智能仪器-课件1
合集下载
《智能仪器设计方法》PPT课件

三个阶段
精选PPT
2
ቤተ መጻሕፍቲ ባይዱ
“智能仪器设计”的研究内容定位
人工智能 少数仪器,如中医诊断仪,利用 了专家系统,现在已经不多见应用。现在比 较多的是测量仪器,能够把测量结果和标准 测量结果比较,得出那些指标超标
计算机化仪器,微型计算机在仪器中的应用, 显示、控制、接口
虚拟仪器 以软面板为特征的仪器
仪器设计,智能仪器的设计
软件研制:
➢ 软件设计作一个总体规划 ➢ 程序功能块划分 ➢ 确定算法 ➢ 分配系统资源和设计流程图 ➢ 编写程序 ➢ 程序调试和纠错以及各部分程序连接及系
统总调
结构化和模块化程序设计: 自底向上模块化程序设计 自顶向下模块化程序设计
三种基本程序结构:
顺序结构、选择结构、循环结构 智能仪器的软件结构: 智能仪器的软件通常由监控程序、 中断程序,测量程序和数据处理程序组成。
智能仪器还应有很好的可维护性,为此, 仪器结构要规范化、模块化,并配有现场故障 诊断程序,一旦发生故障,能保证有效地对故 障进行定位,以便更换相应的模块,使仪器尽 快地恢复正常运行。
4.仪器工艺结构与造型设计要求
仪器结构工艺是影响可靠性的重要因素, 首先要依据仪器工作环境条件,是否需要防 水、防尘、防爆密封,是否需要抗冲击、抗 振动、抗腐蚀等要求,设计工艺结构;仪器 的造型设计亦极为重要。总体结构的安排、 部件间的连接关系、面板的美化等都必须认 真考虑,最好由结构专业人员设计,使产品 造型优美、色泽柔和、外廓整齐、美观大方。
组合化设计方法及优点
开放式体系结构和总线系统技术发展,导致了 工业测控系统采用组合化设计方法的流行,即 针对不同的应用系统要求,选用成熟的现成硬 件模板和软件进行组合。
精选PPT
2
ቤተ መጻሕፍቲ ባይዱ
“智能仪器设计”的研究内容定位
人工智能 少数仪器,如中医诊断仪,利用 了专家系统,现在已经不多见应用。现在比 较多的是测量仪器,能够把测量结果和标准 测量结果比较,得出那些指标超标
计算机化仪器,微型计算机在仪器中的应用, 显示、控制、接口
虚拟仪器 以软面板为特征的仪器
仪器设计,智能仪器的设计
软件研制:
➢ 软件设计作一个总体规划 ➢ 程序功能块划分 ➢ 确定算法 ➢ 分配系统资源和设计流程图 ➢ 编写程序 ➢ 程序调试和纠错以及各部分程序连接及系
统总调
结构化和模块化程序设计: 自底向上模块化程序设计 自顶向下模块化程序设计
三种基本程序结构:
顺序结构、选择结构、循环结构 智能仪器的软件结构: 智能仪器的软件通常由监控程序、 中断程序,测量程序和数据处理程序组成。
智能仪器还应有很好的可维护性,为此, 仪器结构要规范化、模块化,并配有现场故障 诊断程序,一旦发生故障,能保证有效地对故 障进行定位,以便更换相应的模块,使仪器尽 快地恢复正常运行。
4.仪器工艺结构与造型设计要求
仪器结构工艺是影响可靠性的重要因素, 首先要依据仪器工作环境条件,是否需要防 水、防尘、防爆密封,是否需要抗冲击、抗 振动、抗腐蚀等要求,设计工艺结构;仪器 的造型设计亦极为重要。总体结构的安排、 部件间的连接关系、面板的美化等都必须认 真考虑,最好由结构专业人员设计,使产品 造型优美、色泽柔和、外廓整齐、美观大方。
组合化设计方法及优点
开放式体系结构和总线系统技术发展,导致了 工业测控系统采用组合化设计方法的流行,即 针对不同的应用系统要求,选用成熟的现成硬 件模板和软件进行组合。
智能仪器课件第3版9122页

7.5 现场总线
