semipinacol rearrangement 半频哪醇重排Si face Si面Sigmatropic rearrangement -迁移重排Silylation 硅烷[基]化Single electron transfer 单电子转移Skew boat conformation 扭船型构象Small-angle strain 小角张力Smally ring 小环Solvated electron 溶剂化电子Solvent effect 溶剂效应Spiro compound 螺环化合物Spiroannulation 螺增环Staggered conformation 对位交叉构象Stereocelectivity 立体选择性Stereochemical orientation 立体[化学]取向Stereochemistry 立体化学Stereoisomerism 立体异构[现象] Stereospecificty 立体专一性Steric effect 空间效应Steric hindrance 位阻Substitution 取代Substrate 底物Sulfenylation 亚磺酰化Sulfonation 磺化Sulfonylation 磺酰化sulfurization 硫化Symmetry factor 对称因素Symmetry forbidden-reaction 对称禁阻反应Synclinal conformation 反错构象Synclinal conformation 顺错构象Synfacial reaction 同面反应Synperiplanar conformation 顺叠构象tautomerism 互变异构Tautomerization 互变异构化Tetrahedral configuration 四面体构型Therm odynamic acidity 热力学酸度Thermodynamic control 热力学控制Threo configuration 苏型构型Threo isomer 苏型异构体Torsion angle 扭转角Torsional effect 扭转效应Transacetalation 缩醛交换Transamination 氨基交换Transannular insertion 跨环插入Transannular interaction 跨环相互作用Transannular rearrangement 跨环重排Transannular strain 跨环张力Transesterification 酯交换Transfer hydrogenation 转移氢化Transoid conformation 反向构象Trigonal carbon 三角型碳Trigonal hybridization 三角杂化Trimefization 三聚Twist conformation 扭型构象Umbrella effect 伞效应Unimolecular acid-catalyzed acyl-oxygen cleavage 单分子酸催化酰氧断裂Unimolecular acid-catalyzed alkyl-oxygen cleavage 单分子酸催化烷氧断裂Unimolecular electrophilic sub-stitution 单分子亲电取代Unimolecular elimination through the conjugate base 单分子共轭碱消除Unimolecular elimination 单分子消除Unimolecular nucleophilic 单分子亲核取代Valence bond method 价键法Valence tautomerism 价互变异构Vinylog 插烯物Walden inversion 瓦尔登反转Z isomer Z异构体Zaitsev rule 札依采夫规则α-effect α-效应π-allyl complex mechanism π烯丙型络合机理三、有机合成中常见的句型Part 1: 反应前的装置描述1.1: A 3 L three-necked round bottom flask equippedwith mechanical stirrer (or magnetic stirrer), addition funnel andthermometer (or Dean-Stock; drying tube)1.2: All flasks used in the reaction were heatedunder vacuum for 30 minutes and purged with N2 for 10 minutes. (无水反应装置) Part 2: 加料2.1: 不同的顺序和表达2.1.1: A 3 L three-necked round bottom flaskequipped with mechanical stirrer (or magnetic stirrer), addition funneland thermometer (or Dean-Stock; drying tube) were charged with A(10 mL, 1 mole), B(2 g, mole) and C (50 mL),2.1.1.1: a solution of D (10 g, 1 mole) inE (20 mL)was added dropwise (via addition funnel or syringe) at 10oC (or whilemaintaining gentle reflux; while keeping innertemperature between 10oC –30oC) under N2 (液体滴加到反应液中)2.1.1.2: D (10 g, 1 mole) was added in portionsduring a period of 1 hr (固体分批加入到反应液中)2.1.1.3: D (10 g, 1 mole) and E (20 mL) were addedin turn2.2: To a solution (mixture, suspension orslurry) of A (10 mL, 1 mole) and B (2 g, mole) in C (50 mL)2.2.1: was added dropwise a solution of D (10 g, 1mole) in E (20 mL) with stirring at 10oC (or while maintaining gentlereflux; while keeping inner temperature between 10oC –30oC) under N22.2.2: was added D (10 g, 1 mole) in portions duringa period of 1 hr2.2.3: were added D (10 g, 1 mole) and E (20 mL) inturn 2.3:2.3.1: A solution of D (10 g, 1 mole) in E (20 mL)was added dropwise into a solution (mixture or suspension) of A (10 mL, 1mole) and B (2 g, mole) in C (50 mL) at 10oC (or while maintaining gentlereflux; while keeping inner temperature between 10oC –30oC) underN22.3.2: D (10 g, 1 mole) was added into a solution(mixture or suspension) of A (10 mL, 1 mole) and B (2 g, mole) in C (50mL) in portions2.3.3: D (10 g, 1 mole) and E (20 mL) were addedinto a solution (mixture or suspension) of A (10 mL, 1 mole) and B (2 g,mole) in C (50 mL) in turn 2.4:2.4.1: A solution of BuLi or BH3/THF (10 mL, 1 mole,2.5 M in hexane) was cannulated into addition funnel or into a solution Ain solvent B2.4.2: A solution of BuLi or BH3/THF (10 mL,1 mole,2.5 M in hexane) was added into a solution of A in solventB via cannula,dropping funnel or syringe over a period of hrs Part 3: 反应3.1: 无溶剂反应A (1 g, 1 mol) and B (1 g, 1 mol) were dissolved insolvent C, evaporated to dryness and heated for x hours at x oC 3.2: 催化量的反应A (20 mL, 142 mmol) and catalytic amount (a traceamount or two drops) of B were added into a solution of C (4.549 g, 46.4mmol) in D(120mL) at 0 oC 3.3: 闷罐反应或封管反应 A solution of A (x g, x mol) in methanol (xmL)saturated with NH3 (or other gas such as: CO, CO2, H2S) was stirred under50 Psi at x oC for x hours in a 50 mL of sealed tube or autoclave. 