ANSYS结构有限元分析流程

合集下载

有限元分析建模及ANASYS简介

有限元分析建模及ANASYS简介

ANSYS功能概览
• • • • • 结构分析 热分析 电磁分析 流体分析 (CFD) 耦合场分析 - 多物理场
ANSYS 结构分析 概览
结构分析用于确定结构的变形、应变、应力及反作用力等.
结构分析的类型: • 静力分析 - 用于静态载荷. 可以考虑 结构的线性及非线性行为,例如: 大 变形、大应变、应力刚化、接触、 塑性、超弹及蠕变等. • 模态分析 - 计算线性结构的自振频率 及振形. 谱分析 是模态分析的扩展, 用于计算由于随机振动引起的结构 应力和应变 (也叫作 响应谱或 PSD).
2. 有限元建模的基本内容
• 有限元建模在一定程度上是一种艺术,是一种物体发生的物理相互 作用的直观艺术。一般而言,只有具有丰富经验的人,才能构造出 优良的模型。建模时,使用者碰到的主要困难是:要理解分析对象 发生的物理行为;要理解各种可利用单元的物理特性;选择适当类 型的单元使其与问题的物理行为最接近;理解问题的边界条件、所 受载荷类型、数值和位臵的处理有时也是困难的。 • 建模的基本内容: • 1、力学问题的分析(平面问题、板壳、杆梁、实体、线性与非线 性、流体、流固耦合…..)-----取决于工程专业知识和力学素养。 • 2、单元类型的选择(高阶元/低阶元?杆/梁元?平面/板壳? ….. ) -----取决于对问题和单元特性的理解及计算经验。 • 3、模型简化(对称性/反对称性简化、小特征简化、抽象提取、支 坐等简化) • 4、网格划分(手工、半自动、自动,单元的形状因子?) • 5、载荷、约束条件的引入(载荷等效、边界处理) • 6、求解控制信息的引入
曲轴的有限元模型
6.ANSYS简介
大型通用有限元分析软件ANSYS,自1971年推出至今,已经 发展功能强大、前后处理和图形功能完备的有限元软件,并广 泛地应用于工程领域。可以分析结构、动力学、传热、热力耦 合、电磁耦合、流固耦合等领域的问题。 ANSYS采用开放式结构:提供了与CAD软件的接口,用户编 程接口UPFs,参数化设计语言APDL。 ANSYS分为系统层,功能模块层两层结构。可以使用图形方 式,也可以使用批处理方式。

ANSYS Workbench 17·0有限元分析:第11章-显式动力学分析

ANSYS Workbench 17·0有限元分析:第11章-显式动力学分析

第11章 显式动力学分析自带有学的分析方法。

★ 了解显式动力学分析。

11.1 显式动力学分析概述显式算法主要用于高速碰撞及冲压成型过程的仿真,其在这方面的应用效果已超过隐式算法。

11.1.1 显式算法与隐式算法的区别1.显式算法动态显式算法是采用动力学方程的一些差分格式(如中心差分法、线性加速度法、Newmark 法和Wilson法等),该算法不用直接求解切线刚度,也不需要进行平衡迭代,计算速度较快,当时间步长足够小时,一般不存在收敛性问题。

动态显式算法需要的内存也比隐式算法要少,同时数值计算过程可以很容易地进行并行计算,程序编制也相对简单。

显式算法要求质量矩阵为对角矩阵,而且只有在单元级计算尽可能少时,速度优势才能发挥,因而往往采用减缩积分方法,但容易激发沙漏模式,影响应力和应变的计算精度。

2.隐式算法在隐式算法中,每一增量步内都需要对静态平衡方程进行迭代求解,并且每次迭代都需要求解大型的线性方程组,这一过程需要占用相当数量的计算资源、磁盘空间和内存。