➢ 现场总线(Fieldbus)是计算机网络与生产过程 专用网络或工业控制网络与生产现场基层的自动化测 控设备之间传送信息的共同通路。 ➢ 现场总线是一种工业数据总线,是自动化领域 中,底层数据通信网络,是应用在生产现场,连接智 能现场设备和自动化测量控制系统的通信网络。 ➢在微机化测量控制设备之间实现双向串行多节点数 字通信的系统,也被称为开放式、数字化、多点通信 的底层控制网络。 ➢它在制造业、流程工业、交通、楼宇等方面的自动 化系统中具有广泛的应用前景。
返回 上页 下页
7.5.2
返回 上页 下页
7.5.2
汽车内的CAN总线系统主要分为两部分,一种是动力 系统,另一种是舒适系统,动力系统由高速CAN总线 组成,传输速度快,能够达到500kb/s。汽车采用 CAN总线系统可以实现各ECU之间的信息共享,减 少不必要的线束和传感器。而且还可实现多ECU之间 的实时关联控制。
返回 上页 下页
现场总线系统技术特点:
7.5.1
●互可操作性和互用性 互可操作性,是指实现互联设备间、系统间的
信息传送与沟通;而互用则意味着不同生产厂家的性 能类似的实现可相互替 换。
●现场设备的智能化和功能自治性 传感测量、补偿计算、工程量处理与控制等功能分
散到现场 设备中完成,仅靠现场设备即可完成自动控 制的 基本功能,并可随时诊断设备的运行状态。
返回 上页 下页
现场总线优越性:
7.5.1
2. 节省安装费用 现场总线系统的接线十分简单,一对双绞线或一条电 缆线通常可挂接多个设备,因而电缆、端子、槽盒桥 架的用量大大减少,连线设计与校对的工作量也大大 减少。当需要增加现场设备时无需要增设新的电缆, 可就近连接在原有的电缆上,既节省了投资,又减少 了设计、安装的工作量。据有关典型试验工程测算资 料表明,可节省安装费用60%以上。
➢ 现场总线(Fieldbus)是计算机网络与生产过程 专用网络或工业控制网络与生产现场基层的自动化测 控设备之间传送信息的共同通路。 ➢ 现场总线是一种工业数据总线,是自动化领域 中,底层数据通信网络,是应用在生产现场,连接智 能现场设备和自动化测量控制系统的通信网络。 ➢在微机化测量控制设备之间实现双向串行多节点数 字通信的系统,也被称为开放式、数字化、多点通信 的底层控制网络。 ➢它在制造业、流程工业、交通、楼宇等方面的自动 化系统中具有广泛的应用前景。
返回 上页 下页
7.5.2
返回 上页 下页
7.5.2
汽车内的CAN总线系统主要分为两部分,一种是动力 系统,另一种是舒适系统,动力系统由高速CAN总线 组成,传输速度快,能够达到500kb/s。汽车采用 CAN总线系统可以实现各ECU之间的信息共享,减 少不必要的线束和传感器。而且还可实现多ECU之间 的实时关联控制。
返回 上页 下页
现场总线系统技术特点:
7.5.1
●互可操作性和互用性 互可操作性,是指实现互联设备间、系统间的
信息传送与沟通;而互用则意味着不同生产厂家的性 能类似的实现可相互替 换。
●现场设备的智能化和功能自治性 传感测量、补偿计算、工程量处理与控制等功能分
散到现场 设备中完成,仅靠现场设备即可完成自动控 制的 基本功能,并可随时诊断设备的运行状态。
返回 上页 下页
现场总线优越性:
7.5.1
2. 节省安装费用 现场总线系统的接线十分简单,一对双绞线或一条电 缆线通常可挂接多个设备,因而电缆、端子、槽盒桥 架的用量大大减少,连线设计与校对的工作量也大大 减少。当需要增加现场设备时无需要增设新的电缆, 可就近连接在原有的电缆上,既节省了投资,又减少 了设计、安装的工作量。据有关典型试验工程测算资 料表明,可节省安装费用60%以上。
智能仪器的设计实例PPT课件

图8-18所示温度桥测电路的输出电压为
U
Rt Rt R1
R3 R2 R3
(V8O-U1T)
由上式可求出Rt值,再利用下式可求出温度值t。
