激光原理复习总结
激光原理考点总结

激光原理考点总结激光(Laser)是指一种由集中的电磁辐射所产生的具有高度单色性、相干性和方向性的光。
激光原理是激光器工作的基础,其中涉及到激光的产生和放大过程。
下面将从以下几个方面总结激光原理的考点。
1.电磁辐射:激光器利用电磁辐射的原理产生激光。
电磁辐射是由电场和磁场相互作用产生的波动现象,包括广义上的光波,其中可见光是电磁辐射的一种。
了解光波的特性和传播方式对理解激光原理很重要。
2.反射和吸收:激光器中的反射是激光产生和放大的关键过程。
反射镜的设置可以实现光的反复来回传播,使得光能够在增益介质中多次通过,增强光的能量。
另一方面,激光器中的吸收是影响激光输出功率和效率的因素之一、吸收是指光被介质吸收和转化为热能的过程。
3.激射和跃迁:激射是指从低能级向高能级跃迁的过程。
在激光器中,通过能量输入或外部激发,使得电子从基态跃迁到激发态。
而跃迁是指电子从一个能级到另一个能级的过程。
了解能级和电子跃迁的类型对激光器的设计和调谐至关重要。
4.反转粒子数和增益:激光器中的反转粒子数是指在激光器工作过程中,高能级粒子数目大于低能级粒子数目的情况。
这种不平衡的粒子数分布是产生和放大激光的关键。
通过提供能量,例如光或电能,可以增加反转粒子数,增强激光的输出功率。
5.波长选择和模式锁定:激光器的波长选择是指产生特定波长的激光。
波长选择可以通过选择合适的增益介质和谐振腔的设计来实现。
激光器中的模式锁定是指使光场处于稳定、精确的频率和相位关系的状态。
这对于精密测量、光谱分析和通信应用非常重要。
6.激光器结构和组成:激光器的结构和组成也是激光原理的考点。
激光器通常包括三个主要部分:激活介质(液体、固体或气体)、谐振腔(用于反射和放大光)和泵浦源(提供能量,如光波或电流)。
不同类型的激光器具有不同的结构,如气体激光器、固体激光器和半导体激光器。
综上所述,激光原理的考点包括电磁辐射、反射和吸收、激射和跃迁、反转粒子数和增益、波长选择和模式锁定以及激光器的结构和组成。
第7章激光原理复习总结

饱和吸调Q ,是一种被动式的快开关类型,结构简单,使用方便,
没有电的干扰,产生调Q脉冲的时刻有一定的随机性,不能人为
地控制。染料易变质,需经常更换,输出不稳定。
16/23
四、转镜调Q
利用改变反射镜的平行度反射损耗来控制Q值的方法。如图所示
的是转镜调 Q激光器的示意图。它是把脉冲激光器谐振腔的全反
射镜用一直角棱镜取代,该棱镜安装在一个高速旋转马达的转
①任务:a.提供标准频率。b.频率鉴别:当激光器振 荡频率偏离标准频率时,能够鉴别出来。
②对鉴频器的要求:a.中心频率要稳定,标准频率不 能有漂移。b.灵敏度要高,微小变化能鉴别。
③ 鉴频器的类型:以原子谱线本身作为鉴频器、以 外界标准频率做鉴频器
9/23
三、稳频方法
兰姆凹陷稳频 塞曼稳频
饱和吸收稳频(反兰姆凹陷稳频 )
不同,衍1射损耗不同。
N( a2 )
L
2/23
横模选择方法: 谐振腔参数g、N选择(谐振腔设计) 小孔光阑 非稳腔 微调谐振腔
3/23
小孔光阑选横模
小孔
小孔光阑选模
基本思路: 减小谐振腔的菲涅耳数,增加衍射损耗 TEM00模和其它高阶模有不同的光斑尺寸
特点:方法简单 不易获得大功率输出
子上,由于它绕垂直于腔的轴线作周而复始的旋转,因此构成
一个Q值作周期变化的谐振腔。
镜架
棱镜 磁头
激光介质
半反 激光
磁钢
光泵
电动机 触发电路
电源 转镜调Q 属于慢开关类型 目前已基本上不采用。
17/23
四、脉冲透射式调Q (腔倒空 cavity depletion)
谐振腔由全反射镜M1和可控反射镜M2组成。t<0时,M2镜全反 射,谐振腔处于高Q值状态,激光器振荡但无输出。激光能量储存 于谐振腔中。t=0时,控制M2镜使其透射率达100%,储存于腔内 的激光能量迅速逸出腔外,于是输出一巨脉冲。这种调Q方式称 作脉冲透射式调Q或腔倒空.由于这种调Q方式是在全透射情况 下输出光脉冲,光子逸出谐振腔所需最长时间为2L'/c(L'为谐振腔 光程长),所以输出光脉冲持续时间约等于2L'/c,脉宽仅为数纳秒.