该算法中的增量步可以比较大,至少可以比显式算法大得多,但是实际运算中还要受到迭代次数及非线性程度的限制,所以需要取一个合理值。

第11章显式动力学分析在ANSYS中,显式动力学包括ANSYS Explicit STR、ANSYS AUTODYN 及ANSYSLS-DYNA 3个模块。

1.ANSYS Explicit STRANSYS Explicit STR是基于ANSYS Workbench仿真平台环境的结构高度非线性显式动力学分析软件,可以求解二维、三维结构的跌落、碰撞、材料成型等非线性动力学问题,该软件功能成熟、齐全,可用于求解涉及材料非线性、几何非线性、接触非线性的各类动力学问题。

2.ANSYS AUTODYNAUTODYN用来解决固体、流体、气体及其相互作用的高度非线性动力学问题。

AUTODYN 已完全集成在ANSYS Workbench中,可充分利用ANSYS Workbench的双向CAD接口、参数化建模以及方便实用的网格划分技术,还具有自身独特的前、后处理和分析模块。

Ansys Workbench详解教程

Ansys Workbench详解教程
Refinement—细化网格 Mapped Face Meshing—映射网格;
2013-8-5
34
网格划分
三维实体的四面体(Tetrahedron) 单元划分
三维实体的六面体(Hexahedron) 单元划分
4 选择分析类型
静力学分析(Static Analysis) :
计算在固定不变的载荷作用下结构的响应,不考虑惯性和阻尼的影 响,如结构受随时间变化载荷的影响。
网格控制
整体网格:
Relevance(-100~100) 、 Relevance Center(coarse~ fine)
局部细化: 支撑处、载荷施加位置、应力变化较大的地方。
2013-8-5
33
网格控制
具体操作:选中结构树的Mesh项,点击鼠标右键,选择Insert,弹出 对网格进行控制的各分项,一般只需设置网格的形式(Method)和单元的 大小(Sizing)。 其余一些网格控制项的意义:
2013-8-5
12
工具条
常用工具条
图形工具条
2013-8-5
13
结构树
结构树包含几何模型的信息和整个分析

的相关过程。
一般由Geometry、Connections、Mesh、 分析类型和结果输出项组成,分析类型里包
括载荷和约束的设置。
说明分支全部被定义 说明输入的数据不完整
说明需要求解
说明被抑制,不能被求解 说明体或零件被隐藏
2013-8-5
29
2 定义材料属性
1、双击Component Systems中的Engineering Data。 2、 右击Engineering Data----edit 3、选择view中outline、properties,把General Materials等中的材料添加到 Engineering Data中,修改Density密度、Young’s modulus杨氏模量、 Poisson’s Ratio泊松比、热膨胀系数等参数。 4、点击Return to Project 5、右击Model----Update 6、右击Model-----edit 7、在模型的Material----Assignment右面的箭头可选择材料 注:软件默认的材料是Structural Steel。

基于ANSYSWorkbench减震器支架组有限元分析

基于ANSYSWorkbench减震器支架组有限元分析

TECHNIC FORUM/技术论坛2011/09基于ANSYS Workbench减震器支架组有限元分析Finite Element Analysis of Absorber Bracket Component Based on ANSYS Workbench 121胡顺安 孙博 王振凯HU Shun-an et al1. 山东蓬翔汽车有限公司 山东烟台 2656072. 三一重型装备有限公司 辽宁沈阳 110027摘 要:详细介绍了减震器支架组有限元分析时的模型前处理、边界条件设定及后处理等分析过程,并通过对减震器支架组的应力分析结果进行的评判,系统分析了该减震器支架组在不同载荷下的适用情况。

关键词:减震器支架组 有限元 应力分析Abstract Pre-process, boundary conditions, and post-process in the finite element analysis of the absorber bracket component were elaborated, by evaluating the stress analysis result of the absorber bracket component, the applicable condition of the absorber bracket component in different loads were analyzed.Key words absorber bracket component; finite element; stress analysis+中图分类号:U463.335.1.02 文献标识码:A 文章编号:1004-0226(2011)09-0070-021 前言根据市场反映,原先设计的减震器支架易从根部撕裂,后续产品可通过改进下推力杆支架和减震器支架的结构来满足产品的使用要求;但市场上已售出的产品因为下推力杆支架已经焊接在桥壳上,无法采用改进下推力杆支架的方式加以解决,急需返修,故提出采用改进减震器支架替代原减震器支架,并在局部采用加强筋,再将减震器支架和加强筋焊接在下推力杆支架上的返修方案。