3.4: 有气体参与的反应3.4.1: A solution of A (x g, x mol) in methanol (xmL) saturated with HCl was stirr ed at x ℃.3.4.2: Ozone was bubbled into a solution of A (x g,x mol) in MeOH (x mL) at x oC for 15 minutes. After excess O3 was purgedby N2, Me2S (x mL) was added at x oC.3.4.3: Gas was bubbled into a solution of A (x g, xmol) and B (x g, x mol) in solvent C (x mL) at x oC for x hours. 3.5: 混合溶剂参与的反应3.5.1: To a solution of A (x g, x mol) in a mixtureof solvent B (mL) and solvent C (x mL) (or a mixed solvent of B and C) wasadded D (x g, x mol) at x oC, the reaction mixture was allowed to stir(reflux or heat) for x hrs.3.5.2: To a solution of A (x g, x mol) in 10: 1aqueous acetone (x mL) was added B (x g, x mol) followed by addition of C(x g, x mol), the reaction mixture was allowed to stir (reflux or heat)for x hrs. 3.6: 分水器分水的反应3.6.1: A (x g, x mol) and B (x g, x mol) in benzeneor toluene (x mL) were refluxed for x hours with azeotropical removal ofwater.3.6.2; A mixture of A, B and TsOH.H2O (56.91 g, 0.3mol) in toluene (400 mL) was heated to reflux and remove water byDean-Stark trap. 3.7: 氢化反应To a solution of A (x g, x mol) in EtOH (x mL) wasadded Pd-C or Ra-Ni or Pd(OH)2/C (10%, x g) under N2. The suspension wasdegassed under vacuum and purged with H2 several times.3.7.1: The mixture was stirred under H2 (x psi) at x℃ for x hours. [氢化瓶或高压釜]3.7.2: The mixture was stirred under H2 balloon at x℃ for x hours. [常压氢化如气球反应]3.7.3: A mixture of A (x g, x mol) and Ra-Ni (x g)in EtOH (x mL) was hydrogenated under 50 Psi of hydrogen pressure for xhours at room temperature. Part 4: 反应条件或过程描述 4.1: The reaction mixture (solution or suspension)was stirred at 5oC for 2 hrs and then kept at roomtemperature (or ambienttemperature) for another 2 hrs (or overnight)4.2: The reaction mixture (solution or suspension)was refluxed (heated to reflux) or heated at 60oC for 2 hrs (or overnight)4.3: The reaction mixture (solution or suspension)was allowed to reflux (or heat to reflux) for 2 hrs (or overnight)4.4: The reaction mixture (solution or suspension)was allowed to warm to temperature during 2 hrs and reflux (or heat toreflux) for 2 hrs (or overnight) Part 5: 反应监测5.1: Taking sample from the reaction mixture(solution or suspension) by dropping tube or syringe. After workup, checkthe reaction via TLC, LC-MS or HPLC etc.. (预处理) 5.2: 反应状态或终点描述5.2.1: The reaction was complete (incomplete ormessy) detected (determined or confirmed) by TLC (PE/EtOAc 4:1), LC-MS,HPLC or NMR5.2.2: TLC (PE:EtOAc=1:1) or HPLC (107757-088-1)showed or indicated that the reaction was complete.5.2.3: TLC (PE:EtOAc=1:1) or HPLC (107757-088-1)showed the starting material was consumed completely.5.2.4: TLC (PE:EA=1:1) or HPLC (107757-088-1) showedthe reaction didn’t work at all or most of starting material was stillremained.5.2.5: The starting material was consumedcompletely, but no desired compound was detected or determined by MS(106657-078-1) or LC-MS (106657-078-1).5.2.6: Several spots were shown on TLC.5.2.7: Only a trace amount of desired compound wasdetected by MS (106657-078-1) or LC-MS (106657-078-1) or HPLC(106657-078-1) or TLC (PE:EtOAc=1:1).5.2.8: The desired compound could not be isolated,separated or purified by chromatography or prep. HPLC due to poor yield orpoor solubility.5.2.9:1H NMR (106675-010-2) or MS confirmed theobtained (or isolated) compound is not the desired compound. The reactionwas failed. Part 