一元一次方程应用题提高小测试

合集下载

一元一次方程应用题100道(带答案)

一元一次方程应用题100道(带答案)

初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式 x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解 D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t等于().A.10分 B.15分 C.20分 D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减 D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组 B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个 B.4个 C.5个 D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上票价 5元 4.5元 4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程 x-1=- ,得x= )4. x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则 =5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x( + )=1,解得x=4] 二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=3 21.解:设卡片的长度为x厘米,根据图意和题意,得 5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得 =0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.36,2837,28545454654544121dhgghsaqy数学题要细心,慢慢做,要做对。

一元一次方程应用题100道(带答案)

一元一次方程应用题100道(带答案)

初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4] 二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=3 21.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.36,2837,28545454654544121dhgghsaqy数学题要细心,慢慢做,要做对。

苏科版七年级数学上册第四章《一元一次方程》应用题填空专项提升训练(二)

苏科版七年级数学上册第四章《一元一次方程》应用题填空专项提升训练(二)

《一元一次方程》应用题填空专项提升训练(二)1.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入分钟的水量后,乙的水位比甲高0.5cm.2.今年3.15期间,惠东商场为感谢新老顾客,决定对某产品实行优惠政策:购买该产品,另外赠送礼品一份.经过与该产品的供应商协调,供应商同意将该产品供货价格降低5%,同时免费为顾客提供礼品;而该产品的商场零售价保持不变.这样一来,该产品的单位利润率由原来的x%提高到(x+6)%,则x的值是.3.某公司生产一种饮料是由A,B两种原料液按一定比例配制而成,其中A原料液的成本价为15元/千克,B原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A原料液上涨20%,B原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是.4.已知AB是一段只有3米宽的窄道路,由于一辆小汽车与一辆大卡车在AB段相遇,必须倒车才能继续通过.如果小汽车在AB段正常行驶需10分钟,大卡车在AB段正常行驶需20分钟,小汽车在AB段倒车的速度是它正常行驶速度的,大卡车在AB段倒车的速度是它正常行驶的,小汽车需倒车的路程是大卡车的4倍.问两车都通过AB这段狭窄路面的最短时间是分钟.5.由于人民生活水平的不断提高,购买理财产品成为一个热门话题.某银行销售A,B,C 三种理财产品,在去年的销售中,稳健理财产品C的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A,B两种理财产品的销售金额都将比去年减少20%,因而稳健理财产品C是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年稳健理财产品C的销售金额应比去年增加%6.重庆育才中学的生活教育实践农场种了一片草莓,现在正是草莓成熟的季节,农场的草莓每天都在匀速的成熟(即每天新成熟的草莓质量相等),现在准备把成熟的草莓包装成礼盒进行销售,且每只礼盒的草莓质量相等.如果每天销售24盒,则6天可以把成熟的草莓销售完毕;如果每天销售21盒,则8天可以把成熟的草莓销售完毕;如果每天销售14盒,则天可以把成熟的草莓销售完毕.7.某房地产公司销售电梯公寓、花园洋房、别墅三种类型的房屋,在去年的销售中,花园洋房的销售金额占总销售金额的35%.由于两会召开国家对房价实施调控,今年电梯公寓和别墅的销售金额都将比去年减少15%,因而房地产商决定加大花园洋房的销售力度.若要使今年的总销售金额比去年增长5%,那么今年花园洋房销售金额应比去年增加%.(结果保留3个有效数字)8.著名瑞士数学家欧拉,曾给出这样一个问题:父亲临终时立下遗嘱,按下述方式分配遗产:老大分的100瑞士法郎和剩下的;老二分的200瑞士法郎和剩下的;老三分的300瑞士法郎和剩下的…依此类推,分给其余的孩子.最后发现,遗产全部分完后所有孩子分的遗产相等.问:这位父亲的遗产总数是瑞士法郎.9.“节能减排,低碳经济”是我国未来发展的方向,某汽车生产商生产有大、中、小三种排量的轿车,正常情况下的小排量的轿车占生产总量的30%,为了积极响应国家的号召,满足大众的消费需求准备将小排量轿车的生产量提高,受其产量结构调整的影响,大中排量汽车生产量只有正常情况下的90%,但生产总量比原来提高了7.5%,则小排量轿车生产量应比正常情况增加%.10.甲、乙、丙三人拿出同样多的钱,合伙订购同种规格的若干件商品,商品买来后,甲、乙分别比丙多拿了7、11件商品,最后结算时,甲付给丙14元,那么,乙应付给丙元.11.3月5日到3月9日重庆八中组织了初2013级全体同学到重庆通讯学院参加了国防教育活动,3月8日全体同学进行了军事拉练.拉练时全年级同学排成了1000米的队伍,在行进过程中排尾的一名同学接到教官的命令到排头,然后立即返回,当这名同学回到排尾时,全队已前进了1000米,如果队伍和这名同学行进的速度都不改变,那么这名同学所走的路程为米.12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密规则为明文x、y、z对应的密文为2x+1,3y+2,9z+3,例如:明文1,2,3对应密文3,8,30,那么,当接收方收到密文2005,2006,2010时,解密后得到的明文分别是,,.13.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有盏灯.14.第三届中国大学生方程式汽车比赛赛前,甲、乙两辆参赛小汽车在一个封闭的环形跑道内进行耐久测试.两车从同一地点沿相同方向同时起步后,乙车速超过甲车速,在第15分钟时甲车提速,在第18分钟时甲车追上乙车并且开始超过乙,在第23分钟时,甲车再次追上乙车.已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车所用的时间是分钟.15.“节能减排,低碳经济”是我国未来发展的方向,某汽车生产商生产有大、中、小三种排量的轿车,正常情况下的小排量的轿车占生产总量的40%,为了积极响应国家的号召,满足大众的消费需求准备将小排量轿车的生产量提高,受其产量结构调整的影响,大中排量汽车生产量只有正常情况下的90%,但生产总量比原来提高了7.5%,则小排量轿车生产量应比正常情况增加%.16.某工厂去年生产某种产品一件,所获取的利润率为59%,今年由于物价上涨,工厂生产这种产品的成本增加了6%,而今年与去年该产品的出厂售价一样,所以今年该工厂生产该产品一件所获取的利润率为.17.某列从永川到重庆的火车,包括起始和终点在内共有5个停靠站,小王乘坐这趟列车从永川到重庆,一路上小王在他乘坐的车厢内观测到下列情况:①在起始站(第一站)以后每一站都有车厢内人数(包括小王)的一半人下车;②又有下车人数的一半人上这节车厢;③到第五站(终点站)包括小王在内还有27人.那么起始站上车的人数是.18.从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是.19.甲乙两人骑摩托车同时从A地出发前往B地,且两人到达B地后各自按原速度返回,且不停地在AB之间往返行驶,甲的速度为32km/h,乙的速度为18km/h,当乙车由A 至B多次后,甲车两次追上乙车,且第二次追上乙时是在乙车从B地向A地行驶的途中,且他们此时距B地的距离为10km,则AB两地相距km.20.“圣诞节”将至,某商场购进了一种手套30双和一种围巾20条,围巾的售价是手套2倍,销售一段时间后,手套和围巾卖出的数量恰好相同,此时商场决定调价,把手套的售价提高48%,把围巾的售价降低40%,当商场卖完这两种商品后,发现这批围巾和手套的平均售价是一样的,那么调价前卖出的围巾和手套的数量都是.21.我市某百货公司2010年1月份前半月的销售收入达到1.18亿元,比上月同期增长了18%,预计2010年1月份后半月的销售收入比上月同期增长25%,并且预计1月份全月的销售收入比上月增长22.2%,则上月全月的销售收入为亿元.22.某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款60元和288元.如果小敏把这两次购物改为一次性购物,则应付款元.23.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为元.24.长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为.25.把棱长为4的正方体分割成29个棱长为整数的正方体(且没有剩余),其中棱长为1的正方体的个数为.参考答案1.解:(1)∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴得到注水1分钟,丙的水位上升cm×4=cm;(2)设开始注入t分钟的水量后,乙的水位比甲高0.5cm,有两种情况:①甲的水位不变时;由题意得,t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向乙容器溢水,∵5÷=分钟,×=,即经过分钟时丙容器的水到达管子底部,乙的水位上升,∴+2×(t﹣)﹣1=0.5,解得:t=;②当乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;+(5﹣)÷÷2=分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入或分钟的水量后,乙的水位比甲高0.5cm.故答案为cm;或.2.解:原来的进价为a元,则现在的进价为(1﹣0.05)a元,由题意,得a(1+x%)=0.95a[1+(x+6)%],解得:x=14故答案为:143.解:原料液A的成本价为15元/千克,原料液B的成本价为10元/千克,涨价后,原A价格上涨20%,变为18元;B上涨10%,变为11元,总成本上涨12%,设每100千克成品中,二原料比例A占x千克,B占(100﹣x)千克,则涨价前每100千克成本为15x+10(100﹣x),涨价后每100千克成本为18x+11(100﹣x),18x+11(100﹣x)=[15x+10(100﹣x)]•(1+12%),18x+11(100﹣x)=1.12[15x+10(100﹣x)],7x+1100=5.6x+1120,1.4x=20,解得:x=,100﹣x=,即二者的比例是:A:B=1:6,则涨价前每千克的成本为+=元,销售价为元,利润为7.5元,原料涨价后,每千克成本变为12元,成本的25%=3元,保证利润为7.5元,则利润率为:7.5÷(12+3)=50%.故答案为:50%.4.解:小汽车X通过AB段正常行驶需要10分钟,小汽车在AB段倒车的速度是它正常行驶速度的,由此得出倒车时间AB段X=10÷=50分钟,卡车Y通过AB段正常行驶需20分钟,大卡车在AB段倒车的速度是它正常行驶速度的,由此得出倒车时间AB段Y=20÷=160分钟,又因为:小汽车需要倒车的路程是大卡车需倒车的路程的4倍,得到小车进入AB段,大车进入AB段,由此得出实际Y倒车时间=160×=32分钟,实际X倒车时间=50×=40分钟.若Y倒X进则是32+20=52分钟两车都通过AB路段,若X倒Y进则是40+10=50分钟两车都通过AB路段,所以两车都通过AB路段的最短时间是50分钟.故答案为:50.5.解:设今年产品C的销售金额应比去年增加x,根据题意得:0.4(1+x)+(1﹣40%)(1﹣20%)=1,解得x=30%.故答案为:30.6.解:设x天可以把成熟的草莓销售完毕,由题意得:24×6=144(盒),21×8=168(盒),(168﹣144)÷2=12(盒),故销售前草莓成熟了:144﹣12×6=72(盒),72+12x=14x,解得:x=36,故答案为:36.7.解:设今年花园洋房销售金额应比去年增加x,根据题意得35%x﹣(1﹣35%)×15%=5%,解得:x≈42.1%即今年花园洋房销售金额应比去年增加42.1%.8.解:设遗产总数为x法郎,则老大分得:100+(x﹣100)×;老二分得:200+(x ﹣[100+(x﹣100)]﹣200)×,100+(x﹣100)=200+{x﹣[100+(x﹣100)]﹣200},解得:x=8100.即这位父亲的遗产总数是8100瑞士法郎.故答案为:8100.9.解:设小排量轿车生产量应比正常情况增加的百分数为x,汽车原总量为a.则可得方程:30%a(1+x)+70%a×90%=(1+7.5%)a,化简得:0.3+0.3x+0.7×0.9=1+0.075,解得x≈48.3%.故填48.3.10.解:(7+11)÷3=6,甲比乙多拿了一件,所以一件是14元.14×(11﹣6)=70.乙付给丙70元.11.解:设当这个同学追到队伍头上时,队伍前进了距离为x米,队伍的速度为a,同学的速度为b.由题意,得,原方程组变形为:,∴,解得:x=500,故这名同学所走的路程为1000+2x=(1000+1000)米.故答案为:(1000+1000).12.解:根据题意有2x+1=2005,解得x=1002;3y+2=2006,解得y=668;9z+3=2010,解得z=223.故解密后得到的明文分别是1002,668,223.13.解:假设顶层的红灯有x盏,由题意得:x+2x+4x+8x+16x+32x+64x=381,127x=381,x=3;答:塔的顶层是3盏灯.故答案为:3.14.解:设甲车提速前速度比乙车慢a/分钟,提速后速度比乙车快b/分钟.那么有甲车在第15分钟时,离乙车的距离为15a.这个距离在第18分钟追回来.那么15a=(18﹣15)b.即b=5a,而且在第23分钟时,甲车比乙车多跑一圈.那么一圈的路程为(23﹣18)b=5b=25a,所以甲车不提速时,乙车首次超过甲车(即多跑一圈)所需时间为:25a÷a=25分钟,故答案为:25.15.解:设小排量轿车生产量应比正常情况增加的百分数为x,汽车原总量为a.则可得方程:40%a(1+x)+60%a×90%=(1+7.5%)a,化简得:0.4+0.4x+0.6×0.9=1+0.075,解得x≈33.75%.故填:33.75.16.解:y=×100%=50%.所以今年该工厂生产该产品一件所获取的利润率为50%.故答案为:50%.17.解:设起始站上车的人数是x人.根据题意得:()3x=27,解得:x=64.则起始站上车的人数是64人.18.解:设切下的一块重量是x千克,设10千克和15千克的合金的含铜的百分比为a,b,=,整理得(b﹣a)x=6(b﹣a),解得x=6,故答案为:6千克.19.解:设AB间的距离为s千米,第二次甲追上乙时所用的时间为t小时,第二次甲追上乙时,乙行驶的距离至少有3s+10,甲行驶的距离至少有7s+10,所以有:32t﹣18t=4s,解得:s=3.5t,但第二次甲追上乙时,他们距B地10千米,这说明s>10,于是得到:t>,以乙行驶过程计算(相比甲过程计算简单):(1)假设3s+10时与甲相遇,有3s+10=18t,解之:t=(不合题意,舍去);(2)前面不成立就假设5s+10与甲相遇,有:5s+10=18t解之:t=20;(3)继续假设7s+10与甲相遇,则有7s+10=18t解之:t=负数.以后都为负数.所以:s=×20=70.故答案为:70.20.解:设调价前卖出的围巾和手套的数量都是x,手套的售价是y元,依题意有=,即2x+2×1.48×(30﹣x)=6x+6×0.6×(20﹣x),解得x=5.故调价前卖出的围巾和手套的数量都是5.故答案为:5.21.解:上月的前半月销售收入1.18÷(1+18%)=1亿元;设上月后半月销售收入为x亿元,(1+x)(1+22.2%)=1.18+(1+25%)x解得x=∴上月总销售收入为:1+=亿元.故答案为.22.解:第一次购物显然没有超过100元,即在第二次消费60元的情况下,他的实质购物价值只能是60元.第二次购物消费288元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):第一种情况:他消费超过100元但不足350元,这时候他是按照9折付款的.设第二次实质购物价值为x元,那么依题意有x×0.9=288,解得:x=320.第二种情况:他消费不低于350元,这时候他是按照8折付款的.设第二次实质购物价值为a元,那么依题意有a×0.8=288,解得:a=360.即在第二次消费288元的情况下,他的实际购物价值可能是320元或360元.综上所述,他两次购物的实质价值为60+320=380或60+360=420,均超过了350元.因此均可以按照8折付款:380×0.8=304(元),420×0.8=336(元),故答案为:304元或336元.23.解:设这种电器的进价是x元,由题意得:(1+40%)x×80%=1120,解得:x=1000,故答案为:1000.24.解:由题意,可知当<a<1时,第一次操作后剩下的矩形的长为a,宽为1﹣a,所以第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1.此时,分两种情况:①如果1﹣a>2a﹣1,即a<,那么第三次操作时正方形的边长为2a﹣1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1﹣a,即2a﹣1=(1﹣a)﹣(2a﹣1),解得a=;②如果1﹣a<2a﹣1,即a>,那么第三次操作时正方形的边长为1﹣a.则1﹣a=(2a﹣1)﹣(1﹣a),解得a=.故答案为:或.25.解:棱长为4的正方体的体积为64,如果只有棱长为1的正方体就是64个不符合题意排除;如果有一个3×3×3的立方体(体积27),有1×1×1的立方体37个,37+1>29,不符合题意排除;所以应该是有2×2×2和1×1×1两种立方体.则设棱长为1的有x个,则棱长为2的有(29﹣x)个,解方程:x+8×(29﹣x)=64,解得:x=24.所以分割的立方体应为:棱长为1的24个,棱长为2的5个.故答案为:24.。