ANSYS多物理耦合场有限元分析详细步骤操作

ANSYS多物理耦合场有限元分析详细步骤操作

ANSYS热分析
传导
• 传导引起的热通量流由传导的傅立叶定律决定:
q*

Knn
T n

heat flow rate per unit area in
direction n
Where,
Knn thermalconductivity in direction n
T temperature
• 对流一般作为面边界条件施加
TB
Ts
ANSYS热分析
热力学第一定律
• 能量守恒要求系统的能量改变与系统边 界处传递的热和功数值相等。
• 能量守恒在一个微小的时间增量下可以 表示为方程形式
Estored Ein thru the boundary Eout thru the boundary Egenerated 0
SHELL57 SHELL131
LINK31,32,33,34
Quadratic
PLANE77 PLANE35
SOLID90 SOLID87
SHELL132
• 材料特性
– 至少需要 Kxx — 稳态分析热传导系数。 – 如果是瞬态分析,则需要比热 (C) 。 – 优先设置为 “thermal” (热分析),在 GUI 方式中只显示热材料特性。
T
Dt
如果时间步长 太大, 就不能 得到足够的温度梯度。
t
一种方法是先指定一个相对较保守的初始时间步长,然后使用自动时间步长 按需要增加时间步。下面说明使用自动时间步长大致估计初始时间步长的方 法。
ANSYS热分析
时间步大小说明 (续)
在瞬态热分析中大致估计初始时间步长,可以使用Biot和Fourier数。 Biot 数 是无量纲的对流和传导热阻的比率:

ANSYS Workbench 17·0有限元分析:第7章-谐响应分析

ANSYS Workbench 17·0有限元分析:第7章-谐响应分析

第7章 谐响应分析
谐响应分析主要用来确定线性结构在承受持续的周期载荷时的周期性响应(谐响应)谐响应分析能够预测结构的持续动力学特性,从而验证其设计能否成功地克服共振、疲劳及其他受迫振动引起的有害效果。

通过本章的学习,即可掌握在★ 了解谐响应分析。

7.1 谐响应分析概述
谐响应分析(Harmonic Response Analysis )是用于确定线性结构在承受一个或多个随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。

分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对应频率的曲线。

从这些曲线上可以找到“峰值”响应,并进一步考察频率对应的应力。

谐响应分析技术只计算结构的稳态受迫振动。

发生在激励开始时的瞬态振动不在谐响应分析中考虑。

谐响应分析是一种线性分析。

任何非线性特性,如塑性和接触(间隙)单元,即使被定义了也将被忽略,但在分析中可以包含非对称系统矩阵,如分析流体——结构相互作用问题。

谐响应分析同样也可以分析有预应力的结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。

对于谐响应分析,其运动方程为:
[][][](){}{}(){}{}()21212
M i C K i F i F ωωφφ−+++=+ 这里假设刚度矩阵[]K 、质量矩阵[]M 是定值,要求材料是线性的、使用小位移理论(不包括非线性)、阻尼为[]C 、简谐载荷为[]F 。

谐响应分析的输入条件包括:
已知幅值和频率的简谐载荷(力、压力和强迫位移)。

简谐载荷可以是具有相同频率的多种载荷,力和位移可以相同或者不相同,但是压力分布
载荷和体载荷只能指定零相位角。

有限元分析—ANSYS13 0从入门到实战

有限元分析—ANSYS13 0从入门到实战

有限元分析—ANSYS13 0从入门到实战- 1 - 本书是针对现有的ANSYS图书实例单一工程背景不强重操作少原理的现状特以ANSYS13.0为平台撰写的一部从入门到精通的实用自学和提高教程。