激光知识点总结

激光知识点总结一、激光的工作原理激光是由激光管或半导体激光器等激光器件产生的一种特殊的光,其产生过程涉及到激发、放大和辐射三个过程。
激发过程是激光器内部能级的粒子被外部能量激发,处于高能级,即被激发态。
放大过程是被激发态的粒子受到反射膜的作用,在激光谐振腔内不断来回运动,使得光子通过受激辐射不断放大,形成激光能量。
辐射过程是形成激光光束的过程,激光能量通过谐振腔的光学放大产生足够的光强,经过半透过膜射出。
二、激光的分类根据激光器产生的机理、工作波长和应用领域不同,激光可以分为不同的类型。
常见的激光器包括气体激光器、固体激光器、半导体激光器等。
气体激光器主要包括CO2激光器、氩离子激光器等,工作波长主要在10.6微米和0.5微米左右。
固体激光器主要包括Nd:YAG激光器、Nd:YVO4激光器等,工作波长主要在1微米左右。
半导体激光器主要包括GaAs激光器、InGaN激光器等,工作波长主要在可见光和红外光区域。
三、激光的应用激光在各个领域都有着广泛的应用,包括医学、通信、材料加工等。
在医学领域,激光可以用于手术、治疗、检测等,例如激光近视手术、激光溶脂手术等。
在通信领域,激光可以用于光纤通信、激光雷达等,实现了信息的高速传输和大容量存储。
在材料加工领域,激光可以用于切割、焊接、打标等,高精度、高效率、非接触等优点,深受制造业的青睐。
四、激光的安全问题激光的应用虽然带来了很多便利,但同时也伴随着一些安全问题。
激光具有高能量密度、强聚焦性和直线传播性,如果被不当使用,可能会导致眼睛、皮肤等组织的损伤。
因此,在激光使用过程中,需要采取一系列的安全措施,包括佩戴防护眼镜、设置相应的警示标识、限制激光输出功率等,确保激光的安全使用。
总之,激光作为一种重要的光学技术,在科研和工程实践中有着广泛的应用,具有很高的经济和社会效益。
通过深入理解其工作原理、分类和应用等,可以更好地把握激光的特点和优势,更好地应用于实际工作中。
激光原理知识点总结

激光原理知识点总结激光的产生原理激光是一种与常规光具有本质不同的光。
它是通过一种叫做“受激辐射”的过程产生的,这是量子力学的一种结果。
激光的产生原理主要涉及三个主要过程:光的激发、光的放大和光的辐射。
首先是光的激发。
激光的产生需要通过能量输入来激发原子或分子的能级。
当外界能量激发物质的能级时,原子或分子的电子会从低能级跃迁到高能级,形成“受激辐射”所需的激发态。
然后是光的放大。
在受激辐射的过程中,当一个光子与处于激发态的原子或分子碰撞时,它会与其相互作用,导致后者释放出另一个同频率、同相位和同偏振的光子,并回到低能级。
这个新的光子与已有的光子具有相同的频率、相位和偏振,因此它们会在相互作用的同时相互放大,形成一支激光光束。
最后是光的辐射。
当受激辐射的过程一直不断地发生时,光子会在光学共振腔中来回反射,产生一支具有高度相干性、高亮度和高直线度的激光光束。
这种光具有很强的聚焦能力和穿透能力,因此在很多领域有着广泛的应用价值。
激光的特点激光具有以下几个主要特点:1.高度相干性。
激光光束的波长一致、频率一致、相位一致,因此具有很高的相干性。
这使得激光在干涉、衍射和频谱分析等方面具有很大的优势。
2.高亮度。
激光的辐射强度非常集中,因此具有很高的亮度。
这使得激光可用于制备高清晰度的成像系统和高精度的测量装置。
3.高直线度。
激光的传播路径非常直线,几乎不具有散射,因此具有很高的直线度。
这使得激光在通信、激光雷达和光刻等领域有着广泛的应用。
激光器件的工作原理和应用激光器件是产生激光光束的重要设备,其工作原理一般基于受激辐射过程。
目前常用的激光器件主要包括气体激光器、固体激光器、半导体激光器和光纤激光器。