一元一次方程的应用测试题(含答案)

一元一次方程的应用测试题(含答案)

一元一次方程的应用测试题一、选择题1.一个长方形的周长为 26 cm,这个长方形的长减少 1 cm, 宽增添 2 cm,便可成为一个正方形 ,设长方形的长为x cm, 则可列方程() .A. x 1 26 x2B. x 113 x2C. x 126 x 2D. x 1(13 x)2 2.飞机顶风时速度为x 千米 / 小时,风速为y 千米 / 小时,则飞机顺风时速度为() .A.( x y)千米/小时B.( x y)千米/小时C.( x 2 y)千米/小时D.(2 x y) 千米/小时3.一条山路,某人从山下往山顶走 3 小时还有 1 千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的倍,求山下到山顶的行程.设上山速度为x 千米/分钟,则所列方程为().A.x15(1.5x)B.C.3x150(1.5x)D.603x 1 50(1.5x)180x 1 150(1.5x)4. 甲能在11 天内独立达成某项工作 , 乙的工作效率比甲高10%, 那么乙独立达成这项工作的天数为 ().A.10 天B.天 C.天D.9 天.5.甲列车从 A 地以 50 千米 / 时的速度开往 B 地, 1小时后,乙列车从B地以 70 千米 /时的速度开往 A 地,假如 A, B 两地相距 200 千米,则两车相遇点距 A 地 ()千米.A. 100B. 112C.D.6.某班同学去划船,若每船坐7 人,则余下 5 人没有座位;若每船坐8 人,则又空出 2 个座位.这个班参加划船的同学人数和船数分别是()A. 47, 6B. 46, 6C. 54,7D. 61, 8二、填空题湘潭历史悠长,因盛产湘莲,被誉为“莲城”.李红买了8 个湘莲,付 50 元,找回 38元,7.设每个湘莲的价钱为x 元,依据题意,列出方程为______________.8.某校用 56m 长的篱笆围成一个长方形的生物园,要使长为16 m ,则宽为 ________m .9.小明和他父亲的年纪之和为54,又知父亲年纪是小明年纪的 3 倍少 2 岁,则他父亲的年龄为 ____岁.10.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9 米,乙每秒钟跑 7 米.(1)当两人同时同地背向而行时,经过________秒钟两人初次相遇;(2)两人同时同地同向而行时,经过________秒钟两人初次相遇.11.某工厂生产一种部件,计划在20 天内达成,若每日多生产 4 个,则15 天达成且还多生产 10 个.设原计划每日生产x 个,依据题意可列方程为________.12.王会计在结账时发现现金少了元,查账时得悉是一笔支出款的小数点看错了一位.王会计查出这笔看错了的支出款实质是________元.三、解答题13. A、 B 两地相距216 千米,甲、乙分别在A、 B 两地,若甲骑车的速度为15 千米 /时,乙骑车的速度为12 千米 /时。