6: 反应淬灭6.1: An aqueous solution of A (10 mL) was addeddropwise into thereaction mixture once the reaction mixture (solution orsuspension) was allowed to warm (or cool) to -5oC or room temperature(ambient temperature).6.2: The hot (or cold) reaction mixture (solution orsuspension) was poured into water (ice water) or poured onto ice.6.3: The reaction mixture (solution or suspension)was concentrated (distilled) under reduced pressure (in vacuum) orevaporated to remove MeOH (THF; DMF etc.) or excess SOCl2 (reagent). Thenthe reaction residue (or the residual) was diluted with solvent and pouredinto water (ice water) or poured onto ice. Part 7: 分液提取7.1: The residue was partitioned between ethylacetate (100 mL) and 1N aq. HCl (50 mL). The separated organic layer waswashed with water, dried over (Na2SO4 or MgSO4) and evaporated to dryness.7.2: After quenching the reaction, the reactionmixture was poured into separatory funnel and separated.7.3: The aqueous layer (or phase) was extracted withorganic solvent (40 mL) twice (or X times). The combined organic layerswere (or the organic layers were combined and) washed with an aqueoussolution of A (50 mL) or water and dried over Na2SO4 or MgSO4.7.4: The combined aqueous layers were extracted withsolvent (40 mL) twice (or X times) to remove neutral impurities. Theaqueous phase was acidified (or basified) with aqueous HCl (or NaHCO3)till PH = X and extracted with organic solvent.7.5: The combined organic layers were (or theorganic layers were combined and) washed with an aqueous solution of A (50mL) or water and dried over Na2SO4 or MgSO4. Part 8: 浓缩蒸发8.1: After filtration via filter paper or Celitepad, the organic layer (or extract) was concentrated under reducedpressure (or in vacuum) or evaporated to dryness to provide (afford; giveor yield) an oil (or foam) (which solidified on standing) or a white solid.8.2:The organic layer (or extract) was filtered andconcentrated under reduced pressure (or in vacuum) or evaporated todryness to provide (afford or give) A (10 g, 0.5 mole) an oil (or foam)(which solidified on standing) or a white solid.8.3: After removal of solvent by evaporation orconcentration, A (10 g, 0.5 mole) was obtained (or prepared) an oil (orfoam) (which solidified on standing) or a white solid.8.4: The extract in CH2Cl2 was evaporated to drynessand then swapped with toluene to remove residual CH2Cl2. Part 9: 几种常见的后处理描述9.1: The reaction mixture or solution wasconcentrated to dryness. [适用于反应液不需要quench]9.2: After the reaction mixture was cooled to 0 ℃, the reaction mixture was quenched by addition of xmL of H2O, followed by x mL of 15% aqueous NaOH. After being stirredat room temperature for x hour, the solid was removed by filtration (orthe mixture was filteredthrough Celite pad to remove by-product). Thefiltrate was concentrated to dryness to give crude product. [LiAlH4 反应的经典后处理]9.3: The mixture was diluted with water (x mL),neutralized with solid K2CO3 until no CO2 was evolved. [适用于酸性反应液的后处理]9.4: The suspension was filtered through a pad ofCelite or silica gel and the pad or filter cake was washed with EtOH (xmL×x). The combined filtrates were concentrated to dryness to give product(x g, x%) as. [适用氢化反应的后处理, 或者难于过滤的反应液的后处理, 但要注意的是这里需要的是滤液而不是固体才能添加助滤剂]9.5: The reaction mixture was poured into x mL ofice-water carefully and the organic layer or phase was separated. [产物在有机相里]9.6: The reaction mixture was poured into x mL ofice-water carefully and the aqueous phase was washed with Et2O (x mL×x) [产品在水相] and acidified with 1NHCl to pH=3. The resulting precipitate was collected by filtration or theresulting solution wasextracted with EA(x mL×x).9.7: The reaction mixture was filtered and thefilter cake was washed with x mL of solvent, dried in vacuum to give orafford product. [这里需要的是固体而不是滤液]9.8: The reaction mixture was quenched with x mL ofsaturated aqueous NH4Cl. The resulting