02密码学基础

合集下载

密码学的数学基础

密码学的数学基础

定理:若acbc mod m,d=gcd(c,m), 则:ab mod m/d 因为 acbcmod m
所以 ac=km+bc 所以 c(a-b)=km 又因为 d=gcd(c,m) 所以 c=c1· d,m=c2· d,gcd(c1,c2)=1 所以 c1· d(a-b)=k· c1 · d 所以 c1(a-b)=k· c2 又因为 gcd(c1,c2)=1 所以 c1|k 所以k=h· c1 所以 a-b=k· h· c2 所以 ab mod c2 所以 ab mod (m/d)
按模指数运算:am mod n
将指数运算作为一系列乘法运算,每次做一次模运 算。 例:a8 mod n = ((a2 mod n)2 mod n)2 mod n 当m不是2的乘方时,将m表示成2的乘方和的形式。 例如:25=(11001)2,即25=24+23+20 a25 mod n = (a16 a8 a) mod n = ((((a2)2)2)2 ((a2)2)2 a) mod n = ((((a2 a)2)2)2 a) mod n 适当存储中间结果,则只需6次乘法: (((((((a2mod n) a)mod n)2mod n)2mod n)2mod n) a)mod n
3为6的因子,记为3|6,3除尽6
任意的a|b,a|c,称a为b,c的公因子
最大公因数:a与b的公因数中能被所有a,b 的公因数整除的正整数,记为gcd(a,b)。 互素(互质):两个整数称为互素的,如果它 们除了1以外没有其他的公因数,即 gcd(a,b)=1。
定理:若a=b· q+r,则gcd(a,b)=gcd (b,r) 证明:d=(a,b),d’=(b,r) d| a – bq d | r,d为b,r的公因数; d|d’ d’=h· d d’|b· q+r d’|a,d’为a,b的公因数;d’|d d=k· d 所以 k· h=1 k=h=1;

《密码学基础》课程教学大纲

《密码学基础》课程教学大纲

《密码学基础》课程教学大纲(Fundamentals of Cryptography)课程编号: 1223527课程性质:专业课适用专业:计算机科学与技术先修课程:线性代数、概率论与数理统计、离散数学后续课程:总学分:2学分一、教学目的与要求1. 教学目的密码学包含两个密切相关的方面,其一是密码编码学,研究编写出好的密码系统的方法;其二是密码分析学,研究攻破一个密码系统的途径,恢复被隐蔽信息的本来面目。

通过本课程的学习使学生初步掌握密码编码学的知识、了解密码分析学的基本概念和方法。

2. 教学要求通过本课程的学习,要求学生能初步掌握密码学的主要内容,包括:公钥密码,分组密码,伪随机序列发生器,序列密码,数字签名等等。

要求重点掌握各种密码算法和密码协议及其设计原理,掌握密钥管理、数字签名、身份认证、散列函数等核心技术。

二、课时安排三、教学内容1. 密码学的基本概念(2学时)(1)教学基本要求了解:信息安全模型;信息安全与密码学的关系;密码学的发展方向。

理解:密码学的发展与分类;密码学的基本概念;现代密码学的理论基础。

(2)教学内容①对安全威胁的被动攻击(截获)与主动攻击(中断、篡改、伪造);②信息安全的三个特性(保密性Confidentiality、完整性Integrity、可用性Availability);③密码学的分类(密码编码学、密码分析学、密码密钥学);④密码编码学的分类(对称密码与非对称密码);⑤密码分析及对密码系统攻击能力等级。

2. 分组密码(4学时)(1)教学基本要求了解:DES;对DES的攻击方法;分组密码设计的一般原理;IDEA;Double-DES,Triple-DES;AES的产生背景。

理解:DES算法;分组密码(DES)的使用模式;IDEA的总体结构;AES算法;逆元的计算;分组密码的工作模式。

(2)教学内容①DES算法的整体结构(重点);②初始置换、逆初始置换、乘积变换、16轮迭代、函数f、S-盒、P置换;③子密钥的生成及DES的解密过程;④DES的雪崩效应、DES的弱密钥及半弱密钥、对DES的攻击;⑤Double-DES与Triple-DES;⑥分组密码设计的一般原理及分组密码的工作模式(ECB、CBC、CFB、OFB);⑦IDEA的总体结构,8轮迭代、输出变换、密钥调度、乘积运算;⑧逆元的计算;⑨DES,Double-DES,Triple-DES,IDEA的安全性;⑩AES分组密码算法(轮变换、加轮密钥、密钥调度、密钥扩展等)。