一元一次方程练习题(提高)

一元一次方程练习题(提高)

一元一次方程练习题(提高)一、 解下列方程(1)12(31)6x --= (2)43(20)67(11)y y y y --=-- (3)215436x x -+= (4)()1122(1)1223x x x x ⎡⎤---=-⎢⎥⎣⎦ (5)()22462133x x ⎡⎤--=+⎢⎥⎣⎦ (6)432.4 2.55x x --= (7)12225y y y -+-=-(8)2123134x x ---=(9)21101211364x x x --+-=-(10)0.10.2130.020.5x x -+-= 二、 思考∙运用 (11)代数式1322y y +-的值与1互为相反数,试求y的值。

(12)当3x =时,代数式()54x a +的值比()4x a -的值的2倍多1,求a的值。

(13)若6x =是关于x 的方程2()136ax x a -=-的解,求代数式221a a ++的值。

三、列一元一次方程解决应用问题(14)某校七年级共有65名同学在植树节活动中担任运土工作,现有45根扁担,请你安排一下有多少人抬土,多少人运土,可使扁担和人数恰好相配?(15)某课外活动小组的女学生人数占全组人数的一半,如果再增加6个女学生,那么女生人数就占全组人数的2,求这个课外3活动小组的人数。

(16)食堂有煤若干,原来每天烧煤3t,用去15t后,改进设备,耗煤量为原来的一半,结果多烧了10天,求原来存煤量。

(17)徐程的舅舅来看他,徐程问舅舅多少岁,舅舅说:“我像你这么大时,你才3岁;等你到了我这么大时,我就36岁了。

”问徐程和舅舅现在各几岁?(18)一个邮递员骑自行车在规定时间内把特快专递送到单位,他每小时行15千米,可以早到24分钟,如果每小时行12千米,就要迟到15分钟。

求原来的时间是多少?(19)用火车运送一批货物,如果每节车厢装34吨,还有18吨装不下;如果每节多装4吨,那么还可以多装26吨,问共有几节火车车厢?(20)体育馆入场券3元一张,若降价后观众增加一半,收入增加1,那么每张入场券降价多少4元?(21)甲、乙两人生产同一种零件,上月两人计划生产量的比是4:5,月底甲的实际生产量超过计划的15%,乙的实际生产量超过计划的12%,两人实际生产零件一共1632个。

《一元一次方程》应用题综合提优训练附答案

《一元一次方程》应用题综合提优训练附答案

故答案为:﹣2,8; (2)分两种情况讨论: ①甲乙两小蚂蚁均向左运动,即 0≤t≤2 时,此时 OA=2+3t,OB=8﹣4t; ∵OA=OB, ∴2+3t=8﹣4t, 解得:t= ; ②甲向左运动,乙向右运动,即 t>2 时,此时 OA=2+3t,OB=4t﹣8; ∵OA=OB, ∴2+3t=4t﹣8, 解得:t=10; ∴甲、乙两只小蚂蚁到原点的距离相等时所对应的时间 t 为 秒或 10秒; (3)①∵小蚂蚁甲和乙同时出发以相同的速度爬行, ∴小蚂蚁甲和乙爬行的路程是相同的,各自爬行的总路程都等于: 10×2+16×3+8×11=156(mm), ∵原路返回,刚好在 16s 时一起重新回到原出发点 A 和 B, ∴小蚂蚁甲和乙返程的路程都等于 78mm, ∴甲乙之间的距离为:8﹣(﹣2)+10×2×2+16×(t﹣2)×2=32t﹣14; ②设 a 秒时小蚂蚁甲和乙开始返程,由(3)①可知: 10×2+16×3+8(a﹣5)=78, 解得:a= ; 以下分情况讨论: 当 8﹣(﹣2)+10t×2=42, 解得:t=1.6; 当 32t﹣14=42时,解得:t= ;
当 t= 时,小蚂蚁甲和乙还没有开始返程,故舍去 t= ;
当 t> 时,8﹣(﹣2)+78×2﹣8(t﹣ )×2=42, 解得:t=14; 综上所述,当 t=1.6秒或 14秒时,小蚂蚁甲乙之间的距离是 42mm.
故答案为:1.6秒或 14秒. 6.解:(1)设第一次购进乙种商品 x 件,则购进甲种商品 2x 件,
根据题意得:(25﹣20)×200+(40× ﹣30)×100×3=2000+800,
解得:y=9 答:第二次乙商品是按原价打 9 折销售. 方法二: 设第二次乙种商品每件售价为 y 元, 根据题意得:(25﹣20)×200+(y﹣30)×100×3=2000+800, 解得:y=36