solution was extracted with EA (xmL×x). [适用于丁基锂等活泼金属有机物的后处理]9.10: The residue was triturated with ether andfiltered to afford a white solid. (磨碎)9.11: The crude product was purified by prep. HPLCto give A as a colorless thick oil which was solidified on standing. (静止固化)9.12: After prep. HPLC purification, the eluent wasconcentrated or evaporated to remove organic solvents. The residualaqueous solution was lyophilized to give a white solid. (冷冻干燥)9.13: After concentration, the crude product wasused directly for the next step without purification. Part 10: 产品的纯化10.1: The crude product was purified by silica gelchromatography eluted with PE: EtOAc=10:1 to give product (x g, x%) as yellowsolid.10.2: The crude product was purified byre-crystallization (or recrystallized) from x solvent (x mL).10.3: The crude product was distilled in vacuum (xoC, x pressure) to afford pure product (x g, x%) as colorless liquid.10.4: The crude product was pre-purified by columnchromatography followed by prep. HPLC purification or re-crystallizationto afford pure product.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Electrochemical oxidation of the effluent fromanaerobic digestion of dairy manureIkko Ihara a ,Kazutaka Umetsua,*,Kiyoshi Kanamura b ,Tsuneo WatanabebaDepartment of Agro-Environmental Science,Obihiro University of Agriculture and Veterinary Medicine,Inada-cho,Obihiro 080-8555,JapanbGraduate School of Engineering,Tokyo Metropolitan University,1-1Minami-Osawa,Hachioji 192-0397,JapanReceived 16February 2005;received in revised form 7July 2005;accepted 11July 2005Available online 25August 2005AbstractThe electrochemical oxidation of the digested effluent from anaerobic digestion of dairy manure was investigated in this study.The digested effluent sample containing with suspended solids was pretreated by filtration for the electrochemical experiment.The influence of direct anodic oxidation and indirect oxidation was evaluated through the use of dimensionally stable anode (DSA)and Ti/PbO 2as anode.The decreasing rate of chemical oxygen demand (COD)was higher at lead dioxide coated titanium (Ti/PbO 2)electrode than at DSA,however the DSA was preferred anode for the decrease of ammonium nitrogen (NH 4-N)due to the control of ammonium nitrate (NO 3-N)accumulation.The results showed that the filtration of suspended solids as a pretreatment and addi-tion of NaCl could improve the whole removing efficiency of NH 4-N in the digested effluent on electrochemical oxidation.Ó2005Elsevier Ltd.All rights reserved.Keywords:Ammonium nitrogen;COD;DSA;Effluent from anaerobic digestion;Electrochemical oxidation1.IntroductionWaste management has been widely recognized as a serious problem for livestock production.Anaerobic digestion has become an option for sustainable treat-ment of livestock manure,converting it to biogas and effluent.Digested effluent from anaerobic digestion of livestock manure usually contains high strength of ammonium nitrogen (NH 4-N)and persistent organic substances.The components in digested effluent had been applied as fertilizer for recycling of nutrients back to agricultural field (Salminen et al.,2001;Umetsu et al.,2002).The excessive spreading of livestock manure on the field should be attributable to nitrogen pollution in farming areas (Woli et al.,2004).A simple and effective process for removing nitrogen and residue organic sub-stances is required as a posttreatment of the effluent from anaerobic digestion.The electrochemical oxidation treatment of various wastewaters has been investigated in recent years.Both organic pollutants and NH 4-N in wastewater containing chloride can be destroyed electro-chemically (Chiang et al.,1995).In this work the effluent from anaerobic digestion of dairy manure was treated by the application of electrochemical oxidation.The purpose of this study was to identify the main para-meters influencing