(8-2)
Rt 1 At Bt2 R3
第10页/共31页
式中: A=3.096847×10-7; B=-5.847×10-3。 为了提高测量精度,本设计将温度分两档进行测量,
硬件电路设计的主要任务是从机系统及通信接口电 路的设计。在从机系统中,键盘及LCD显示器的设计属于 常规设计,此处省略。主要介绍模拟量输入通道(温度传 感器、信号调理电路、A/D转换器)以及通信接口电路的 设计。
1. 温度检测电路的设计 系统的温度检测范围为0~400℃,可选用的温度传感器有 集成温度传感器、热电偶以及热电阻等。
8.5.1 检测系统总体设计
多路远程温度检测系统采用分布式检测结构,由一台主机 系统和多台从机系统构成。
➢从机根据主机的指令对各点温度进行实时或定时采集, 测量结果不仅能在本地存储、显示,而且可以通过串行 总线将采集数据传送至主机。
➢主机的功能是发送控制指令,控制各个从机进行温度采 集,收集从机测量数据,并对测量结果进行分析、处理、 显示和打印。
• 稳压块都有一个最小稳定工作电流,有的资料称为最小 输出电流,也有的资料称为最小泄放电流。最小稳定工 作电流的值一般为1.5mA。
第7页/共31页
仪用放大器AD620 • 差动放大电路适合一般的信号放大电路,但是电路精密度
较差,且电路上变更放大增益时,必须调整两个电阻,影 响整个信号放大精度的原因更复杂。 • AD620的基本特点为精确度高,使用简易,低通讯,低
➢热电阻测量精度高、性能稳定,使用方便,测量范围为 -200~600℃,完全满足设计要求。考虑到铂电阻的测 量精度较高,所以设计选择铂电阻PT100作为传感器。 铂电阻测量温度的原理是将温度的变化转变为电阻值的
智能仪器设计实例ppt

网络化
通过物联网、互联网等技术,实现设备之间的互 联互通和信息共享,提高设备的远程控制和数据 传输能力。
市场与应用拓展的挑战
安全性
随着智能仪器的应用范围越来越广泛,安全性问题越来越突出。设备的安全性设计和数据 的安全性保障是未来发展的重要方向。
兼容性
由于不同领域、不同行业对智能仪器的需求差异较大,因此需要提高设备的兼容性和可定 制性,满足不同用户的需求。
智能仪器设计实例ppt
xx年xx月xx日
contents
目录
• 智能仪器设计概述 • 智能仪器硬件设计 • 智能仪器软件设计 • 智能仪器应用实例 • 智能仪器发展趋势与挑战
01
智能仪器设计概述
智能仪器定义
智能仪器具有自动检测、数据处理、控制和通信等功能。
1
电源电路是智能仪器设计中的重要组成部分, 为仪器提供稳定的电源,保证其正常工作。
2
电源电路设计需要考虑输入电压、输出电压和 电流等参数,并根据实际需求选择合适的电源 芯片和电容等元件。
3
常见的电源电路设计包括线性电源和开关电源 两种,需要根据具体应用场景进行选择。
信号采集电路设计
01
信号采集电路是智能仪器设计中实现测量功能的关键部分,负责对外部信号的 采集和调理。
的自主性和智能性。
03
拓展应用领域
进一步拓展智能仪器的应用领域,包括医疗、环保、能源等领域,提
高设备的应用价值和市场竞争力。
THANKS
05
智能仪器发展趋势与挑战
技术创新与发展趋势
微型化
随着微电子技术和微加工技术的发展,智能仪器 正朝着微型化方向发展,实现更小尺寸的仪器设 备,提高便携性和使用灵活性。
通过物联网、互联网等技术,实现设备之间的互 联互通和信息共享,提高设备的远程控制和数据 传输能力。
市场与应用拓展的挑战
安全性
随着智能仪器的应用范围越来越广泛,安全性问题越来越突出。设备的安全性设计和数据 的安全性保障是未来发展的重要方向。
兼容性