气体激光器是将气体放电或者由光泵浦的气体装置转变成激光的光源。
其中最著名的就是氦氖激光器。
使用稳态直流电源或者交变电源将氦气充入放电管,并保持一定的氦气气压。
然后用电子束或者泵浦光源来使得氦原子激发至高能级,然后在碰撞的作用下通过受激辐射作用形成激光光束。
激光知识点归纳总结

激光知识点归纳总结一、激光的基本概念1. 激光的定义:激光是指一种纯准直性极好的光线,其光子是高度同步的单色光子。
2. 激光的产生:激光是由受激发射产生的,利用三能级或四能级的原子,分子或离子系统,通过外加能量使体系转移到激发态,再利用其辐射产生激光光子。
3. 激光的特性:激光具有单色性、准直性、明暗对比度高、相干性强等特点。
4. 激光的种类:激光可以分为气体激光器、固体激光器、液体激光器和半导体激光器等。
二、激光的基本原理1. 激光的受激辐射:当原子、分子或离子处于激发态时,通过外界刺激的辐射能引起它们从激发态向稳态跃迁,再发出与外界激发辐射相同特性的电磁波,即受激辐射。
2. 激光的稳态条件:产生激光需要满足稳态条件,即发射和吸收的粒子数要平衡,从而实现能量的持续放大和稳定输出。
3. 激光的放大作用:在激光器内,通过激发态原子、分子或离子吸收外界光子能量,使它们跃迁到更高激发态,从而放大光子,产生激光。
4. 激光的光学谐振腔:激光器内部常常设置光学谐振腔,用来反射和增强激光,从而实现激光的输出。
三、激光的应用领域1. 激光测距与测速:激光雷达通过测量反射光的飞行时间来实现测距,同时通过多普勒效应测速。
2. 激光材料加工:激光可用于金属切割、焊接、打孔等材料加工过程。
3. 激光医学应用:激光可用于眼科手术、皮肤治疗、激光治疗仪等医疗设备。
4. 激光通讯:激光可以传输更大带宽、更高速率的信息,用于通讯领域。
5. 激光导航:激光雷达可用于无人飞行器、自动驾驶汽车等导航系统。
6. 激光防御:激光武器可用于导弹防御、激光束武器等领域。
四、激光器的分类1. 气体激光器:以气体为工作物质的激光器,常见的包括二氧化碳激光器、氦氖激光器等。
2. 固体激光器:以固体为工作物质的激光器,常见的包括Nd:YAG激光器、激光二极管等。
3. 半导体激光器:以半导体为工作物质的激光器,可用于激光打印机、光纤通信等领域。
4. 液体激光器:以液体为工作物质的激光器,常见的包括染料激光器等。
激光原理总结

激光原理总结⼀共四章§Chapter 1爱因斯坦系数/激光产⽣条件/激光结构/激光优点1. ⾃发辐射: 上能级粒⼦,⾃发地从E2能级跃迁到E1能级,并辐射出光⼦2. 受激辐射: 上能级粒⼦,遇到能量等于能级差的光⼦,在光⼦激励下,粒⼦从E2能级跃迁到E1能级,并辐射出⼀个与⼊射光⼦完全相同的光⼦3. 受激吸收: 下能级粒⼦,遇到能量等于能级差的光⼦,在光⼦激励下,粒⼦从E1能级跃迁到E2能级,并吸收⼀个⼊射光⼦三个爱因斯坦系数:dn21=A21n2dt(⾃发辐射)dn′21=B21n2ρv dt(受激辐射)dn12=B12n1ρv dt(受激吸收)三个爱因斯坦系数的关系:A21 B21=8πhν3 c3B12g1=B21g2粒⼦数反转分布状态:dn′21 dn12=g1n2g2n1>1受激辐射⼤于受激吸收,打破波尔兹曼分布。
此时可称“得到增益”。
⽽普通情况下,受激辐射/⾃发辐射较⼩(计算参看讲义)。
总结:产⽣激光的基本条件是“粒⼦数反转分布和增⼤⼀⽅向上的光能密度”激光器的基本结构:1. ⼯作物质:增益介质/粒⼦数反转/上能级为亚稳态2. 激励装置:能源/光/电3. 谐振腔:反馈/光强/模式三能级系统:亚稳态寿命长,阈值⾼,转换效率低。