the performance of an electrochemi-cal oxidation process.2.Methods2.1.Anaerobic digestionThe digested effluent used in this study was collected from a full-scale anaerobic digester of Obihiro University of agriculture and veterinary medicine0960-8524/$-see front matter Ó2005Elsevier Ltd.All rights reserved.doi:10.1016/j.biortech.2005.07.007*Corresponding author.Tel.:+81155495515;fax:+81155495519.E-mail address:umetsu@obihiro.ac.jp (K.Umetsu).Bioresource Technology 97(2006)1360–1364(Hokkaido,Japan).A60m3anaerobic digester was in-stalled next to free stall barn and was operated with dairy manure slurry at a digester temperature of55°C. In the coldest season,average biogas production was 150m3/day,consisting of56%methane gas with an aver-age loading rate of6.75kg/m3/day which established a hydraulic retention time of13days at an average ambi-ent temperature ofÀ15°C and slurry temperature of 2°C.2.2.Pretreatment for digested effluentTo remove suspended solids,the effluent sample was pretreated with membranefilters.After thefiltration with a nylon membranefilter(pore size:37l m),the sample wasfiltered with a hollowfiber membrane(pore size:5.0or0.5l m).Allfiltrated samples were diluted1:2 with distilled water before electrochemical oxidation treatment.2.3.Experiments of electrochemical oxidationThe electrochemical oxidation experiment was con-ducted in a glass beaker,equipped with a100·50mm mesh anode and a plate cathode.The anodes were a dimensionally stable anode(DSA)based on mixed oxi-des of RuO2+IrO2and lead dioxide coated titanium (Ti/PbO2)electrode.The stainless steel was used as cath-ode.They were placed vertically and parallel to each other with an electrode gap of10mm in a beaker.The electrochemical oxidation was carried out at a constant current of1.5A using a DC power supply.The sample solution was agitated by a magnetic stirrer.The surface bubbles were recycled by a peristaltic pump for antifoam.2.4.Analytical methodChemical oxygen demand(COD)was determined by dichromate method.Ammonium nitrogen(NH4-N) was determined using salicylate reaction.The concen-trations of these analytical parameters were measured by a HACH DR4000spectrophotometer.Ammonium nitrate(NO3-N),chloride ion,hypochloride ion and acetic acid were analyzed by capillary electrophoresis (CE)system(Agilent Technologies,G1600A).The basic anion buffer and a fused silica capillary with 104cm in length and50l m internal diameter were obtained from Agilent technologies.The temperature controlled cartridge for fused silica capillary was set at30°C and the applied dc voltage wasÀ30kV.The wavelength of diode array detector was set at350nm (signals)/275nm(reference).Before the CE analysis, the effluent sample was pretreated by0.45l m pore size membranefilter.3.Results and discussion3.1.Variation of parameters during electrochemical oxidation at DSAThe diluted sample with0.5g of NaCl,pretreated by 0.5l m membranefilter was tested for the electrochemi-cal oxidation using a DSA(Fig.1).The concentration of COD was reduced by32%in9h.In a previous work, the electrochemical oxidation applying for wastewater treatment was explained by a direct anodic oxidation or an indirect oxidation(Chiang et al.,1995).In the direct anodic oxidation,the organic pollutants were destroyed on oxide anode by electrochemical conversion or combustion(Comninellis,1994).In the indirect oxidation,the electrogenerated oxidant such as hypo-chlorite(Comninellis and Nerini,1995)or peroxodisul-phates(Can˜izares et al.,2003)destroyed the pollutants in the bulk solution.The concentration of acetate was increased consistently whereas the COD was decreased from the beginning.The result showed that the electrochemical oxidation at DSA for the wastewater contained chloride had low degradability to acetic acid. The NH4-N was decreased rapidly with time.The decrease of NH4-N could be explained by indirect