密码学专业主干课程

密码学专业主干课程

密码学专业主干课程摘要:一、引言二、密码学概述1.密码学定义2.密码学发展历程三、密码学专业主干课程1.密码学基础课程2.密码学进阶课程3.密码学应用课程四、课程举例与介绍1.密码学基础课程举例与介绍2.密码学进阶课程举例与介绍3.密码学应用课程举例与介绍五、结论正文:【引言】密码学是一门研究信息加密与解密、保证信息安全的学科,随着信息化时代的到来,密码学在信息安全、电子商务等领域具有重要的应用价值。

密码学专业因此应运而生,培养具备密码学理论基础和实践能力的高级人才。

本文将介绍密码学专业的主干课程,以帮助大家了解该专业的学习内容。

【密码学概述】密码学是研究加密与解密方法、破译与防护手段的一门学科。

其发展历程可追溯到古代的密码传递,如古希腊的斯巴达加密法。

随着科技的发展,现代密码学涉及到数字、编码、序列、图像等多个领域。

【密码学专业主干课程】密码学专业主干课程可以分为三类:密码学基础课程、密码学进阶课程和密码学应用课程。

【密码学基础课程】密码学基础课程主要包括:1.数学基础:高等数学、线性代数、概率论与数理统计等。

2.计算机科学基础:计算机原理、数据结构、算法分析等。

3.密码学基础:密码学原理、对称加密、非对称加密、哈希函数等。

【密码学进阶课程】密码学进阶课程主要包括:1.密码学分支:分组密码、序列密码、公钥密码、量子密码等。

2.安全协议:身份认证、加密协议、签名协议等。

3.密码学理论:信息论、复杂度理论、密码学数学基础等。

【密码学应用课程】密码学应用课程主要包括:1.网络安全:网络攻防、入侵检测、安全体系结构等。

2.应用密码学:数字签名、电子商务、移动通信安全等。

3.密码学实践:密码学实验、密码算法实现、安全系统设计等。

【课程举例与介绍】【密码学基础课程举例与介绍】1.高等数学:为密码学提供必要的数学基础,如代数、微积分等。

2.密码学原理:介绍密码学基本概念、加密解密方法等。

【密码学进阶课程举例与介绍】1.分组密码:研究将明文分成固定长度组进行加密的方法。

1_密码学基础

1_密码学基础
➢ 1949年信息论之父C. E. Shannon发表了“The Communication Theory of Secret Systems” ,密码学走上 了科学与理性之路
➢ 1967年David Kahn的《The Codebreakers》 ➢ 1971-73年IBM Watson实验室的Horst Feistel等的几篇技
33
密码学基础
破译分析I: 尝试全部可能
使用简单替代(移n位) 密钥未知 已知密文: CSYEVIXIVQMREXIH 如何找到密钥? 仅有26个可能密钥 尝试全部的可能!看哪个能找到合
理的含义 穷举搜索 答案: 密钥 = 4
34
密码学基础
更复杂的替代
密钥是一些字母的组合 不一定是移位 例如:
明文:Caesar was a great soldier 密文:Fdhvdu zdv d juhdw vroglhu
第12页
2.3.1 形形色色的密码技术
二战著名的(ENIGMA)密码 ➢ 德国人Arthur Scheribius人发明 ➢ 德国人将其改装为军用型,使之更为复杂可靠 ➢ 1933年,纳粹最高统帅部通信部决定将“ENIGMA”作为德
➢ 经验告诉我们一个秘密的算法在公开时就很容易破解了 ➢ 密码的算法不可能永远保持隐秘 ➢ 理想的情况是在密码算法被破解之前找到算法的弱点
5
密码学基础
黑盒子密码系统
密钥
密钥
明文 加密
密文
解密
密码的通用方式
密码学基础
明文
6
密码发展历史
形形色色的密码技术 密码发展史
第7页
2.3.1 形形色色的密码技术
第三阶段:1976年以后,密码学的新方向——公钥密 码学。公钥密码使得发送端和接收端无密钥传输的保 密通信成为可能。

密码学基础复习资料

密码学基础复习资料

1、 Kerchkoffs 原则密码系统的安全性不应取决于不易改变的事物(算法),而应取决于改变的密钥。

2、 SP 网络SP 网络就是由多重S 变换和P 变换组合成的变换网络,即迭代密码,它是乘积密码的一种,其基本操作是S 变换(代替)和P 变换(换位),前者称为S 盒,后者被称为P 盒,S 盒的作用是起到混乱作用,P 盒的作用是起到扩散的作用。