由于不同领域、不同行业对智能仪器的需求差异较大,因此需要提高设备的兼容性和可定 制性,满足不同用户的需求。
智能仪器设计实例ppt
xx年xx月xx日
contents
目录
• 智能仪器设计概述 • 智能仪器硬件设计 • 智能仪器软件设计 • 智能仪器应用实例 • 智能仪器发展趋势与挑战
01
智能仪器设计概述
智能仪器定义
智能仪器具有自动检测、数据处理、控制和通信等功能。
1
电源电路是智能仪器设计中的重要组成部分, 为仪器提供稳定的电源,保证其正常工作。
2
电源电路设计需要考虑输入电压、输出电压和 电流等参数,并根据实际需求选择合适的电源 芯片和电容等元件。
3
常见的电源电路设计包括线性电源和开关电源 两种,需要根据具体应用场景进行选择。
信号采集电路设计
01
信号采集电路是智能仪器设计中实现测量功能的关键部分,负责对外部信号的 采集和调理。
的自主性和智能性。
03
拓展应用领域
进一步拓展智能仪器的应用领域,包括医疗、环保、能源等领域,提
高设备的应用价值和市场竞争力。
THANKS
05
智能仪器发展趋势与挑战
技术创新与发展趋势
微型化
随着微电子技术和微加工技术的发展,智能仪器 正朝着微型化方向发展,实现更小尺寸的仪器设 备,提高便携性和使用灵活性。
智能仪器模拟量输入输出通道课件

二、 ADC0809芯片及其接口
二、 ADC0809芯片及其接口
2.1.2 逐次比较式A/D转换器与计算机接口
A/D转换器与微处理器连接方式以及智能仪器要求的不同,实现A/D转换软件的控制方式就不同。目前常用的控制方式主要有: 1. 程序查询方式: 2. 延时等待方式: 3. 中断方式:
三、A/D转换器的分类
① 逐次比较式A/D转换器:转换时间一般在μs级,转换精度一般在0.1%上下,适用于一般场合。 ② 积分式A/D转换器:其核心部件是积分器,因此转换时间一般在ms级或更长,但抗干扰性能强,转换精度可达0.01%或更高。适于数字电压表类仪器采用。 ③ 并行比较式又称闪烁式:采用并行比较,其转换时间可达ns级,但抗干扰性能较差,由于工艺限制,其分辨率一般不高于8位。可用于数字示波器等要求转换速度较快的仪器中。 ④ 改进型是在上述某种形式A/D转换器的基础上,为满足某项高性能指标而持原有较高转换速率的前提下精度可达0.01%以上。
2.1 模拟量输入通道
2.1.1 A/D转换器概述
A/D转换器是将模拟量转换为数字量的器件,这个模拟量泛指电压、电阻、电流、时间等参量,但在一般情况下,模拟量是指电压而言的。
一、A/D转换器的定义
分辨率与量化误差 转换精度 转换速率 满刻度范围
二、A/D转换器的技术指标
b. 延时等待方式 MOV DPTR, #0FEF8H MOV A, #00H MOVX @DPTR, A ;启动IN0通道 MOVX R2, #48H WAIT:DJNZ R2, WAIT ;延时约140μs MOVX A, @DPTR MOV 30H, A ;转换结果存30H
二、A/D转换器的技术指标
分辨率与量化误差
分辨率是衡量A/D转换器分辨输入模拟量最小变化程度的技术指标。例如:某A/D转换器为12位,若用百分比表示,即表示该转换器可以用212个二进制数对输入模拟量进行量化,其分辨力为1LSB。 若用百分比表示,其分辨率为(1/212)×100% =0.025%,若允许最大输入电压为10V,则它能分辨输入模拟电压的最小变化量为10V×1/212 = 2.4mV。 A/D转换器的分辨率取决于A/D转换器的位数,所以习惯上也以BCD 码数的位数直接表示。
二、 ADC0809芯片及其接口
2.1.2 逐次比较式A/D转换器与计算机接口