oxida-tion with hypochlorite.I.Ihara et al./Bioresource Technology97(2006)1360–13641361Hypochlorite is generated as the product of hydro-lysis of chloride.The decreasing process of NH4-N might be regarded as similar to the chemistry of the Sel-leck-Saunier breakpoint phenomenon(Chiang et al., 1995;White,1998).The electrochemically generated hypochlorite was consumed to produce nitrogen from ammonium ion.Since the sample contained1496mg/L of chloride ion at the start of the experiment and DSA had high catalytic properties for chlorine evolution (Trasatti,2000),hypochlorite was effectively produced and responsible for NH4-N decrease during the electro-chemical oxidation.The data showed that NH4-N was vanished in8h,and then hypochlorite ion was detected.3.2.Influence of NaCl additionFig.2showed the influence of the chloride ions on electrochemical oxidation using DSA.The diluted sam-ple used in the experiments contained approximately 700mg/L of chloride ion.When0.5or2.0g of NaCl was added,the decreasing rate of NH4-N was increased dramatically.The increased concentration of chloride ion had positive influence for the enhancement in the rate of NH4-N decrease.An increase in the concentra-tion of chloride ion produced a high generation rate of hypochlorite.The result also indicated that the diluted sample of digested effluent had only a low concentration of chloride ion for the decrease of NH4-N on electro-chemical oxidation.To achieve an economical opera-tion,the addition of adequate amount of chloride ion was required for the digested effluent.In contrast,the addition of NaCl had less effective forthe decrease of COD during electrochemical oxidation. The generated amount of hypochlorite increases with high initial concentration of chloride ion on constant current electrolysis.The result indicated that the indirect oxidation caused by electrogenerated hypochlorite was not predominant in the degradation of organics in the digested effluent.parison of anode materials betweenDSA and Ti/PbO2The influence of anode material on electrochemical oxidation was examined with DSA and Ti/PbO2anode for the decrease of NH4-N and COD(Fig.3).The decreasing rate of NH4-N was higher at DSA than at Ti/PbO2.It was indicated that the DSA had higher cata-lytic property for chlorine evolution.In contrast,the accumulation rate of NO3-N was higher at Ti/PbO2 than at DSA.The data showed that NO3-N was the intermediate product in the electrochemical oxidation of NH4-N.It was significant that the electrochemical oxidation with DSA can prevent the accumulation of NO3-N.White(1998)noted the side reaction from ammonium ion to nitrogen gas in the breakpoint chlori-nation,which was affected by factors such as the initial ratio of chloride to NH4-N,pH and alkalinity.Fig.3also illustrated the degradation of COD in comparison with DSA and Ti/PbO2.It was clear that the decreasing rate of COD was higher at Ti/PbO21362I.Ihara et al./Bioresource Technology97(2006)1360–1364anode than at DSA.The indirect oxidation with electro-generated hypochlorite might have little influence of the deduction rate of COD.Thus,it was considered that the direct anodic oxidation was allowed to enhance the decreasing rate of organic pollutants contained in the digested effluent.The differential decrease of COD between DSA and Ti/PbO2could be explained by differ-ent two states for‘‘active oxygen’’at anode surface on direct anodic oxidation(Comninellis,1994).The physi-cally adsorbed‘‘active oxygen’’(OH)can cause the combustion of organic compounds at the surface of the inactive electrode such as Ti/SnO2and Ti/PbO2 (Simond et al.,1997).In contrast,the chemically adsorbed‘‘active oxygen’’can favor selective oxidation of organic compounds with active electrode such as Pt, Ti/IrO2(Comninellis,1994)and DSA(Polcaro et al., 2000).The result showed that the anode material was essential parameter for the