一元一次方程的应用测试题4444

一元一次方程的应用测试题(A卷)一、填空题(每小题3分,共18分)1.连续偶数之和为24,若中间一个数为x,则其他的两个数为__________和__________.可列方程:__________,解得x=__________,三个连续偶数是__________.2.已知某彩电按标价的九折出售,仍可获利20%,已知该彩电进价为每台2400元,则标价为每台__________元.3.一根长为12米的铁丝折成一个长方形①当长是宽的两倍时,长为__________米,宽为__________米.②当长比宽多3倍时,面积为__________平方米.③当长方形恰为正方形时,面积为__________平方米.4.某人在银行存有一笔钱,已知年利率为2.25%,三年到期后扣除20%的利息税后所得利息恰好能买台价值720元的影碟机,则该人在银行存了__________元钱.5.有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的两倍,则应由乙桶向甲桶倒__________升水.6.一根弹簧在弹性范围内,每悬挂砝码一千克就被拉长0.5厘米,若弹簧原长12厘米,那么悬挂__________千克砝码时弹簧长为17厘米.二、选择题(每小题3分,共24分)7.甲同学扫干净教室需12分钟,乙同学需9分钟,两人共同扫干净教室需时间为A.21分钟B.10.5分钟C.3分钟D.36/7分钟8.甲乙两人从同一地点出发去某地,若甲先走2小时后,乙在后面追赶,经过3小时追上甲,下列说法正确的是A.甲乙两人所走路程相同B.乙走的路程比甲多C.乙比甲多走2小时D.以上答案均不对9.某商店某日卖出两个不同的计算器,都卖了64元,但其中一个盈利60%,另一个亏本20%,在这次买卖中这商店A.赚了8元B.赔了9元C.不赔不赚D.赚了24元10.为了响应国家“退耕还林”的号召,改变水土流失的现状,某农场在2001年进行“退耕还林”,退耕后,林场的面积是耕地面积的25%,林场和耕地共有160公顷,设退耕后林场的面积是x公顷可得方程A.25%=160-x B.C.25%x=160 D.(1+25%)x=16011.一个五位数,前三位数为a,后两位数为b,如果把后两位数b放在三位数a前面组成一个新的五位数,则这个新五位数为A.b+a B.100a+b C.100b+a D.11000b+111a12.某工厂原计划每天生产a个零件,现每天多生产b个零件,则生产m个零件提前的天数为A.-B.C.D.13.有一种足球,由32块黑、白相间的牛皮缝制而成,黑皮可看作正五边形,白皮可看作正六边形,设白皮有x块,则黑皮有(32-x)块,列出方程正确的是A.3x=32-x B.3x=5(32-x) C.5x=3(32-x) D.6x=5(32-x)14.某人存入5000元参加三年期教育储蓄(免征利息税),本息共得5417元,那么这种储蓄的年利率为A.2.22% B.2.58% C.2.78% D.2.38%三、简答题(共58分)15.(9分)甲商店有彩电100台,乙商店有彩电88台,现新开一个丙商店从甲、乙两商店共调走彩电50台,使甲乙两商店剩余彩电相等,问从这两个商店各调走了多少台?解:本题用来建立方程的相等关系是__________.设:从甲商店调走彩电x台,则从乙商店调走彩电__________台,填表如下原有彩电调出彩电剩余彩电甲商店乙商店列出方程__________解之得__________答:.16.(9分)某文艺团体为“希望工程”募捐组织了一次义演,售出票分为两种,成人票每张8元,学生票每张5元,共售出1000张票,得票款6950元,问:两种票各售出多少张?解:本题建立方程的相等关系是:成人票数+学生票数=1000张①或成人票款+学生票款=6950元②方法一:设售出学生票x张,则售出成人票________张,那么得学生票款__________元,成人票款__________元,根据相等关系②可得方程__________解之得x=__________,因此售出学生票__________张,成人票__________张.方法二:设所得学生票款为y元,则成人票款为__________元,那么学生票数为__________张,成人票数__________张,根据相等关系①可得方程__________,解之得y=__________,售出成人票__________张,学生票__________张.又问:如果票价不变,那么售出1000张票所得款可能是7000元吗?为什么?17.(10分)给一群小朋友分发糖果,若每人6粒,则尚缺17粒,若每人5粒,则可剩下3粒,问:这群小朋友有多少人?共有糖果多少粒?18.(10分)一个三位数,百位上的数比十位上的大1,个位上的数比十位上的3倍少2,若将三位数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.19.(10分)从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每小时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程.20.(10分)请你回忆,用算术法和方程法解应用题的过程,你认为哪种方法较好?请举两例加以说明.参考答案一、1.x-2 x+2 3x=24 8 6,8,10 2.3200 3.①4 2 ②5.76 ③9 4.40000 5.40 6.10二、7.D 8.A 9.A 10.B 11.D 12.B 13.B 14.C三、15.甲、乙两个商店剩余彩电相等,50-x,100-x=88-(50-x),x=31,甲商店调走31台,乙商店调走19台.16.方法一:1000-x,5x,8(1000-x)5x+8(1000-x)=6950,350,350,650方法二:6950-y,=1000,1750,650,350不可能.设售出学生票数z张,根据题意得5z+8(1000-z)=7000解之得:z=不是正整数,不合题意.四、17.设小朋友x人.可列方程为6x-17=5x+3解之得x=2018.设十位数为x,则百位数为x+1,个位数是3x-2,可列方程为:100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解之得x=3三位数为437.19.设甲、乙两地路程x千米,可列方程为( +20)×5=x解之得:x=35020.略一元一次方程的应用测试题(B卷)一、填空题(每小题3分,共18分)1.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过__________秒钟两人首次相遇;(2)两人同时同地同向而行时,经过__________秒钟两人首次相遇.2.为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树__________棵.3.用一根绳子围成一个正方形,又用这根绳子围成一个圆,已知圆的半径比正方形的边长少2(π-2)米,请问这根绳子的长度是__________米.4.某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元,若设标价为每枝x元,则可列方程为__________,解之得x=__________.5.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是__________.6.一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元.二、选择题(每小题3分,共24分)7.李斌在日历的某列上圈出相邻的三个数,算出它们的和,其中肯定不对的是A.20 B.33 C.45 D.548.一家三口准备参加旅行团外出旅行,甲旅行社告知“大人买全票,儿童按半价优惠”,乙旅行社告知“家庭旅行可按团体计价,即每人均按全票的8折优惠”,若这两家旅行社每人的原价相同,那么A.甲比乙更优惠B.乙比甲更优惠C.甲与乙同等优惠D.哪家更优惠要看原价9.飞机逆风时速度为x千米/小时,风速为y千米/小时,则飞机顺风时速度为A.(x+y)千米/小时B.(x-y)千米/小时C.(x+2y)千米/小时D.(2x+y)千米/小时10.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是A.a米B.(a+60)米C.60a米D.米11.一项工程甲独做10天完成,乙的工作效率是甲的2倍,两人合做了m天未完成,剩下的工作量由乙完成,还需的天数为A.1-(+ )m B.5-mC.m D.以上都不对12.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为A.x-1=5(1.5x) B.3x+1=50(1.5x)C.3x-1= (1.5x) D.180x+1=150(1.5x)13.某商品价格a元,降价10%后又降价10%,销售额猛增,商店决定再提价20%,提价后这种产品价格为A.a元B.1.08a元C.0.972a元D.0.96a元14.《个人所得税条例》规定,公民工资薪水每月不超过800元者不必纳税,超过800元的部分按超过金额分段纳税,详细税率如下图,某人12月份纳税80元,则该人月薪为全月应纳税金额税率(%)不超过500元 5超过500元到2000元10超过2000元至5000元15…… ……A.1900元B.1200元C.1600元D.1050元三、简答题(共58分)15.(13分)用一根长40 cm的铁丝围成一个平面图形,(1)若围成一个正方形,则边长为__________,面积为__________,此时长、宽之差为__________.(2)若围成一个长方形,长为12 cm,则宽为______,面积为______,此时长、宽之差为____.(3)若围成一个长方形,宽为5 cm,则长为______,面积为______,此时长、宽之差为______.(4)若围成一个圆,则圆的半径为________,面积为______(π取3.14,结果保留一位小数).(5)猜想:①在周长不变时,如果围成的图形是长方形,那么当长宽之差越来越小时,长方形的面积越来越______(填“大”或“小”),②在周长不变时,所围成的各种平面图形中,______的面积最大.16.(9分)某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场?17.(9分)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的?”试试看,列出方程,解决小赵与小王的问题.18.(9分)一批树苗按下列方法依次由各班领取:第一班取100棵和余下的,第二班取200棵和余下的,第三班取300棵和余下的,……最后树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数.19.(9分)李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.20.(9分)初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.参考答案一、1.(1)25 (2)200 2.960 3.8π 4.80%x=5+3 10 5.36 6.66二、7.A 8.B 9.C 10.B 11.B 12.D 13.C 14.C三、15.(1)10 100 0 (2)8 96 4 (3)15 75 10 (4)6.4 128.6 (5)大圆四、16.设胜了x场,可列方程:2x+(8-x)=13,解之得x=517.小赵是9号出去的,小王是7月15号回家的(提示:可设七天的中间一天日期数是x,则其余六天分别为x-3,x-2,x-1,x+1,x+2,x+3,由题意列方程,易求得中间天数,对小王的情形,由于七天的日期数之和是7的倍数,因为84是7的倍数,所以月份数也是7的倍数,可知月份数是7,且在8号至14号在舅舅家.故于7月15号回家.18.树苗共8100棵,有9个班级(提示:本题的设元列方程有多种方法,可以设树苗总数x棵,由第一、第二两个班级的树苗数相等可列方程:100+ (x-100)=200+ 〔x-200-100-•(x-100)〕,也可设有x个班级,则最后一个班级取树苗100x棵,倒数第二个班级先取100(x-1)棵,又取“余下的”也是最后一个班级的树苗数的,由最后两班的树苗相等,可得方程:100(x-1)+ x=100x若注意到倒数第二个班级先取的100(x-1)棵比100x棵少100棵,即得=100,还可以设每班级取树苗x棵,得=100.19.购买单价1.80元的笔记本24本,单价2.60元的笔记本12本.如果按李红原来报的价格,那么设购买单价1.80元的笔记本x本,列方程可得:1.8x+2.6•(36-x)=100-27.60,解之得x=2.60不符合实际问题的意义,所以没有可能找回27.60元.20.略一元一次方程全章测试(一)一、填空题(1)如果4是关于x的方程3a-5x=3(x+a)+2a的解,则a=_______。

一元一次方程应用题(精选拔高-题型全-含详细答案)