A/D转换器与微处理器连接方式以及智能仪器要求的不同,实现A/D转换软件的控制方式就不同。目前常用的控制方式主要有: 1. 程序查询方式: 2. 延时等待方式: 3. 中断方式:
三、A/D转换器的分类
① 逐次比较式A/D转换器:转换时间一般在μs级,转换精度一般在0.1%上下,适用于一般场合。 ② 积分式A/D转换器:其核心部件是积分器,因此转换时间一般在ms级或更长,但抗干扰性能强,转换精度可达0.01%或更高。适于数字电压表类仪器采用。 ③ 并行比较式又称闪烁式:采用并行比较,其转换时间可达ns级,但抗干扰性能较差,由于工艺限制,其分辨率一般不高于8位。可用于数字示波器等要求转换速度较快的仪器中。 ④ 改进型是在上述某种形式A/D转换器的基础上,为满足某项高性能指标而持原有较高转换速率的前提下精度可达0.01%以上。
2.1 模拟量输入通道
2.1.1 A/D转换器概述
A/D转换器是将模拟量转换为数字量的器件,这个模拟量泛指电压、电阻、电流、时间等参量,但在一般情况下,模拟量是指电压而言的。
一、A/D转换器的定义
分辨率与量化误差 转换精度 转换速率 满刻度范围
二、A/D转换器的技术指标
b. 延时等待方式 MOV DPTR, #0FEF8H MOV A, #00H MOVX @DPTR, A ;启动IN0通道 MOVX R2, #48H WAIT:DJNZ R2, WAIT ;延时约140μs MOVX A, @DPTR MOV 30H, A ;转换结果存30H
二、A/D转换器的技术指标
分辨率与量化误差
分辨率是衡量A/D转换器分辨输入模拟量最小变化程度的技术指标。例如:某A/D转换器为12位,若用百分比表示,即表示该转换器可以用212个二进制数对输入模拟量进行量化,其分辨力为1LSB。 若用百分比表示,其分辨率为(1/212)×100% =0.025%,若允许最大输入电压为10V,则它能分辨输入模拟电压的最小变化量为10V×1/212 = 2.4mV。 A/D转换器的分辨率取决于A/D转换器的位数,所以习惯上也以BCD 码数的位数直接表示。
智能仪器设计基础I正式ppt

通信协议设计基础
串行通信协议
介绍串行通信协议的基本概念、分类、应用和发展趋势,如UART、SPI、I2C等,以及在 智能仪器设计中的应用和实现。
网络通信协议
介绍网络通信协议的基本概念、分类、应用和发展趋势,如TCP/IP、HTTP、MQTT等, 以及在智能仪器设计中的应用和实现。
自定义通信协议
介绍自定义通信协议的基本概念、分类、应用和发展趋势,以及在智能仪器设计中的设计 和实现。
实例二:湿度传感器设计
总结词
高灵敏度、长期稳定性、抗干扰能力
详细描述
湿度传感器在气象、环保、工业控制等领域应用广泛。在智能仪器设计中,湿度 传感器应具备高灵敏度、长期稳定性和抗干扰能力,以确保准确测量环境湿度。
实例三:压力传感器设计
总结词
高精度、宽测量范围、可靠性、稳定性
详细描述
压力传感器在航空航天、石油化工、工业控制等领域具有重要应用。在智能 仪器设计中,压力传感器应具备高精度、宽测量范围、可靠性和稳定性等特 点,以满足不同行业的测量需求。
智能仪器设计基础i
xx年xx月xx日
目 录
• 智能仪器概述 • 智能仪器设计基础 • 智能仪器核心模块 • 智能仪器设计实例 • 智能仪器设计挑战与解决方案 • 总结与展望
01
智能仪器概述
智能仪器的定义
智能仪器是一种基于微处理器和传感器技术的自动化测量设 备。
它能够实现数据采集、处理、显示和存储等功能,具有自动 化程度高、测量准确度高、功能多样化等特点。
02
智能仪器设计基础
硬件设计基础
1 2
集成电路
介绍集成电路的基本概念、分类、应用和发展 趋势,以及在智能仪器设计中的重要性。