4安全机制指用来保护系统免受侦听、阻止安全攻击及恢复系统的机制。

5加密算法将明文变换为密文的变换函数,相应的变换过程称为加密,即编码的过程,通常用E 表示,即c=E k (p)。

6、数字签名的基本原理什么?答:一个数字签名方案由两部分组成:带有陷门的公开签名算法和验证算法。

公开签名算法是一个由密钥控制的函数。

对任意一个消息x ,一个密钥k ,签名算法产生一个签名)(x sig y k=签名很难伪造。

验证算法),(y x ver 也是公开的,它通过true y x ver =),(或false 来验证签名。

7、密码学的五元组是什么?它们分别有什么含义? 答:密码学的五元组是指:{明文、密文、密钥、加密算法、解密算法}。

明文:是作为加密输入的原始信息,即消息的原始形式,通常用m 或表示。

密文:是明文经加密变换后的结果,即消息被加密处理后的形式,通常用c 表示。

密钥:是参与密码变换的参数,通常用k 表示。

加密算法:是将明文变换为密文的变换函数,相应的变换过程称为加密,即编码的过程,通常用表示,即()kc E p =。

解密算法:是将密文恢复为明文的变换函数,相应的变换过程称为解密,即解码的过程,通常用D 表示,即()kp D c =。

8、为什么在密钥管理中要引入层次式结构?答:层次化的密钥结构意味着以少量上层密钥来保护大量下层密钥或明文数据,这样,可保证除了主密钥可以以明文的形式基于严格的管理受到严密保护外(不排除受到某种变换的保护),其他密钥则以加密后的密文形式存储,改善了密钥的安全性。

第二章 简单密码学(补充古典密码学)

第二章 简单密码学(补充古典密码学)


所使用的方式,其中密钥k=3,比如hello!就表示为khoor(忽略空格和符 号),它的数学表达式为:
加密:c=m+k(mod26)
解密:m=c-k(mod26) 加密步骤:1)先将26个英文字母编号:a,b,c,d……y,z;每个英文字母对应
的数字分别是0,1,2,3……24,25,注意这里的编号是从0开始的,与我们平时
12
Caesar密码
Caesar密码攻击
湖南公安高 等专科学校
如果在一篇用恺撒密码加密的密文中(假设它的字数很多,
而且字母随机性很好),我们就可以从中发现出现频率最多的 字母,假设它为e或者t或者a,将出现频率最低的字母假设为x 或者z或者q,然后玩填字游戏,找到加密所使用的k,攻破这个 加密体制。 求解k的表达式为:k=c-m(mod26) 注意:如果k为负数时,则加上26,使得k始终是一正数
第二章 简单密码学(补充——古典密码学)
湖南公安高 等专科学校
候选明文 exxegoexsrgi dwwdfndwrqfh cvvcemcvqpeg buubdlbupodf attackatonce zsszbjzsnmbd yrryaiyrmlac … haahjrhavujl gzzgiqgzuti式为:
加密:c=m+k(mod26) 解密:m=c-k(mod26) 其中k即密钥,也就是关键字(如cipher)的字母个数。还有一点与Caesar 密码不同,这里的字母表中字母顺序打乱了,不再是完全按英文字母顺序排列 的,关键字不同,密码表的次序就不相同,保证了安全性,比Caesar密码更加 健壮,单由于它仍然是单表替换密码,同样可用字母出现频率弱点进行攻击。
第二章 简单密码学(补充——古典密码学)

计算机安全-密码学(2)


注意:M必须比N小
为什么RSA 可以加解密
因为 Euler 定理的一个推论: Mkø(n)+1 = M mod N RSA 中: N=p.q ø(N)=(p-1)(q-1) 选择 e & d 使得ed=1 mod ø(N) 因此 存在k使得e.d=1+k.ø(N) 因此 Cd = (Me)d = M1+k.ø(N) = M mod N
RSA 算法 由Rivest、Shamir和Adleman于 1978年提出。该算法的数学基础 是初等数论中的Euler(欧拉)定 理,并建立在大整数因子的困难 性之上。
公开密钥算法
2 RSA算法简介
1978年,美国麻省理工学院(MIT)的研究小组成员: 李 维 斯 特 (Rivest) 、 沙 米 尔 (Shamir) 、 艾 德 曼 (Adleman)提出了一种基于公钥密码体制的优秀加密 算法——RSA算法。 RSA算法是一种分组密码体制算 法,它的保密强度是建立在具有大素数因子的合数, 其因子分解是困难的。 RSA得到了世界上的最广泛的应用,ISO在1992年颁 布的国际标准X.509中,将RSA算法正式纳入国际标准。 1999年美国参议院已通过了立法,规定电子数字签 名与手写签名的文件、邮件在美国具有同等的法律效 力。
算法
加密/解密
数字签名
密钥交换
RSA
Diffie-Hellman DSA
Y
N N
Y
N Y
Y
Y N
对公钥密码算法的误解
公开密钥算法比对称密钥密码算法更安全?
任何一种算法都依赖于密钥长度、破译密码的工作 量,从抗分析角度,没有一方更优越
公开密钥算法使对称密钥成为过时了的技术?