一元一次方程的应用1、列方程解应用题的根本步骤和方法:注意:〔1〕初中列方程解应用题时,怎么列简单就怎么列〔即所列的每一个方程都直接的表示题意〕,不用担忧未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上.〔2〕解方程的步骤不用写出,直接写结果即可.〔3〕设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里需要注意这个问题.2、设未知数的方法:设未知数的方法一般来讲,有以下几种:〔1〕“直接设元〞:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况;〔2〕“间接设元〞:有些应用题,假设直接设未知数很难列出方程,或者所列的方程比拟复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用.〔3〕“辅助设元〞:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去.〔4〕“局部设元〞与“整体设元〞转换:当整体设元有困难时,可以考虑设其一局部为未知数,反之亦然,如:数字问题.模块一:数字问题〔1〕多位数字的表示方法:一个两位数的十位数字、个位数字分别为a 、b ,〔其中a 、b 均为整数,19a ≤≤,09b ≤≤〕那么这个两位数可以表示为10a b +.一个三位数的百位数字为a ,十位数字为b ,个位数字为c ,〔其中均为整数,且19a ≤≤,09b ≤≤,09c ≤≤〕那么这个三位数表示为:10010a b c ++.〔2〕奇数与偶数的表示方法:偶数可表示为2k ,奇数可表示为21k +〔其中k 表示整数〕.〔3〕三个相邻的整数的表示方法:可设中间一个整数为a ,那么这三个相邻的整数可表示为1,,1a a a -+.【例1】 一次数学测验中,小明认为自己可以得总分值,不料卷子发下来一看得了96分,原来是由于粗心把一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少?【解析】此题中数据96与列方程无关.与列方程有关的量就是小明粗心后所涉及的量.设正确答案的十位数字为x ,那么个位数字为2x , 依题意,得(102)(102)36x x x x ⨯+-+=,解之得4x =. 于是28x =.所以正确答案应为48.【答案】48【例2】 某年份的号码是一个四位数,它的千位数字是2,如果把2移到个位上去,那么所得的新四位数比原四位数的2倍少6,求这个年份.【解析】设这个年份的百位数字、十位数字、个位数字组成的三位数为x ,那么这个四位数字可以表示为21000x ⨯+,根据题意可列方程:()1022210006x x +=⨯+-,解得499x =【答案】2499年【例3】 有一个四位数,它的个位数字是8,如果将个位数字8调到千位上,那么这个数就增加117,求这个四位数.【解析】设由原数中的千位数字、百位数字和十位数字组成的三位数为x ,那么这个四位数可以表示为108x +,那么调换后的新数可以表示为8000x +,根据题意可列方程1088000117x x +=+-,解得875x =,所以这个四位数为8758【答案】8758【例4】 五一放假,小明的爸爸开车带着小明和妈妈去郊游,他们在公路上匀速行驶,下表是小明每隔1小时看到的路边里程碑上数的信息.你能确定小明在7:00时看到的里程碑上的数是多少吗?【解析】设小明在7:00时看到的两位数的十位数字是x ,那么个位数字是7x -,根据题意可列方程:()()()()10071071071007x x x x x x x x +---+=-+-+-⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦,解得1x =,所以76x -=.【答案】小明在7:00时看到的两位数是16.模块二:日历问题〔1〕、在日历问题中,横行相邻两数相差1,竖列相邻两数相差7.〔2〕、日历中一个竖列上相邻3个数的和的最小值时24,最大值时72,且这个和一定是3的倍数. 〔3〕、一年中,每月的天数是有规律的,一、三、五、七、八、十、十二这七个月每月都是31天,四、六、九、十一这四个月每月都是30天,二月平年28天,闰年29天,所以,日历表中日期的取值是有范围的.【例5】 下表是2021年12月的日历表,请解答问题:在表中用形如下列图的平行四边形框框出4个数,〔1〕假设框出的4个数的和为74,请你通过列方程的方法,求出它分别是哪4天? 〔2〕框出的4个数的和可能是26吗?为什么?【解析】〔1〕设第一个数是x ,那么根据平行四边形框框出4个数得其他3天可分别表示为1x +,6x +,7x +.根据题意可列方程:()()()16774x x x x ++++++=,解得15x =; 所以它分别是:15,16,21,22;〔2〕设第一个数为x ,那么41426x +=,3x =,本月3号是周六,由平行四边形框框出4个数, 得出结论:无法构成平行四边形.【答案】〔1〕15,16,21,22;〔2〕无法构成平行四边形.【例6】 如图,框内的四个数字的和为28,请通过平移长方形框的方法,使框内的数字之和为68,这样的长方形的位置有几个?能否使框内的四个数字之和为49?假设能,请找出这样的位置;假设不能,请说明理由.【解析】〔1〕设四个数字是a ,1a +,7a +,8a +,根据题意可列方程:17868a a a a ++++++=,解得13a =.那么平移后的四个数是13、14、20、21.〔2〕设四个数字是x ,1x +,7x +,8x +,那么41649x +=,334x =.不合题意,舍去. 【答案】平移后的四个数是13、14、20、21,这样的长方形的位置只有1个;不存在能使四个数字的和为49的长方形.【例7】 把2021个正整数1,2,3,4,…,2021按如图方式排列成一个表.〔1〕用如图方式框住表中任意4个数,记左上角的一个数为x ,那么另三个数用含x 的式子表示出来,从小到大依次是________________.〔2〕由〔1〕中能否框住这样的4个数,它们的和会等于244吗?假设能,那么求出x 的值;假设不能,那么说明理由.【解析】〔1〕∵记左上角的一个数为x ,∴另三个数用含x 的式子表示为:8x +,16x +,24x +.〔2〕不能.假设能够框住这样的4个数,那么:()()()81624244x x x x ++++++=,解得49x =. ∵49是第七行最后一个数,∴不可以用如图方式框住.【答案】〔1〕8x +,16x +,24x +;〔2〕不能.模块三:和差倍分问题和、差、倍问题关键要分清是几倍多几和几倍少几.〔1〕当较大量是较小量的几倍多几时,=⨯较大量较小量倍数+多余量; 〔2〕当较大量是较小量的几倍少几时,=⨯较大量较小量倍数-所少量. 【例8】 一部拖拉机耕一片地,第一天耕了这片地的23;第二天耕了剩下局部的13,还剩下42公顷没耕完,那么这片地共有多少公顷?【解析】设这片地共有x 公顷,第一天耕了这片地的23,那么耕地23x 公顷,第二天耕了剩下局部的13,那么第二天耕地1211339x x ⎛⎫⨯-= ⎪⎝⎭〔公顷〕,根据题意可列方程:214239x x x --=,解得189x =.【答案】189.【例9】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!〞牧羊人答道:“如果这群羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.〞问牧羊人的这群羊共有多少只?【解析】设这群羊共有x 只,根据题意可列方程:112110024x x x +++=,解得36x =. 【答案】36【例10】 有粗细不同的两支蜡烛,细蜡烛之长时粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时,有一次停电,将这样的两支未使用过的蜡烛同时点燃,来电时,发现两支蜡烛所剩的长度一样,问停电的时间有多长?【解析】设停电时间为x 小时,粗蜡烛长l 米,那么细蜡烛长2l 米,那么细蜡烛每小时点燃2l 米,粗蜡烛没小时点燃2l 米,根据题意可列方程:222l l l x l x -⋅=-,解得23x =【答案】停电时间为23小时【例11】 2006年我市在全国率先成为大面积实施“三免一补〞的州市,据悉,2021年我市筹措农村义务教育经费与“三免一补〞专项资金3.6亿元【由中央、省、市、县〔区〕四级共同投入,其中,中央投入的资金约2.98亿元,市级投入的资金分别是县〔区〕级、省级投入资金的1.5倍、18倍】,且2021年此项资金比2021年增加1.69亿元.〔1〕2021年我市筹措农村义务教育经费与“三免一补〞专项资金多少亿元?〔2〕2021年省、市、县〔区〕各级投入的农村义务教育经费与“三免一补〞专项资金各多少亿元? 〔3〕如果按2021-2021年筹措此项资金的年平均增长率计算,预计2021年,我市大约需要筹措农村义务教育经费与“三免一补〞专项资金多少亿元〔结果保存一位小数〕?【解析】〔1〕3.61 1.69 1.91-=〔亿元〕.〔2〕设市级投入x 亿元,那么县级投入23x 亿元,省级投入118x 亿元,由题意得:212.98 3.6318x x ++=,解得0.36x =.所以20.243x =〔亿元〕,10.0218x =〔亿元〕.〔3〕 1.693.61 6.81.91⎛⎫⨯+≈ ⎪⎝⎭〔亿元〕. 【答案】〔1〕1.91亿元;〔2〕省、市、县分别投入0.02亿元、0.36亿元、0.24亿元;〔3〕6.8亿元.模块四:行程问题一、 行程问题路程=速度×时间相遇路程=速度和×相遇时间追及路程=速度差×追及时间二、 流水行船问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度水流速度=12×〔顺流速度-逆流速度〕 三、 火车过桥问题火车过桥问题是一种特殊的行程问题,需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的根本数量关系为:车速×过桥时间=车长+桥长.【例12】 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙背向而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.出发后,甲和乙相遇后3分钟和丙相遇,求花圃的周长.【解析】设甲、乙相遇时间为t 分钟,那么甲、丙相遇时间为()3t +分钟,根据题意,由相遇路程相等可列方程()()383634036t -=⨯+【答案】8892米【例13】 某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,假设每小时行18千米,那么比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,那么此人此时骑摩托车的速度应为多少?【解析】设此人从家里出发到火车开车的时间为x 小时,根据题意可列方程:151530()18()6060x x -=+,解得1x =, 此人打算在火车开车前10分钟到达,骑摩托车的速度应为1530(1)602710160⨯-=-〔千米/时〕 【答案】27【例14】 甲、乙两车同时从A ,B 两地出发,相向而行,在A ,B 两地之间不断往返行驶.甲车到达B 地后,在B 地停留了2个小时,然后返回A 地;乙车到达A 地后,马上返回B 地;两车在返回的途中又相遇了,相遇的地点距离B 地288千米.甲车的速度是每小时60千米,乙车的速度是每小时40千米.请问:A ,B 两地相距多少千米?【解析】设A 、B 两地相距x 千米,根据题意可列方程:228828824060x x -+-=,解得420x = 【答案】420千米【例15】 某人骑自行车从A 地先以每小时12千米的速度下坡后,再以每小时9千米的速度走平路到B 地,共用了55分钟.回来时,他以每小时8千米的速度通过平路后,再以每小时4千米的速度上坡,从B 地到A 地共用112小时,问A 、B 两地相距多少千米?【解析】间接设未知数,设从A 地到B 地共用x 小时,根据题意可列方程:5531293438602t t t t ⎛⎫⎛⎫+-⨯=⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭,解得14t =,所以A 、B 两地相距55129960t t ⎛⎫+-⨯= ⎪⎝⎭〔千米〕 【答案】9千米【例16】 一人步行从甲地去乙地,第一天行假设干千米,自第二天起,每一天都比前一天多走同样的路程,这样10天可以到达乙地;如果每天都以第一天所行的相同路程步行,用15天才能到达乙地;如果每天都以第一种走法的最后一天所行的路程步行到乙地,需要几天?【解析】设a 是第一次第一天走的路程,b 是第二天起每天多走的路程,x 是所求的天数.那么根据题意可列方程:1523456789a a a b a b a b a b a b a b a b a b a b =++++++++++++++++++()()()()()()()()(), 解得9a b =.又()159a x a b =+,解得7.5x =.【答案】7.5天【例17】 一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行多少小时?【解析】设小船在静水中的速度为a ,原来的水速为b ,那么2()3(2)a b a b -=-,解得4a b =,故所求时间为2()1(2)a b a b -=+〔小时〕.【答案】1【例18】 一个人乘木筏在河面顺流而下,漂到一座桥下时此人想锻炼一下身体,便跳入水中逆水游泳,10分钟后转身追赶木筏,终于在离桥1500米远的地方追上木筏,假设水流速度及此人游泳的速度都一直不变,那么水流速度为多少?【解析】因为向上游了10分钟,所以返回追赶也要10分钟〔流水中的相遇时间与追及时间都与水流速度无关〕,即水流20分钟的路程为1500米,水流速度为11.5 4.53÷=〔千米∕时〕.【答案】水流速度为4.5千米/时【例19】 一小船由A 港到B 港顺流需行6小时,由B 港到A 港逆流需行8小时,一天,小船从早晨6点由A港出发顺流行至B 港时,发现一救生圈在途中掉落在水中,立即返回,1小时后找到救生圈.问: 〔1〕假设小船按水流速度由A 港漂流到B 港需多少小时? 〔2〕救生圈是何时掉入水中的?【解析】〔1〕设小船在静水中的速度为a ,水流速度为b ,那么6()8()a b a b +=-,解得7a b =,故小船按水流速度由A 港漂流到B 港所需时间为6()48a b b+=〔小时〕; 〔2〕设小船行驶x 小时后,救生圈掉入水中,那么(61)()1(6)()x b a b x a b -++-⨯=-+,将7a b =代入上式,得到5x =,故救生圈是上午11点掉入水中的【答案】48;5模块五:工程问题工作总量=工作时间×工作效率 各局部工作量之和=1【例20】 有甲、乙、丙三个水管,独开甲管5小时可以注满一池水;甲、乙两管齐开,2小时可注满一池水;甲、丙两管齐开,3小时注满一池水.现把三管一齐开,过了一段时间后甲管因故障停开,停开后2小时水池注满.问三管齐开了多少小时?【解析】由题意知,甲管注水效率为15,甲、乙两管的注水效率之和为12,甲、丙两管的注水效率之和为13,设三管齐开了x 小时,根据题意可列方程:()1112215235x x ⎛⎫++-+= ⎪⎝⎭,解得419x =【答案】419小时【例21】 检修一住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天.前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成,问乙中途离开了几天?【解析】设乙中途离开了x 天,根据题意可列方程()1111772114181812x ⎛⎫⨯+-+⨯+= ⎪⎝⎭,解得3x = 【答案】乙中途离开了3天【例22】 某中学库存假设干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.〔1〕问该中学库存多少套桌凳?〔2〕在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么?【解析】〔1〕设该中学库存x 套桌凳,根据题意可列方程:201624x x -=,解得960x =. 〔2〕方案①所需费用:()9608010540016⨯+=〔元〕; 方案②所需费用:()96012010520024⨯+=〔元〕; 方案③所需费用:()960801201050401624⨯++=+〔元〕. 综上,方案③最省钱.【答案】〔1〕960套;〔2〕方案③最省钱.模块六:商品销售问题在现实生活中,购置商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,在了解这些根本概念的根底上,还必须掌握以下几个等量关系:()=1+⨯标价进价利润率利润=售价-进价 =100%⨯利润利润率进价 利润=进价×利润率实际售价=标价×打折率【例23】 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.【解析】设经销这种商品原来的利润率为x ,原进价为a ,根据题意可列方程:(1)(1 6.4%)(18%)a x a x +=-++,解得17%x =.【答案】17%【例24】 某商品月末的进货价为比月初的进货价降了8%,而销售价不变,这样,利润率月末比月初高10%,问月初的利润率是多少?【解析】设月初进货价为a 元,月初利润率为x ,那么月初的销售价为()1a x +元,月末进货价为()18%a -元,销售价为()()18%110%a x -++⎡⎤⎣⎦元,根据月初销售价与月末销售价相等可列方程:()()()118%110%a x a x +=-++⎡⎤⎣⎦,解得0.15x =.【答案】15%【例25】 某公司生产一种饮料是由A ,B 两种原料液按一定比例配制而成,其中A 原料液的本钱价为15元/千克,B 原料液的本钱价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总本钱增加了12%,公司为了拓展市场,打算再投入现总本钱的25%做广告宣传,如果要保证每千克利润不变,那么此时这种饮料的利润率是多少?【解析】原料液A 的本钱价为15元/千克,原料液B 的本钱价为10元/千克,涨价后,原A 价格上涨20%,变为18元;B 上涨10%,变为11元,总本钱上涨12%,设每100千克成品中,二原料比例A 占x 千克,B 占〔100-x 〕千克,那么涨价前每100千克本钱为()1510100x x +-,涨价后每100千克本钱为()1811100x x +-,根据题意可列方程:()()()18111001510100112%x x x x +-=+-⨯+⎡⎤⎣⎦,解得1007x =,所以6001007x -= 即二者的比例是::1:6A B =,那么涨价前每千克的本钱为156075777+=〔元〕,销售价为127.57元,利润为7.5元. 原料涨价后,每千克本钱变为12元,本钱的25%为3元,保证利润为7.5元,那么利润率为:()7.512350%÷+=.【答案】50%.模块七:方案决策问题在实际生活中,做一件事情往往会有多种选择,这就需要从几种方案中,选择最正确方案,如网络的使用,到不同旅行社购票等,一般都要运用方程解答,把每一种方案的结果先算出来,进行比拟后得出最正确方案.【例26】 某开发商进行商铺促销,广告上写着如下条款:投资者购置商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.〔1〕请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?〔注:=100%⨯投资收益投资收益率实际投资额〕 〔2〕对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?【解析】〔1〕设商铺标价为x 万元,那么按方案一购置,那么获投资收益()120%110%50.7x x x -+⋅⨯=,投资收益率为0.7100%70%x x⨯=按方案二购置,那么获投资收益()()120%0.8510%110%30.62x x x -+⋅⨯-⨯=, 投资收益率为0.62100%72.9%0.85x x ⨯≈. 所以投资者选择方案二获得的投资收益率高.〔2〕由题意得,0.70.625x x -=,解得62.5x =,所以甲投资了62.5万元,乙投资了53.125万元【答案】略【例27】 有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时,自己前面还有36个人等待通过,通过道口后,还需7分钟到达学校.〔1〕假设绕道而行,要15分钟到达学校。

