激光原理考点总结

合集下载

激光知识点总结

激光知识点总结

激光知识点总结激光知识点总结初中物理的光知识是重点单元之一,下面是激光知识点总结,同学们可以根据这一汇总进行复习或者是预习,会有很好的学习效果。

一、定向发光普通光源是向四面八方发光。

要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。

激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有0.001弧度,接近平行。

1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。

若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。

天文学家相信,外星人或许正使用闪烁的激光作为一种宇宙灯塔来尝试与地球进行联系。

二、亮度极高在激光发明前,人工光源中高压脉冲氙灯的亮度,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。

因为激光的亮度极高,所以能够照亮远距离的物体。

红宝石激光器发射的光束在月球上产生的照度约为0.02勒克斯(光照度的单位),颜色鲜红,激光光斑肉眼可见。

若用功率的探照灯照射月球,产生的照度只有约一万亿分之一勒克斯,人眼根本无法察觉。

激光亮度极高的主要原因是定向发光。

大量光子集中在一个极小的空间范围中射出,能量密度自然极高。

激光的亮度与阳光之间的比值是的,而且它是人类创造的。

三、激光的颜色激光的颜色取决于激光的波长,而波长取决于发出激光的活性物质,即被刺激后能产生激光的那种材料。

刺激红宝石就能产生深玫瑰色的激光束,它应用于医学领域,比如用于皮肤病的治疗和外科手术。

公认最贵重的气体之一的氩气能够产生蓝绿色的激光束,它有诸多用途,如激光印刷术,在显微眼科手术中也是不可缺少的。

半导体产生的激光能发出红外光,因此我们的眼睛看不见,但它的能量恰好能"解读"激光唱片,并能用于光纤通讯。

但有的激光器可调节输出激光的波长。

激光切割常规知识点总结

激光切割常规知识点总结

激光切割常规知识点总结一、激光切割的基本原理激光切割是利用激光束对材料进行加热并使其融化,然后利用气体吹掉熔融材料,实现对工件的切割和加工。

激光切割的基本原理包括以下几个方面:1. 光学原理:激光切割系统由激光器、准直器、聚焦镜和切割头等部件组成。

激光器产生的激光束经过准直器和聚焦镜聚焦成一束高能密度的激光束,并通过切割头对工件进行切割。

2. 热力学原理:激光束对材料的作用主要是利用激光的光能将材料加热至熔点或汽化点,使其发生相变并形成蒸汽,然后利用气流将蒸汽吹离工件表面,以实现切割和加工。

3. 动力学原理:激光切割过程中需要控制激光束的能量密度、聚焦深度和切割速度等参数,以实现对工件的精确切割和加工。

二、激光切割设备激光切割设备是实现激光切割加工的关键装备,主要包括激光器、光纤传输系统、切割头、数控系统和辅助气体系统等部件。

激光切割设备的主要特点包括以下几个方面:1. 激光器:激光切割设备通常采用二氧化碳激光器、光纤激光器或固体激光器等作为激光源,具有高能量密度、高光束质量和长寿命等优点。

2. 切割头:切割头是激光束对工件进行切割的部件,主要包括焦距调节装置、气体喷嘴、光斑调节器和感应器等部件,能够实现对激光束的调节和控制。

3. 数控系统:激光切割设备通常配备数控系统,能够实现对切割参数、切割路径和切割速度等参数的精确控制,以实现对工件的精确切割和加工。

4. 辅助气体系统:辅助气体系统包括氧气、氮气和惰性气体等,用于实现对切割过程中产生的熔融材料和烟尘的清除,以保证切割质量和工作环境的清洁。

三、激光切割的材料激光切割能够对金属材料和非金属材料进行切割和加工,主要包括以下几类材料:1. 金属材料:包括碳钢、不锈钢、铝合金、铜合金、钛合金和镍合金等金属材料,具有导热性好、熔点高和导电性强等特点。