密码学基础教学大纲完整版

《密码学基础》课程教学大纲(课程代码:07310620)课程简介密码学基础是信息安全专业的一门技术基础课程,该课程的学习将为后续的信息安全课程打下基础,同时也为将来从事信息安全研究和安全系统的设计提供必要的基础。

该课程主要讲授流密码(古典密码学)分组密码学、公钥密码学、密钥分配与管理、信息认证和杂凑算法、数字签名以及网络加密与认证等几个部分,在其中将学习各种加解密、散列函数、单向函数、签名模式及伪随机发生器等多种密码学工具,以及如何应用这些工具设计一个实现基本信息安全目标的系统(目前学时不够,没有安排)。

基本密码学工具的掌握和应用这些工具构造安全服务就是本课程的基本目标。

本课程具有如下特点:(一)依赖很强的数学基础本课程需要数论、近世代数、概率论、信息论、计算复杂性等数学知识作为学习的基础。

这些数学基础的讲解既要体现本身的体系性,同时还要兼顾密码学背景。

(二)可扩展性强各种具体方法的学习不是本课程的最终目标,背后的基本原理以及应用这些原理设计新工具的能力才是本课程的最终目标。

(三)课程内容复杂且涉及面广由于密码学内容丰富,且包含许多复杂的知识点,所以本课程的讲授以线为主,即在基本主线的勾勒基础上对授课内容及复杂程度做出取舍。

本课程先修课程有:数据结构、近世代数、概率论、高等数学、高级语言程序设计等。

后续课程有信息安全扫描技术、PKI技术、病毒学等专业课程。

课程教材选用国内信息安全优秀教材杨波编著的《现代密码学》(清华大学出版社),同时参考国外优秀教材:《经典密码学与现代密码学》,Richard Spillman,清华大学出版社、Douglas R. Stinson著,冯登国译的《密码学原理和实践》,电子工业出版社,2003年2月第二版。

另外还向学生推荐国内的一些具有特色的操作系统教材如胡向东编写的《应用密码学教程》(电子工业出版社)等。

实验教材选用自编的实验指导书,同时参考上海交大的“信息安全综合实验系统实验指导书”,除了这些教材之外,学校的图书馆为师生提供了相关的学术期刊和图书。

密码学基础知识

密码学是研究信息系统安全保密的科学,主要分为密码编码学和密码分析学。其发展历程包括多个关键阶段,如1918年的Friedman和Heberm的研究,以及后来的Shannon、Kahn、Feistel等人的贡献。特别是1975年Diffie & Hellman提出公开密钥密码学,为密码学领域带来了革命性的变革。密码学的主要目标是确保信息的机密性、鉴别、完整性和抗抵赖。一个密码体制通常由五元组。保密系统的设计需遵循一定的准则,如Kerckhoff原则,即系统的保密性应依赖于密钥而非加密体制或算法的保密。此外,密码系统的熵是衡量其安全性的重要指标,熵越大,破译难度越高。自然语言的高冗余度为密码分析提供了重要工具,而密码系统的设计则需充分利用这一特性以增强安全性。

密码学的数学基础


素数
如何判断一个数是否为素数?
本章授课提纲
(1)整除
(2)素数
(3)最大公约数 (4)欧几里德算法
最大公约数
最大公约数的定义 a和b的最大公约数(Greatest Common Divisor ) 是能够同时整除a和b的最大正整数,记为gcd(a,b) 或者(a,b)。 例如:gcd(6,4)=2,gcd(5,7)=1,gcd(24,60)=12 互素的定义 如果gcd(a,b)=1,就称a和b互素
证明:记a-b=nk,b-c=nl,那么两式相减得ac=n(k-l),所以a≡c(mod n)。
模运算和同余
模运算和同余的性质 性质五:如果m|(a-b),则a≡b(mod m) 证明:由已知条件可得a-b=km,k为某一整数; 进而可得a=b+km,故a(mod m)=(b+km)除以m的余 数=b除以m的余数=b(mod m),由同余的第二个定 义可以得证。
[11(mod 8)-15(mod 8)](mod 8)=(3-7)(mod 8)=4
=(11-15)(mod 8)=-4(mod 8)=4
模运算和同余
模运算的乘法的结合律 [a(mod n)〓b(mod n)](mod n)=(a〓b)(mod n) 举例: [11(mod 8)〓15(mod 8)](mod 8)=(3〓7)(mod 8)=21(mod 8)=5 =(11〓15)(mod 8)=165(mod 8)=5
欧几里德算法
欧几里德算法的精确描述 两个整数用a,b表示,商用q表示,余数用r表示 Step1 取a,b较大者为a,较小者为b Step2 做除法,计算并保留余数r=mod(a,b) Step3 将原来的除数改做被除数,余数作为除数 a=b,b=r 重复Step1和Step2直到r=0,返回b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档