一元一次方程应用题专项练习(含答案)

一元一次方程应用题专项练习1.种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵.有多少人种树有多少棵树?2.某中外合资企业,按外商要求承做一批机器,原计划13天完成,科技人员采用一种高新技术后,每天多生产10台,结果用12天,不但完成任务,而且超额了60台,问原计划承做多少台机器?3.心连心艺术团在世纪广场组织了一场义演为“灾区”募捐活动,共售出3000张门票,已知成人票每张15元,学生票每张6元,共收入票款34200元,问:成人票和学生票各多少张?4.甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3.6千米∕时,这列火车有多长?5.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际按照他的设计,鸡场的面积是多少?6.甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增加了10%,这样两厂共完成的产值为400万元,求去年两厂各超额完成产值多少万元?7.(1)某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(2)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?8.某工厂加强节能措施,2008年下半年与上半年相比,月平均用电量减少了0.5万度,全年用电39万度,问这个工厂2008年上半年每月平均用电多少万度?9.某周日小明在家门口搭乘出租车去参观博物馆,出租车的收费标准是:不超过3公里的付费7元;超过3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算.小明乘出租车到距家6.2公里远的博物馆的车费为18.4元(其中含有1元的燃油附加税),问超过3公里的,每公里加收多少元?10.下边横排有12个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x的值.5 A B C D E F X G H E 1011.某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班级有多少名学生?一共展出了多少张邮票?12.某商场一种品牌的服装标价为每件1000元,为了参与市场竞争,商场按标价的8.5折(即标价的85%)再让利40元销售,结果每件服装仍可获利20%,这种服装每件的进价是多少元?13.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?14.某同学打算骑自行车到野生动物园去参观,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才能到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?15.一副羽毛球拍在进价的基础上提高40%后标价,再按标价的8折售出,仍然获利15元,那么羽毛球拍的进价是多少?16.2010年南非“世界杯”期间,中国球迷一行36人从酒店乘出租车到球场观看比赛.球迷领队安排车辆若干,若每辆坐4人,车不够,每辆坐5人,有的车未坐满.问领队安排的车有多少辆?17.某校三年共购买电脑160台,去年购买数量是前年的3倍,今年购买数量是前年的4倍,求这个学校前年购买了多少台电脑?18.某种出租汽车的车费是这样计算的:路程在4千米以内(含4千米)为10元4角;达到4千米以后,每增加1千米加1元6角;达到15千米后,每增加1千米加2元4角,不足1千米按四舍五入法计算.(1)乘座15千米该出租车应交费多少元?(2)某乘客乘座该种出租车交了95元2角,则这个乘客乘该出租车行驶的路程最多为多少千米?19.七年级(1)班数学兴趣小组的同学一起去租车秋游,预计租车费人均分摊1 8元,后来又有4名非兴趣小组同学要求加入,但租车费不变,结果每人可少摊3元,求七(1)班有多少名数学兴趣小组成员?20.某城市按以下规定收取每月的水费:用水量如果不超过6吨,按每吨1.2元收费;如果超过6吨,未超过的部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.8元.问:(1)该用户5月份用去多少水?(2)该用户5月份应交水费多少元?21.甲、乙两人同时从A地出发去B地,甲骑自行车,速度是10km/h,乙步行,速度为6km/h.若甲出发后在路上遇到熟人交谈了半小时后,仍以原速度前往B地,结果甲、乙两人同时到达B地,问A、B两地的路程是多少?22.一件服装先按成本提高60%标价,再以9折出售,结果获利66元,这件服装的标价是多少元?23.某校七(1)班学生步行去参加课外劳技活动,速度为5千米/时,走了48分钟的时候,学校要将一个紧急通知传给班长,通讯员从学校出发,骑摩托车以35千米/时的速度按原路追上去,通讯员用多少时间可以追上七(1)班学生队伍?24.某车间有60名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件10个或乙种零件25个,应分配多少人生产甲种零件,多少人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套?(2个甲种零件和1个乙种零件配成一套)25.A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B 出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?26.甲、乙两人同时从A地到B地去参加一个会议,甲每分钟走80米,他走到B地等了5分钟.会议才开始,乙每分钟走60米,等他到B地会议已经开始了3分钟,问A、B两地之间的距离有多远?27.甲、乙两根绳子,甲绳长56米,乙绳长25米,两根绳子剪去同样的长度后,甲绳所剩的长度是乙绳所剩长度的3倍还少1米,每根绳子剪去的长度是多少米?28.某工人每天早晨在同一时刻从家里骑车去工厂上班,如果以16千米/时的速度行驶,则可在上班时刻前15分钟到达工厂;如果以12千米/时的速度行驶,则在工厂上班时刻后15分钟到达工厂.(1)求这位工人的家到工厂的路程;(2)这位工人每天早晨在工厂上班时刻前多少小时从家里出发?29.一列列车通过隧道,从车头进隧道到车尾出隧道共用了1分30秒.已知列车的速度为1500米/分,列车的长为150米,那么隧道长为多少米?30.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应分别调往甲、乙两处各多少人?31.一项工程,甲队单独做20天完成,乙队单独做12天完成,现在由甲队先做4天,剩下的部分由甲队和乙队合作完成,则剩下的部分需要几天完成?32.某校准备到旅游公司租若干辆汽车组织初一学生外出春游,每辆汽车可坐45人,按原计划,就有11人没有座位;如果每辆车放上加座后多坐8人,那么可以少租一辆汽车.问原计划租几辆汽车初一学生共有多少人?33.列方程解应用题:某人从家里骑自行车到学校.若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?34.甲、乙两船在静水中的速度相同,都不超过每小时60千米.甲船从A港顺流而下,3小时到达B港,乙船从B港逆流而上,4小时到达C港,如果水流速度为每小时10千米,请你通过计算说明A港在C港的上游还是下游.35.从甲地到乙地的长途汽车原需行驶3.5个小时,开通高速公路后,路程缩短了30千米,而车速平均每小时增加了30千米,只需2个小时即可到达.求甲乙两地之间高速公路的路程.36.甲乙两地相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),经过多长时间两车相距300千米?37.电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车速度的5倍还快20千米/时,半小时后两车相遇.两车的速度各是多少?38.粗蜡烛和细蜡烛的长短一样,粗蜡烛可以点5小时,细蜡烛可以点4小时,如果同时点燃这两支蜡烛,过了一段时间后,剩余的粗蜡烛长度是细蜡烛长度的2倍,问这两支蜡烛已点燃了多少时间?39.一队学生从学校步行去博物馆,他们以5km/h的速度行进需要40分钟,他们出发24分钟后,一名教师骑自行车以15km/h的速度按原路追赶学生队伍,问这名教师能否在学生到达之前追上他们?40.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票.一名旅客带了45千克行李乘机,机票连同行李费共付1485元,求该旅客的机票票价.41.某城区居民用水实行阶梯收费、每户每月用水量如果未超过20吨,按每吨1.9元收费;如果超过20吨,未超过部分按每吨1.9元收费,超过部分按每吨2.8元收费,若该城市某户11月份水费平均每吨2.2元,求该户11月份用水多少吨?42.甲、乙两站相距360千米,一列慢车从甲站开出,每小时行50千米,一列快车从乙站开出,每小时行70千米,两车同时开出,相向而行,多长时间相遇?43.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的八折出售将赚70元,问:(1)每件服装的标价和成本分别是多少元?(2)为使销售该品牌服装每件获得20%的利润率,应按标价的几折出售?44.某班在绿化校园的活动中共植树130棵,有5位学生每人种树2棵,其余学生每人种树3棵,问这个班共有多少学生?45.郑州市某停车场的收费标准如下:大型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场停有大、小型汽车共50辆,这些车辆共缴纳了210元停车费,问其中大、小型汽车各缴纳了多少元停车费?46.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓1200个或螺母1800个,每天生产的螺栓和螺母按1:2配套,应各分配多少名工人生产螺栓和生产螺母?47.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?48.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?49.某地居民生活用电基本价格为0.5元/度,并规定了每月基本用电量,超过部分的电量每度电价比基本用电量的每度价格增加0.05元,某户8月份用电量为240度,应缴电费为122元,求每月的基本用电量.50.