2. 非金属材料:包括塑料、橡胶、布料、陶瓷和玻璃等非金属材料,具有熔点低、易氧化和易挥发等特点。

激光切割不仅可以对单一材料进行切割,还可以对多种复合材料进行加工,例如通过调节激光切割参数和使用不同的辅助气体,可以实现对金属与非金属的复合材料的切割和加工。

激光原理复习自整理详解

激光原理复习自整理详解

第一章 激光的特性:1.方向性好,最小发散角约等于衍射极限角2.单色性好3.亮度高4.相干性好 波尔兹曼定律:根据统计规律,大量粒子组成的系统,在热平衡条件下,原子数按能级分布服从波尔兹曼定律:kT E i i i eg -∞n 推论:假设gi=gj1.当E2-E1很小,且12-E E E =∆<< kT 时,112n =n , 2.当E2>E1时,n2<n1. 说明高能粒子数密度总是较小3.当E1为基态,E2距离很远时,即E2>E1,012n =n ,说明绝大多数粒子为基态 普朗克公式:11h 8hv 33v -=kT e c v πρ 爱因斯坦关系:自发辐射,受激辐射,受激吸收之间的关系332121hv 8cB A π= 212121g B g B = 光子简并度g :处于同一光子态的光子数。

含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数自发辐射:处于高能级E2的一个原子自发的向E1跃迁,并产生一个能量为hv的光子 特点:1各粒子自发,独立的发射光子;2非相干光源光功率密度:212)()t (q A t hvn =自受及辐射:处于高能级E2的一个原子在频率为v的辐射场作用下,向E1跃迁,并产生一个能量为hv的光子特点:1只有外来光频率满足12hv E E -=;2 受激辐射所发射的光子与外来光特征完全相同,相干光源【频率,相位,偏振方向,传播方向】,光场中相同光子数量增加,光强增加,入射光被放大,即光放大过程光功率密度:v B t hvn t ρ212)()(q =激光功率密度比:v v hv ρπλρπh88c q q 333==自激 增益系数:光通过单位长度激活物质后光强增长的百分数增益饱和:在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的光强增大到一定程度后,增益系数随光强的增大而减小。

谱线宽度:线型函数在ν0时有最大值,下降至最大值的一半,对应得宽度。

激光原理复习题重点难点

激光原理复习题重点难点

激光原理复习题重点难点《激光原理》复习第⼀部分知识点第⼀章激光的基本原理?1、⾃发辐射受激辐射受激吸收的概念及相互关系?2、激光器的主要组成部分有哪些?各个部分的基本作⽤。

激光器有哪些类型?如何对激光器进⾏分类。

3、什么是光波模式和光⼦状态?光波模式、光⼦状态和光⼦的相格空间是同⼀概念吗?何谓光⼦的简并度??4、如何理解光的相⼲性?何谓相⼲时间,相⼲长度?如何理解激光的空间相⼲性与⽅向性,如何理解激光的时间相⼲性?如何理解激光的相⼲光强?5、EINSTEIN系数和EINSTEIN关系的物理意义是什么?如何推导出EINST EIN关系??4、产⽣激光的必要条件是什么?热平衡时粒⼦数的分布规律是什么??5、什么是粒⼦数反转,如何实现粒⼦数反转??6、如何定义激光增益,什么是⼩信号增益?什么是增益饱和?7、什么是⾃激振荡?产⽣激光振荡的基本条件是什么??8、如何理解激光横模、纵模?第⼆章开放式光腔与⾼斯光束1、描述激光谐振腔和激光镜⽚的类型?什么是谐振腔的谐振条件??2、如何计算纵模的频率、纵模间隔?3、如何理解⽆源谐振腔的损耗和Q值?在激光谐振腔中有哪些损耗因素?什么是腔的菲涅⽿数,它与腔的损耗有什么关系?4、写出(1)光束在⾃由空间的传播;(2)薄透镜变换;(3)凹⾯镜反射5、什么是激光谐振腔的稳定性条件?6、什么是⾃再现模,⾃再现模是如何形成的??7、画出圆形镜谐振腔和⽅形镜谐振腔前⼏个模式的光场分布图,并说明意义8、基模⾼斯光束的主要参量:束腰光斑的⼤⼩,束腰光斑的位置,镜⾯上光斑的⼤⼩?任意位置激光光斑的⼤⼩?等相位⾯曲率半径,光束的远场发散⾓,模体积?9、如何理解⼀般稳定球⾯腔与共焦腔的等价性?如何计算⼀般稳定球⾯腔中⾼斯光束的特征1、如何⽤ABCD⽅法来变换⾼斯10、⾼斯光束的特征参数?q参数的定义??1光束?12、⾮稳定腔与稳定腔的区别是什么?判断哪些是⾮稳定腔。