如红宝⽯激光器四能级系统:阈值低,连续运转,⼤功率。
如He-Ne激光器的优点:1. 相⼲性好:受激辐射的光具有相⼲性,相⼲长度L c=λ2Δλ,相⼲时间τ=L cc2. ⽅向性好:谐振腔3. 单⾊性好4. 亮度⾼:受激辐射的光强⼤§Chapter 2稳定性/模式分析/⾼斯光束腔的分类参考Ch2-P1光腔的稳定性条件:傍轴模在腔内往返⽆限多次不逸出腔外,数学形式如下g 1=1−L R 1,g 2=1−L R 20≤g 1g 2≤1按照稳定性得到三种腔♥0<g 1g 2<1稳定腔♥g 1g 2=0org 1g 2=1临界腔♥g 1g 2<0org 1g 2>1⾮稳腔 ♥ ♥ ♥ ♥♥ ♥ bbx ♥ nnx 图解法判断腔的稳定条件Ch2-P2⽤上述条件判断各种腔的稳定性,注意曲率R 的⽅向"凹⾯向着腔内时(凹⾯镜),R >0;凸⾯向着腔内时(凸⾯镜),R <0"。
激光原理复习总结要点

激光原理复习要点 第一章 激光的基本原理一、激光的基本性质:1.光子的能量与光波频率对应νεh =;2.光子具有运动质量22ch cm νε==;3.光子的动量与单色波的波失对应k n mc p ==0;4.光子具有两种可能的偏振态,对应光波场的两个独立偏振方向;5.光子具有自旋,且自旋量子数为整数。
二、光子的相干性:1.相干性:在不同的空间点上,在不同的时刻的光波场的某些特性(例如光波场的相位)的相关性。
2.相干体积:在空间体积为c V 内的各点光波场都具有明显的相干性。
3.相干长度:光波波列的长度。
4.光源的单色性越好,则相干时间越长。
5.关于相干性的两个结论:(1)相格空间体积以及一个光波模式或光子偏振态占有的空间都等于相干体积。
(2)属于同一状态的光子或同一个模式的光波是相干的,不同状态的光子、不同模式的光波是不相干的。
三、光子简并度:同一状态的光子数、同一模式的光子数、处于相干体积的光子数、处于同一相格的光子数。
四、自发辐射:处于高能级的一个原子自发地向低能级跃迁,并发射出一个能量为νh 的光子,这种过程叫自发跃迁,由原子自发跃迁发出的光成为自发辐射。
五、受激辐射:处于上能级的原子在频率为ν辐射场作用下,跃迁至低能级,并辐射出一个能量为νh 的光子,受激辐射跃迁发出的光成为受激辐射。
六、受激吸收:处于低能级的一个原子,在频率为ν的辐射场作用下,吸收一个能量为νh 的光子并向高能级跃迁。
七、辐射跃迁:自发辐射跃迁、受激辐射跃迁,非辐射跃迁:受激吸收八、增益系数:用来表示光通过单位长度激活物质后光强增长的百分比。
()()z I dz z dI g 1=。
九、饱和增益:增益系数g 随着z 的增加而减小,这一现象称为饱和增益。
十、引起饱和增益的原因:1.光强I 的增加是以高低能级粒子数差的减小为代价的。
2.光强越大,高低能级的粒子数差减小的就越多,所以g 也随z 的增大而减小。
十一、光谐振腔的作用:1.模式选择,保证激光器单模振荡,从而提高相干性。
(完整版)激光原理期末知识点总复习材料,推荐文档

激光原理期末知识点总复习材料2.激光特性:单色性、方向性、相干性、高亮度3.光和物质的三种相互作用:自发辐射,受激吸收,受激辐射4.处于能级u 的原子在光的激发下以几率 向能级1跃迁,并发射1个与入射光子全同的光子,Bul 为受激辐射系数。
5.自发辐射是非相干的。
受激辐射与入射场具有相同的频率、相位和偏振态,并沿相同方向传播,因而具有良好的相干性。
6.爱因斯坦辐射系数是一些只取决于原子性质而与辐射场无关的量,且三者之间存在一定联系。
7.产生激光的必要条件:工作物质处于粒子数反转分布状态8.产生激光的充分条件:在增益介质的有效长度内光强可以从微小信号增长到饱和光强Is9.谱线加宽特性通常用I 中频率处于ν~ν+d ν的部分为I(ν)d ν,则线型函数定义为线型函数满足归一化条件:10.的简化形式。