全面介绍有限元分析的理论基础、有限元分析流程、实体建模、网格划分、施加载荷、求解、通用后处理、时间历程后处理、静力学分析、结构动力学分析、结构非线性分析、复合材料分析断裂力学分析热力学分析、边坡稳定性分析、界面开裂分析、衬垫连接分析、齿轮分析、转子动力学分析、焊接过程、优化设计、拓扑优化、疲劳分析、自适应网格分析和可靠性分析等内容。

围绕ANSYS软件的功能讲解书中给出了大量具有工程背景的实例详细讲解热门问题如冲压回弹分析J积分计算、螺栓衬垫法兰盘连接分析齿轮动态接触分析焊接残余热应力分析等实例。

本书具有以下特点语言通俗易懂逻辑严密深入浅出。

切实从读者学习和使用的实际出发安排章节顺序和内容。

图文并茂。

讲述过程中结合大量分析实例力求易于理解并方便学习和实践过程中的使用。

本书配套光盘提供了共22个实例的视频教程和ANSYS实例文件。

本书不仅适合高等学校理工类高年级本科生或研究生学习ANSYS 13.0有限元分析软件的教材还可供从事结构分析的工程技术人员参考使用同时书中提供的大量实例也可供高级用户参考。

第1章绪论 1.1有限单元法基本概念有限单元法的基本思想是将连续的求解区域离散为一组有限个、且按一定方式相互联结在一起的单元的组合体。

由于单元能按不同的联结方式进行组合且单元本身又可以有不同形状因此可以对复杂的模型进行求解。

有限单元法作为数值分析方法的另一个重要特点是利用在每一个单元内假设的近似函数来分片地表示全求解域上待求的未知场函数。

单元内的近似函数通常由未知场函数或其导数在单元的各个节点的数值和其插值函数来表达。

这样一来一个问题的有限元分析中未知场函数或及其导数在各个节点上的数值就成为新的未知量从而使一个连续的无限自由度间题变成离散的有限自由度问题。

Ansys Workbench详解教程

Ansys Workbench详解教程
操作界面的显示 工具条的显示 选择目标 显示/隐藏 旋转、平移、缩放
2020/6/29
18
创建、打开、保存文档
File菜单或者工具条的 1、创建一个新文档。选择File—New命令。 2、 打开文档。选择File—Open命令。 3、保存文档。选择File—Save或Save As命令,
一般保存为.dsdb格式的文档。
2
有限元基本概念
概念
把一个原来是连续的物体划分为有限个单元,这些单元通过有
限个节点相互连接,承受与实际载荷等效的节点载荷,并根据力的 平衡条件进行分析,然后根据变形协调条件把这些单元重新组合成能
够进行综合求解的整体。 有限元法的基本思想—离散化。
节点 单元 载荷 约束 分析类型
2020/6/29
3
ANSYS Workbench12.0 基础培训讲义
(内部共享)
2020/6/29
1
主要内容
一、有限元基本概念
二、Ansys Workbench 软件介绍
基本操作 有限元分析流程的操作 静力学分析与模态分析 FEA模型的建立
(本次培训不涉及非线性问题 ,所讲内容主要针对三维实体单元。 )
2020/6/29
求解得到节点位移
根据弹性力学公式得到单元应变、应力
7
有限元法的基本步骤
1. 结构离散; 2. 单元分析
a. 建立位移函数 b. 建立单元刚度方程
n
y ii
i
k e e F e
c. 计算等效节点力
3. 进行单元集成; 4. 得到节点位移;
K F
5. 根据弹性力学公式计算单元应变、应力。
8
ANSYS Workbench 软件介绍
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元法的基本思想是将连续的结构离散成有限个单元,并在每一个单元中设定有限个节点,将连续体看做是只在节点处相连接的一组单元的集合体;同时选定场函数的节点值作为基本未知量,并在每一个单元中假设一个近似插值函数表示单元中场函数的分布规律;然后利用力学中的变分原理建立求解节点未知量的有限元方程,这样就将一个连续域中的无限自由度的问题转化为离散域的自由度问题。