第三章电磁场与物质的共振相互作⽤1、什么是谱线加宽?有哪些加宽的类型,它们的特点是什么?如何定义线宽和线型函数?什么是均匀加宽和⾮均匀加宽?它们各⾃的线型函数是什么?2、⾃然加宽、碰撞加宽和多普勒加宽的线宽与哪些因素有关?3、光学跃迁的速率⽅程,并考虑连续谱和单⾊谱光场与物质的作⽤和⼯作物质的线型函数。

激光原理复习知识点

激光原理复习知识点

一 名词解释1. 损耗系数及振荡条件:0)(m ≥-=ααS o I g I ,即α≥o g 。

α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。

2. 线型函数:引入谱线的线型函数p v p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g 0~v v ,并在0v 加减2v ∆时下降至最大值的一半。

按上式定义的v∆称为谱线宽度。

3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。

4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。

5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。

定义p v P w Q ξπξ2==。

ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。

v 为腔内电磁场的振荡频率。

6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。

7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。

这种使激光器获得更窄得脉冲技术称为锁模。

8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。

9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。

(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。

激光学基础知识、X线摄影基础【考点总结+精选习题】

激光学基础知识、X线摄影基础【考点总结+精选习题】

激光学基础知识、X线摄影基础【考点总结+精选习题】一、激光的产生1、1916年爱因斯坦提出的“自发和受激辐射〃理论是现代激光理论的物理学基础。

(一)受激吸收和光辐射1、受激吸收(激发或电离):原子吸收一个光子而从低能级跃迁到高能级的过程。

2、受激吸收的特点:(1)不是自发产生的,必须有外来光子的"激发";(2)外来光子的能量应等于原子激发前后两个能级间的能量差;(3)受激吸收对激发光子的振动方向、传播方向和位相没有任何限制。

3、自发辐射:在没有任何外界影响的情况下,高能态EH的原子会自发地跃迁到基态或者较低激发态E L,因为这种跃迁是不受外界影响而自发进行的,称为自发跃迁,如果跃迁时释放的能量是以光辐射的形式放出的,则这个过程叫做自发辐射。

4、受激辐射:处于高能级EH的原子在自发辐射之前,受到一个能量为hv=E H-EL的光子的“诱发〃后可释放出一个与诱发光子特征完全相同的光子而跃迁到低能级E L,这个过程称为受激辐射。

持续的受激辐射形成的光束就叫做激光。

5、受激辐射的特点:①它不是自发产生的,必须有外来光子的"刺激"才能发生,外来光子的能量或频率必须满足hv=E H-E L;②辐射出的光子与诱发光子特征完全相同;③与受激吸收不同,受激辐射中的被激原子并不吸收诱发光子的能量。

6、受激辐射光放大不是自然的,自然界没有哪种物质能够自然地发出激光来,只有人为地创造条件,才能得到激光。

(二)激光的产生1、激光器的构成:工作物质、激发装置、光学谐振腔2、工作物质:激光器中能产生激光的物质称为工作物质。

3、激发装置:作用是把处于低能级上的原子激发到高能级上去,使工作物质实现粒子反转。

4、光学谐振腔:作用是①产生和维持光放大;②选择输出光的方向;③选择输出光的波长。

5、谐振腔能起选频作用,使激光的单色性更好。

(三)激光器的分类1.应用于医学领域的激光器一般可按工作物质形态(固体、液体、气体、半导体等)、发光粒子(原子、分子、离子、准分子等)、输出方式(连续、脉冲)等进行分类。