11.四能级比三能级好的原因:更容易形成粒子数反转 画出四能级系统的能级简图并写出其速率方程组()()()() Rll l l l N N n f f n dt dN nn n n n A n W n s n dtdn S n S A n N n f f n dt dn A S n W n dtdn τυννσυννσ-⎪⎪⎭⎫ ⎝⎛-==++++-=++-⎪⎪⎭⎫ ⎝⎛--=+-=021112203213030010103232121202111222313230303,,ρul ul B W =1)(=⎰∞∞-ννd g 121212)(-+=S A τ12E 2112.13.14.15.程的本征函数和本征值。
研究方法:①几何光学分析方法②矩阵光学分析方法③波动光学分析方法。
处于运转状态的激光器的谐振腔都是存在增益介质的有源腔。
16.腔模沿腔轴线方向的稳定场分布称为谐振腔的纵模,在垂直于腔轴的横截面内的稳定场分布称为谐振腔的横模。
17.腔长和折射率越小,纵模间隔越大。
对于给定的光腔,纵模间隔为常数,腔的纵模在频率尺上是等距排列的不同的横模用横模序数m,n 描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 频率落入工作物质的谱线线型范围 ΔνF 内。 ③ 小信号增益系数大于阈值增益系数。
一、均匀加宽激光器的模竞争 1、增益曲线均匀饱和引起的纵模自选模作用 (1) 参与竞争的模:q1、q、q1 ,都落入 F 内
各自都有: g0 gt
3/18
(2) 竞争或自选模过程
(c)
形成条件是: ①驻波腔(烧孔间距在波长量级)
②粒子空间转移速度较慢
(4)纵模空间烧孔的消除
①使激活粒子在空间迅速转移,抹平烧孔。
②加上光隔离器形成环形行波腔,无轴向空间烧孔。 7/18
(5)横向空间烧孔
横模在横截面内的光强分布不均匀导致横向的增益 分布不均匀而形成。
(6)横模的空间竞争
I00 n0
大值,此后,N仍然增加,
△n↓的速率进一步增加,光
子产生使△n↓的速率>泵浦使
△n ↑的速率,△n总效开始下
降,但仍然大于△nth ,N 继 续增长,而且增长非常迅速,
△n快速↓到△n=△nth 时N达
到最大值。
腔内光子数和粒子反转数随时间的变化
12/18
N 第三阶段(t3一t4): N达到最大后,此时N比 较大,它使△n↓的速率> 泵浦使△n ↑的速率,结果 使△n < △nth ,增益小于 损耗,光子数密度N↓并急 剧下降。
横向 烧孔尺度较大 (mm量级) ,粒子的迁 移不能消除这种不均匀 性。所以, 当激励作 用足够强时, 不同横模 可以 分别使用不同横
向空间的激活粒子而形 成 多横模振荡。
n n
TEM00 x
I10
TEM10 x
8/18
第三节 输出功率与能量
9/18
第四节弛豫振荡
产生弛豫振荡的主要原因:当激光器的工作物质被泵浦,上 能级的粒子反转数超过阈值条件时,即产生激光振荡,使腔内光 子数密度增加,而发射激光。随着激光的发射,上能级粒子数大 量被消耗,导致粒子反转数降低,当低于阀值时,激光振荡就停 止。这时,由于光泵的继续抽运,上能级粒子反转数重新积累,
2、空间烧孔引起的多纵模振荡 (1) 激光强时,均匀加宽激光器为多纵模振荡,激发越 强,达到阈值从而参与竞争而振荡的纵模数越多。
5/18
理由:腔内驻波场分布要引起增益空间烧孔效应。
(2)增益的轴向(或纵向)空间烧孔效应
由于腔内的驻波场分
布,波腹处光强大, 波节处光强小,由于 Iq
饱和效应,则反转集