经测算,海拔高度每增加100米,气温下降0.6℃,已知高空中一气球所在的位置的温度是﹣4℃,此时地面温度是5℃,求该气球与地面的距离.51.有粗细两支蜡烛,粗蜡烛长是细蜡烛的三分之一,粗蜡烛点完用3个小时,细蜡烛点完用1小时.一次停电后同时点燃两支蜡烛,来电时发现两支蜡烛剩余部分刚好一样长,问停电的时间是多长?52.运动场的环形跑道一圈长400米,甲乙二人比赛跑步,甲每分钟跑300米,乙每分钟跑200米;两人同地同方向,同时出发,经过多少时间两人第一次相遇?53.根据我省“十二五”铁路规划,徐州至连云港的客运专线项目建成后,两地间列车的最短客运时间将由现在的2小时18分钟缩短为36分钟,速度每小时将提高260km,求提速后的列车速度.(精确到1km/h)54.一项工程,甲队单独施工15天完成,乙队单独9天完成,现在由甲、乙两队合作3天,剩下的由甲队单独完成,还需几天可以完成?55.为了减少库存,盘活资金,某商厦决定将某款玩具打5折销售,小莹爸爸用了300元买到的玩具比打折前花同样多的钱买到的玩具多3个,求每个玩具的原价是多少元?56.整理一批图书,由一人做要40小时完成.先安排一批人整理,2小时后其中两人因有其它任务离开,然后由余下的人又整理了4小时,完成了这项工作.假设每个人的工作效率相同,则先安排了多少人整理图书?57.一个长方形的场地,长是宽的2.5倍,现根据需要将长方形的场地进行扩建,若把它的长和宽各加长20m后,则此时它的长是宽的2倍,求扩建前长方形场地的长与宽.58.某中学要搬运一批图书,由甲班单独搬运需要9小时完成,由乙班单独搬运需要6小时完成.现在计划由甲班先单独搬运4小时,剩下的由乙班帮忙和甲班一起搬运,则甲、乙两班合作几小时后可完成任务?59.A、B两地相距50千米,一人从A地以每小时5千米的速度向B地行走,另一人从B地以每小时10千米的速度向A地运动.若两人恰好在中点相遇,那么从B地运动的人比从A地运动的人慢多少小时出发呢?60.某厂要加工一批零件,若6人加工,每人每天生产10个,则需100天才能完成任务.现在为了赶进度,用20人加工,每人每天生产12个,需要多少天才能完成任务?61.学校部分师生到离校28千米的地方参观学习.开始一段路是步行,速度是4千米/小时,余下的路程乘汽车,汽车的速度是40千米/小时,全程共用了1小时.求步行和乘车各用了多少时间.62.某商店采购了一批节能灯,每盏灯20元,在运输过程中损坏了2盏,然后以每盏25元售完,共获利150元,问该商店共进了多少盏节能灯.63.某学校教学楼需装修,若甲工程队单独完成需8周,若乙工程队单独完成需12周,现在投标结果是由乙工程队先做7周后,再由甲、乙两队合作,求合作几周可以完成任务?64.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少1500度,全年用电12万度.这个工厂去年上半年每月平均用电多少度?65.早上8点钟,甲、乙、丙三人在一条笔直的公路上同时从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人的速度分别为每分钟120米、100米、90米.问经过多少分钟甲和乙、甲和丙的距离相等?66.某同学在A、B两家超市发现他看中的两款随身听的单价相同,两种不同颜色的书包的单价也相同.已知随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.求该同学看中的随身听和书包的单价各是多少元?67.有一项工程,若由一人做需要20小时完成,现在先由若干人做2小时,然后增加2人再共同做4小时,完成了这项工程,假设这些人的工作效率相同,问开始时参与做这项工程的有多少人?68.小明的妈妈从商店给小明买回一条裤子,小明问妈妈:“这条裤子多少钱?”妈妈说:“按标价给我打七折,又让了我4元钱,是94元.”你知道这条裤子的标价吗?69.一轮船航行于两个码头之间,逆水需10小时,顺水需6小时.已知水流速度为3千米/时,求该船在静水中的速度和两码头间的距离.70.甲乙两书店共有数学练习册300本,某日甲店卖掉20本,乙店卖掉56本,此时甲乙两店剩余的数学练习册相等.求原先甲乙两店各有数学练习册多少本.71.某学校组织七年级学生去春游,计划租用若干辆车.若增加一辆车,每车正好坐40人,若减少一辆车,则每辆车坐50人,有一辆车还空着10人座位,问七年级共有多少名学生?72.某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损40%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?73.一列火车匀速行驶,经过一条长720米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是6秒,求这列火车的速度和火车的长度.74.格子们是白族人民智慧的结晶,是剑川木雕的代表作品之一.一个格子们是由一块中板和两块腰板组构而成的.剑川县民族木雕厂有22名木雕工人在生产格子们,每人每月平均雕12块中板或20块腰板,为了使每个月的产品配套,应该分配多少名工人雕中板?多少名工人雕腰板?75.小明、小杰两人在400米的环形跑道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.(1)出发几分钟后,小明、小杰第一次相遇?(2)出发几分钟后,小明、小杰第二次相遇?(3)出发几分钟后,小明、小杰的路程第三次相差20米?76.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?77.从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.78.某工作甲单独做需15小时完成,乙单独做需12小时完成,若甲先单独做1小时,之后乙再单独做4小时,剩下的工作由甲乙两人合作,请问再做几小时可完成全部工作的十分之七?79.现加工一批机器零件,甲单独完成需4天,乙单独完成需6天.现由乙先做1天,然后两人合做,完成后共得报酬600元.若按个人完成的工作量给付报酬,你应如何分配呢?80.某文件需要打印,小李独立做需要6小时完成,小王独立做需要8小时完成.如果他们俩共同做,需要多长时间?81.王先生计划骑车以每小时10千米的速度由A地到B地,这样便可在规定时间到达B地,但他因事将原计划的出发时间推迟了10分钟,便只好以每小时12千米的速度前进,结果比规定时间早5分钟到达B地,求A、B两地间的路程.82.七年级学生在会议室开会,每排坐12人,则有11人无处坐,每排坐14人,则余1人独坐1排,问有多少学生?座位有多少排?83.小明周六去昌平图书馆查阅资料,他家距昌平图书馆35千米.小明从家出发先步行20分钟到车站,紧接着坐上一辆公交车,公交车行驶40分钟后到达图书馆.已知公交车的平均速度是步行的平均速度的7倍,求公交车平均每小时行驶多少千米?84.A、B两地相距90千米.甲从A地骑自行车去B地.1小时后乙骑摩托车也从A地去B地.已知甲每小时行12千米.乙每小时行30千米.(1)乙出发后多少时间追上甲?(2)若乙到达B地后立即返回,则在返回路上与甲相遇时距乙出发多少时间?85.某文艺团体为希望工程组织了一场募捐义演,共售出1 000张票,筹得票款6 950元,已知成人票每张10元,学生票每张5元.(1)问成人票和学生票各售出多少张?(2)如果票价和售出的总票数不变,所得票款能为6932元吗?说明你的理由.(3)如果票价和售出的总票数不变,若想筹得票款8 000元,问至少要售出多少张成人票?86.在暖气管线中装有甲、乙两种水管共25根,总长为155米,甲种水管每根长5米,乙种水管每根长8米,请问甲、乙两种水管各有多少根?87.某铁路由于沿线多为山壑,需修建桥梁和隧道共300个,桥梁和隧道的长度约占这条铁路全长的五分之四,其中桥梁数量(座)又比隧道数量(条)多50%.这条铁路工程总投资约135亿元,平均每千米造价约4500万元.(1)求该铁路隧道数量.(2)若该铁路平均每条隧道长度大约是平均每座桥梁长度的6倍.求该铁路隧道的总长度.88.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?89.现有一个内直径为6厘米的圆柱形烧杯,里面有高2厘米的液体.将这些液体倒入一个内直径是2厘米的圆柱形量筒内,这个量筒内液体的液面高度是多少厘米?90.老师想为希望小学四年级(1)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.每个书包和每本词典的价格各是多少元?91.一架飞机在两城市之间飞行,顺风需4小时20分,逆风需要4小时40分,已知风速是每小时30千米,求此飞机本身的飞行速度.92.为了从小培养学生的足球兴趣,给国家培养并输送少年足球人才.在县教体局的大力倡导和有力推进下,全县各个学校都组建了学校足球队.某校队在练球时发现,若每人领一个少6个球,若每二人领一个则余6个球.校足球队又添新队员5人,为了保证训练时一人一球,还需新购多少个足球?93.某文艺团体为“希望工程”募捐义演,成人票8元,学生票5元.如果本次义演共售出1 000张票,筹得票款为6 950元.求成人票和学生票各售出多少张?94.水果店有一种5千克一袋装的苹果,如果小明单独买一袋,那么所带的钱还差5元;如果小杰单独买一袋,那么所带的钱还差3元;如果两人所带的钱合在一起买一袋,那么就多余8元.试问苹果每千克多少元?95.某车间安排甲、乙两人共加工400个零件,甲与乙一起加工了4小时后,又由甲单独加工了6小时才完成任务,已知甲比乙每小时少加工2个零件,求甲、乙两人每小时各加工多少零件?96.一家商店将一件西装按成本价提高50%后标价,后因节日促销按标价的8折优惠出售,每件以960元卖出,则这件西装的成本价是多少元?97.列方程解应用题:一架飞机在两城之间飞行,风速为24千米/小时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程.98.某书店在促销活动中,推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.有一次,小明到该书店购书,到收银台付款时,他先买优惠卡再凭卡付款,结果节省了12元,求小明不凭卡购书的书价为多少元?99.一条地下管线,甲工程队单独铺设需12天,乙工程队单独铺设需要18天,若果现有甲工程队铺设2天后再由甲、乙两个工程队共同铺设,还需要多少天可以铺好这条管线?100.某种商品的进价为400元,标价为600元,打折出售的利润率为5%,那么,此商品是按几折销售的?。