激光的原理及应用知识点

激光的原理及应用知识点

激光的原理及应用知识点1. 激光的定义和特性•激光(laser)是指产生具有高度聚束、单色性、相干性和高强度的光束的装置。

•激光的特性包括:单色性(具有极窄的频谱宽度)、聚束性(能够将光线聚焦成非常细小的光点)、相干性(光波之间存在一定的相位关系)、高强度(具有高能量密度)。

2. 激光的工作原理激光的工作原理基于受激辐射和光放大效应:•受激辐射:当处于激活态的原子或分子受到光的刺激时,会发射出与入射光子能量、相位和方向完全一致的新光子,这个过程就是受激辐射。

•光放大效应:当光通过介质(例如激光介质)时,受激辐射会导致光子数目的指数级增加,从而形成高度聚束、相干性极高的激光。

3. 激光的应用领域激光的特性使其在许多领域有着广泛的应用,包括但不限于以下几个方面:3.1 激光切割和焊接•激光切割:利用激光的聚束性和高功率特性,可以将金属、塑料等材料快速、精确地切割成所需形状。

•激光焊接:激光焊接可以用于金属的精确焊接,以及材料的表面处理和改性。

3.2 激光医学•激光手术:激光可以在医疗领域用于精确切割、烧灼和凝固组织,实现手术的微创和精确性。

•激光美容:激光可以用于去除皮肤上的疤痕、色斑以及不良血管的治疗。

3.3 激光通信•光纤通信:激光作为光纤通信的光源,可以实现高速、远距离的信息传输,广泛应用于互联网和电信领域。

•激光雷达:激光雷达利用激光束测量目标物体的距离和速度,广泛应用于自动驾驶、测绘和航空领域。

3.4 激光制造•激光打印:激光打印利用激光束对打印介质进行非接触式打印,实现高速、高精度的打印效果。

•激光雕刻:激光雕刻利用激光束对材料进行精确刻划,广泛应用于工艺品、装饰品等领域。

3.5 其他领域应用除了上述应用领域,激光还被用于科研、军事、环境监测等领域。

例如激光光谱分析、激光制导导弹等。

4. 激光的安全性问题尽管激光在许多领域有着广泛应用,但激光的高强度和聚焦特性也带来了一些安全隐患。

在使用激光时,需要注意以下几点:•避免直接照射眼睛:激光束对眼睛有严重的损伤风险,因此需要避免直接照射眼睛。

激光原理总结

激光原理总结

激光原理总结⼀共四章§Chapter 1爱因斯坦系数/激光产⽣条件/激光结构/激光优点1. ⾃发辐射: 上能级粒⼦,⾃发地从E2能级跃迁到E1能级,并辐射出光⼦2. 受激辐射: 上能级粒⼦,遇到能量等于能级差的光⼦,在光⼦激励下,粒⼦从E2能级跃迁到E1能级,并辐射出⼀个与⼊射光⼦完全相同的光⼦3. 受激吸收: 下能级粒⼦,遇到能量等于能级差的光⼦,在光⼦激励下,粒⼦从E1能级跃迁到E2能级,并吸收⼀个⼊射光⼦三个爱因斯坦系数:dn21=A21n2dt(⾃发辐射)dn′21=B21n2ρv dt(受激辐射)dn12=B12n1ρv dt(受激吸收)三个爱因斯坦系数的关系:A21 B21=8πhν3 c3B12g1=B21g2粒⼦数反转分布状态:dn′21 dn12=g1n2g2n1>1受激辐射⼤于受激吸收,打破波尔兹曼分布。