gt
nt 21,0
l
2、振荡条件:
g0
gt
l
nth
21,0 l
不同纵模具有相同的损耗 ,因而具有相同 gt 。
不向的横模具有不同的损耗 ,因而有不同 gt ,
高次横模的 gt 比基模的大。
2/18
第二节 激光器的振荡模式
试说明某个频率的光最终要成为激光的纵模输出, 它必须突破几个关口。
居数从而增益系数在 波腹处最小,在波节
n
L (a)
n0
处最大,形成增益系
(b)
数的轴向空间分布。
—增益的轴向(或纵向)空间烧孔效应
6/18
(3)纵模的空间竞争 Iq
若一纵模的波腹与 另一个纵模的波节 n 重合较好,则两模 可分用纵向不同空 间的反转粒子而同 Iq ' 时振荡。
L
n0
(a)
(b)
轴向空间烧孔的
第四阶段(t4一t5):
光子数减少到一定程度,N使△n↓的速率<泵浦使△n ↑的速率,泵浦
又起主要作用,于是△n又开始回升,到t5时刻△n又达到阈值△nth , 于是又开始产生第二个尖峰脉冲。因为泵浦的抽运过程的持续时间
要比每个尖峰脉冲宽度大得多,于是上述过程周而复始,产生一系
列尖峰脉冲。泵浦功率越大,尖峰脉冲形成越快,因而尖峰的时间间
q1 0 q益曲线继续下降,使 g q1 gt ,Iq-1 熄灭。
4/18
当降到曲线3时: g q gt Iq停止上升,
由于没有其他的纵模使增益曲线下降,则激光器 就稳定在 Iq 上, 从而输出单纵模激光。 结论:理想情况下,均匀加宽稳态激光器的输出 应是单纵模,其频率在增益曲线中心频率附近, 其它纵模被抑制而熄灭。在模的竞争过程中,频 率越远离中心频率的光越先熄灭。
第一节 激光器的振荡阈值
一、阈值种类 ①阈值反转集居数密度
②阈值增益系数
③连续或长脉冲激光器的阈值泵浦功率 ④短脉冲激光器的阈值泵浦能量 二、阈值反转集居数密度
1、阈值反转集居数密度 l :工作物质的长度
nth
21,0 l
2、振荡条件:
n0
nth
21,0 l
1/18
三、阈值增益系数
1、阈值增益系数:
第一阶段(t1一t2):激光振荡刚开始时,△n= △nth, N =0;由于 光泵作用, △n继续增加,与此同时,腔内光子数密度N也开始增
加,由于N的增长而使△n↓的速率<泵浦使△n ↑的速率,因此△n一
直增加。 N
第二阶段(t2一t3) : 由于N的 不断↑使△n↓的速率不断增加
到=泵浦使△n ↑的速率时达最
如图,开始时: g 0 gt
g 0
Iq , Iq1 , Iq1
1
由于饱和效应,增 益曲线下降。
当降到曲线1时: g q1 gt
2
gth
3
Iq+1停止上升,而Iq-1和 Iq继续上升,增益曲线
继续下降,使 g q1 gt
Iq+1迅速减小并熄灭。
当降到曲线2时: g q1 gt
隔越小.
13/18
第五节 单模激光器的线宽极限
弛豫振荡产生的物理过程,可以用图5.1-2来描述。它示出了在弛 豫振荡过程中粒子反转数△n 和腔内光子数N的变化,每个尖峰可 以分为四个阶段 (在t1时刻之前,由于泵浦作用,粒子反转数△n 增长,但尚未到达阈值△nth因而不能形成激光振荡。)
N
图5.1-2 腔内光子数和粒子反转数随时间的变化 11/18
当超过阈值时,又产生第二个脉冲,如此不断重复上述过程,直 到泵浦停止才结束。每个尖峰脉冲都是在阈值附近产生的,因此 脉冲的峰值功率水平较低。增大泵浦能量也无助于峰值功率的提 高,而只会使小尖峰的个数增加。
问题核心: 1.△n的变化:泵浦使△n↑,受激辐射即光子的产生使 △n↓。△n的↑or↓由△n↑和△n↓速率决定。 2.光子数密度N的变化。△n在阈值之前没有光子产生, 在阈值之上有光子产生(N↑),否则光子被吸收(N↓)。 10/18