一元一次方程应用题测试卷不含答案

一元一次方程应用题测试卷不含答案 1 / 4 七年级数学 第三章:一元一次方程应用题 测试卷

( 时间 :90 分钟 总分 :100

分 )

班级: 姓名: 得分: 1、一辆大汽车原来的行驶速度是 30 千米 / 时,现在开始平均加快,每小时加快 20 千米 / 时;一辆小汽车原来的行驶速度是 90 千米 / 时,现在开始平均减速,每小时减速 10 千米 / 时。经过多长时间两辆车的速度相等?

2、汽车从 A 地到 B 地,若每小时行驶 40 千米,就要晚到 0.5 小时:若每小时行驶 45 千米,就能够早到 0.5 小时。求 A、B 两地的距离。

3、甲骑自行车从 A 地到 B 地,乙骑自行车从 B 地到 A 地,两人都匀速前进,已知两人在上午 8 时同时出发,到上午 10 时,两人还相距 36 千米,到中午 12 时,两人又相距 36 千米,求 A、B 两地间的行程。

4、一列火车匀速行驶, 经过一条长为 300 米的地道需要 20 秒的时间。地道 的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是 10 秒。请找出火车的长度。

5、在高速公路上,一辆长 4 米,速度为 22 米/ 秒的轿车准备超越一辆长 12 米,速度为 20 米/ 秒的卡车,则轿车从开始追及到超越卡车,需要开销的时间约是多少秒?

6、 甲、乙两人骑自行车同时从相距 64 千米的两地相向而行,2小时后相遇。

已知甲骑车每小时比乙每小时多走 6 千米,求乙的速度是多少。

7.某队伍 450 米长,以每分钟 90 米速度前进, 现在小明需要从排尾到排头取东 西,到排头后,立刻返回排尾(即从排头回到排尾) ,速度为 3 米 / 秒。问: ①小明从排尾到排头需要多少时间? ②小明从排头回到排尾需要多少时间? ③小明往返共需多少时间?

8、甲、乙两人练习赛跑,甲每秒跑 7 米,乙每秒跑 6.5 米,甲让乙先跑 5 米尔后奋力去追,求几秒后甲追上乙?

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《应用题提高小测试》用方程解应用题----金西丰子恺学校
1.杨过从汤溪到金华买火腿,先是上坡路,然后就是下坡路,上下的坡度都均匀。

杨过上坡速度都为每小时20千米,下坡速度都为每小时30千米。

从汤溪到金华用4小时,从金华返回汤溪用2小时。

求去时上坡路和下坡路分别为多少千米?
2.小龙女骑自行车从甲地到乙地,先骑一段上坡路,再骑一段平坦路。

她从甲地到乙地用了4小时,回程用了3小时。

小龙女在平坦路上速度是10千米,上坡速度是10千米,下坡路速度是20千米.甲乙两地的距离是多少千米?
3.一艘轮船航行在俩码头之间,顺水要用4小时,逆水要5小时,已知该船在静水里的速度是每小时30千米,求水流速度。

4.出租车在开始10千米以内收费10元,以后每走1千米,收费2元,现在收费26元,请问出租车开了多少千米?
5.金华市按以下规定收取每月的水费:用水量如果不超过8吨,按每吨2元收费;如果超过8吨,未超过的部分仍按每吨2元收取,而超过部分则按每吨3元收费.如果某用户5月份水费平均为每吨2.5元,那么该用户5月份应交水费多少元?。

相关文档
最新文档