此时可称“得到增益”。

⽽普通情况下,受激辐射/⾃发辐射较⼩(计算参看讲义)。

总结:产⽣激光的基本条件是“粒⼦数反转分布和增⼤⼀⽅向上的光能密度”激光器的基本结构:1. ⼯作物质:增益介质/粒⼦数反转/上能级为亚稳态2. 激励装置:能源/光/电3. 谐振腔:反馈/光强/模式三能级系统:亚稳态寿命长,阈值⾼,转换效率低。

如红宝⽯激光器四能级系统:阈值低,连续运转,⼤功率。

如He-Ne激光器的优点:1. 相⼲性好:受激辐射的光具有相⼲性,相⼲长度L c=λ2Δλ,相⼲时间τ=L cc2. ⽅向性好:谐振腔3. 单⾊性好4. 亮度⾼:受激辐射的光强⼤§Chapter 2稳定性/模式分析/⾼斯光束腔的分类参考Ch2-P1光腔的稳定性条件:傍轴模在腔内往返⽆限多次不逸出腔外,数学形式如下g 1=1−L R 1,g 2=1−L R 20≤g 1g 2≤1按照稳定性得到三种腔♥0<g 1g 2<1稳定腔♥g 1g 2=0org 1g 2=1临界腔♥g 1g 2<0org 1g 2>1⾮稳腔 ♥ ♥ ♥ ♥♥ ♥ bbx ♥ nnx 图解法判断腔的稳定条件Ch2-P2⽤上述条件判断各种腔的稳定性,注意曲率R 的⽅向"凹⾯向着腔内时(凹⾯镜),R >0;凸⾯向着腔内时(凸⾯镜),R <0"。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光原理考点总结
激光是一种特殊的光,具有高度的单色性、方向性和相干性。

其原理
涉及光的发射、吸收和放大过程,同时也与原子、分子的能级结构有关。

以下是激光原理的一些重要考点总结。

1.激光的产生机制
激光的产生是通过受激辐射过程实现的。

首先需要有一个激发源,如
电流激励、光激励或化学激发。

该激发源提供能量,使散乱的原子或分子
处于高能级。

然后,这些激发态粒子会通过受激辐射的过程,跃迁到低能级。

在跃迁的过程中,它们会辐射出与激发源同频率、相位一致的光子,
从而形成激光。

2.激光的放大过程
激光放大需要使用一个激光介质,其中包含大量的激发态粒子。

当激
发源激发介质时,激发态粒子在介质中传播并与其他原子或分子发生碰撞。

在这些碰撞过程中,激发态粒子会通过受激辐射的过程辐射出同相、同频
的光子,从而使光波的能量得以增加。

在辐射出的光子中,一部分会被吸收,而另一部分会继续在介质中传播,进一步增强光的能量。

通过这一连
续的过程,激光的能量得以放大。

3.激光的构成
激光由三个基本部分组成:激发源、激光介质和光学共振腔。

激发源
提供能量,使介质中的原子或分子激发到激发态。

介质通过受激辐射的过程,将激发态粒子的能量转化为光子。

光学共振腔则用于放大和反射光子,从而形成激光束。

共振腔通常由两个反射镜构成,其中一个为半透镜,允
许一部分光子透过。

4.激光的性质
激光具有几个重要的性质。

首先是高单色性,即激光只有一种频率。

这是由于激发态粒子跃迁到低能级时,辐射出的光子具有唯一的能量差。

其次是方向性,激光束呈现出非常狭窄的发散度,可用于远距离通信和激
光切割等应用。

最后是相干性,激光光波的振动方式高度一致,相位间的
关系是稳定的。

5.激光的应用
激光在许多领域中得到了广泛应用。

在医学中,激光可用于激光手术、皮肤治疗和眼科手术等。

在科学研究中,激光常用于光谱分析和原子物理
实验。

激光也被用于通信技术,例如光纤通信和光盘。

此外,激光还可用
于制造业,如激光切割、激光焊接和激光打印等。

总结起来,激光原理的考点主要包括激光的产生机制、放大过程、构
成和性质等方面。

理解这些基本原理对于理解激光的应用和性能具有重要
意义。

相关文档
最新文档