elimination of both organic pollutants and NH4-N for wastewater treatment by electrochemical oxidation.3.4.Effect of pretreatment by membranefiltrationTo achieve more effective degradation,filtration by membranes was performed as a pretreatment to evaluate the efficacy for the electrochemical oxidation treatment. Fig.4illustrated the effect on different pore sizes of a membranefilter for the pretreatment of electrochemical oxidation.The decreasing rate of NH4-N for the pre-treated sample with0.5l m membranefilter was higher than with5.0l m.The enhancement of decreasing rate of NH4-N can be explained by taking into account that suspended solids was separated by membranefilter.It was noted that suspended solids contained in waste-water would impede the electrochemical oxidation (Kim et al.,2003).In general,the effluent from anaero-bic digestion of livestock manure contained high con-centration of suspended solids.The result indicated that the pretreatment such as membranefiltration was important for the economical operation on electrochem-ical oxidation of high concentration of wastewater. 4.ConclusionsThe electrochemical oxidation could be feasible for the treatment of the effluent from anaerobic digestion of dairy manure.Both NH4-N and COD were decreased in proportion to the electric charge.The high chloride concentration was possible to accelerate the indirect oxi-dation for the decrease of NH4-N.The electrochemical oxidation combined with pretreatment of membranefil-tration allowed also more effective decrease of NH4-N. DSA showed the advantage of decreasing NH4-N but had lower efficiency of organic pollutants.The results concluded that the DSA was more suitable anode than Ti/PbO2to achieve the control of nitrate accumulation. AcknowledgementThis work was supported by Japan Society Promo-tion of Science(JSPS)for the future program. ReferencesCan˜izares,P.,Garcı´a-Go´mez,J.,Sa´ez, C.,Rodrigo,M.A.,2003.Electrochemical oxidation of several chlorophenols on diamond electrodes.Part I:Reaction mechanism.J.Appl.Electrochem.33, 917–927.Chiang,L.C.,Chang,J.E.,Wen,T.C.,1995.Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate.Water Res.29,671–678.Comninellis,C.,1994.Electrocatalysis in the electrochemical conver-sion/combustion of organic pollutants for waste water treatment.Electrochim.Acta39,1857–1862.Comninellis,C.,Nerini,A.,1995.Anodic oxidation of phenol in the presence of NaCl for wastewater treatment.J.Appl.Electrochem.25,23–28.Kim,T.H.,Park,C.,Shin,E.B.,Kirm,S.,2003.Effects of Cl-based chemical coagulants on electrochemical oxidation of textile waste-water.Desalination155,59–65.Polcaro,A.M.,Palmas,S.,Renoldi,F.,Mascia,M.,2000.Three-dimensional electrodes for electrochemical combustion of organic pollutants.Electrochim.Acta46,384–389.Salminen,E.,Rintala,J.,Ha¨rko¨nen,J.,Kuitunen,M.,Ho¨gmander,H.,Oikari,A.,2001.Anaerobically digested poultry slaughter-house wastes as fertilizer in agriculture.Biores.Tech.78,81–88. Simond,O.,Schaller,V.,Comninellis,C.,1997.Theoretical model for the anodic oxidation of organics on metal oxide electrodes.Electrochim.Acta42,2009–2012.Trasatti,S.,2000.Electrocatalysis:understanding the success of DSAÒ.Electrochim.Acta45,2377–2385.Umetsu,K.,Kondo,R.,Tani,M.,Hayashi,T.,2002.Fertilizer value of anaerobically co-digested dairy manure and food processing wastes.In:Takahashi,J.,Young,B.A.(Eds.),Greenhouse GasesI.Ihara et al./Bioresource Technology97(2006)1360–13641363and Animal Agriculture.Elsevier Science B.V.,Amsterdam, Netherlands,pp.331–342.White,G.C.,1998.Handbook of chlorination and alternative disinfec-tants,fourth ed.John Wiley&Sons Inc.,New York,pp.227–243.Woli,K.R.,Nagumo,T.,Kuramochi,K.,Hatano,R.,2004.Evalu-ating river water quality through land use analysis and N budget approaches in livestock farming areas.Sci.Total Environ.329, 61–74.1364I.Ihara et al./Bioresource Technology97(2006)1360–1364。