求解后可以利用已知的节点值和插值函数确定单元以及整个集合体上场函数。

ANSYS结构有限元分析流程
1.前处理
前处理的目的是建立一个符合实际情况的结构有限元模型。

在Preprocessor 处理器中进行。

包括:分析环境设置(指定分析工作名称、分析标题)、定义单元类型、定义实常数、定义材料属性(如线弹性材料的弹性模量、泊松比、密度)、建立几何模型(一般用自底向上建模:先定义关键点,由这些点连成线,由线组成面,再由线形成体)、对几何模型进行网格划分(分为三个步骤:赋予单元属性、指定网格划分密度、网格划分)
2.施加载荷、设置求解选项并求解
这些工作通过SOLUTION 处理器实现。

指定分析类型(静力分析、模态分析、谐响应分析、瞬态动力分析、谱分析等)、设置分析选项(不同分析类型设置不同选项,有非线性选项设置、线性设置和求解器设置)、设置载荷步选项(包括时间、
子步数、载荷步、平衡迭代次数和输出控制)、加载(ANSYS结构分析的载荷包括位移约束、集中力、面载荷、体载荷、惯性力、耦合场载荷,将其施加于几何模型的关键点、线、面、体上)然后求解。

3.后处理
当完成计算以后,通过后处理模块查看结果。

ANSYS软件的后处理模块包括通用后处理模块(POST1)和时间历程后处理模块(POST26)。

可以轻松获得求解计算结果,包括位移、温度、应变、热流等,还可以对结果进行数学运算,然后以图形或者数据列表的形式输出。

结构的变形图、内力图(轴力图、弯矩图、剪力图),各节点的位移、应力、应变,还有位移应力应变云图都可以得出,为我们分析问题提供重要依据。

ANSYS软件提供了100种以上的单元类型,用来模拟工程中的各种材料和结构,各种不同单元组合在一起,成为具体物理问题的抽象模型。

如在隧道工程中衬砌用beam3梁单元模拟,弹簧单元COMBIN14模拟围岩与结构的相互作用。

边坡工程中边坡土体用平面单元来模拟。

水利工程中对大坝进行三维模拟分析时用实体单元,二维分析时用平面单元;水库闸门用壳单元模拟。

桥梁结构模拟分析中,用梁单元模拟不同截面的钢梁、混凝土梁,壳单元模拟桥面板箱梁等薄壁结构,杆单元可以模拟预应力钢筋和桁架。

房屋建筑结构中,梁单元模拟框架柱,壳单元模拟屋面板,实体单元模拟大体积混凝土,杆单元模拟预应力钢筋等。

一般都要对结构进行静力分析,结果必须满足设计要求。

当动荷
载与静荷载相比较小时,只进行静力分析即可。

但实际工程中可能受到显著的动荷载作用,比如房屋受地震作用、船舶受海浪作用、桥梁受车辆作用等,此时必须进行动力分析。

ANSYS动力分析包括模态分析、谐响应分析、瞬态动力学分析和谱分析四种类型,可解决各类工程动力问题。

ANSYS中,结构的固有振动特性分析称为模态分析,分析结构的固有频率和振型,分析结果为其它动力分析的基础。

谐响应分析用于确定线性结构在随时间以正弦规律变化的载荷作用下的稳态响应,得到结构的响应随频率变化的规律。

瞬态动力学分析用于计算结构在随时间任意变化的载荷作用下的动力学响应,以得到结构在稳态载荷、瞬态载荷和简谐载荷随意组合下随时间变化的位移、应变、应力和力。

谱分析是将模态分析的结果和已知谱联系起来计算结构响应的分析方法,用于确定结构对随机荷载或随时间变化荷载的动力响应。

ANSYS中还可以进行非线性分析,结构非线性问题有三种类型:几何非线性、材料非线性、状态非线性。

由于应变位移非线性关系引起的有限元分析总刚度方程非线性的问题,为几何非线性问题。

由于材料本构关系的非线性引起的结构刚度的非线性问题,为材料非线性问题。

与结构状态相关的非线性问题为状态非线性问题,最常见的是接触问题。

进行非线性分析在设置求解选项时,除了一般的分析选项载荷步设置外,还要设置非线性选项,这个至关重要,设置收敛准则及平衡迭代次数。

相关文档
最新文档