高中物理量子理论知识点总结与例题

合集下载

量子力学知识点小结

量子力学知识点小结

量子力学知识总结认真、努力、坚持、反思、总结…量子力学知识点小结一、绪论1.光的粒子性是由黑体辐射、光电效应和康普顿效应(散射)三个实验最终确定的。

2.德布罗意假设是任何物质都具有波粒二象性,其德布罗意关系为E h ν=和h p n κλ==3.波尔的三个基本假设是定态条件假设、n mE E h ν-=频率条件假设、化条件)(索末菲等推广的量子21或量子化条件假设⎰⎰+==h n pdq nh pdq )(4.自由粒子的波函数()ip r Et Aeψ⋅-=5.戴维孙革末的电子在晶体上衍射实验证明了电子具有波动性。

二、波函数及薛定谔方程(一)波函数的统计解释(物理意义)A.波函数(,)r t ψ的统计解释2(,)r t d t r ψτ表示时刻在点位置处单位体积内找2sin d r drd d τθϕθ=到粒子的几率(注:)。

B. 波函数(,,,)x y z t ψ的统计解释2(,,,),,x y z t dxdydz t x y z ψ表示时刻在点()位置处单位体积没找到粒子的几率。

例:已知体系处于波函数(,,)x y z ψ所描写的状态,则在区间[,]x x dx +内找到粒子的概率是2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎡⎤⎢⎥⎣⎦⎰⎰.已知体系处于波函数(,,)r ψθϕ所描写的状态,则在球壳r r dr →+内找到粒子的概率是22200(,,)sin r d d r dr ππψθϕθϕθ⎡⎤⎢⎥⎣⎦⎰⎰,在立体角d Ω内找到粒子的概率是220(,,)r r dr d ψθϕ∞⎡⎤Ω⎢⎥⎣⎦⎰.(注:sin d d d θϕθΩ=) (二)态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψψψ=+(12c c 、为复数)也是这个体系可能的状态。

含义:当体系处于1ψ和2ψ的线性叠加态1122c c ψψψ=+(12c c 、为复数) 时,体系既处于1ψ态又处于态2ψ,对应的概率为21c 和22c .(三)概率密度(分布)函数2()()x x x ψωψ=若波函数为,则其概率密度函数为()(四)薛定谔方程:22()2i U r t m∂ψ=-∇ψ+ψ∂ 22222222222222222()21cos 1 ()sin sin x y zr r r r r θθθθθϕ∂∂∂∇=+∂∂∂⎛⎫∂∂∂∂∂∇=+++ ⎪∂∂∂∂∂⎝⎭拉普拉斯算符直角坐标球坐标问题:1.描写粒子(如电子)运动状态的波函数对粒子(如电子)的描述是统计性的.2. 薛定谔方程是量子力学的一个基本假设,不是通过严格的数学推导而来的(五)连续性方程:()**0( )2J tiJ mω∂+∇⋅=∂≡ψ∇ψ-ψ∇ψ注:问题:波函数的标准条件单值、连续、有界。

人教版高中物理选择性必修第3册 第18讲 粒子的波动性和量子力学的建立(解析版)

人教版高中物理选择性必修第3册 第18讲 粒子的波动性和量子力学的建立(解析版)

第18讲 粒子的波动性和量子力学的建立课程标准课标解读1.知道实物粒子具有波动性,了解微观世界的量子化特征。

2.体会量子论的建立对人们认识物质世界的影响。

1.了解粒子的波动性,知道物质波的概念。

2.了解什么是德布罗意波,会解释有关现象。

3.了解量子力学的建立过程及其在具体物理系统中的应用。

知识点01 粒子的波动性与物质波的实验验证(一)粒子的波动性1.德布罗意波:每一个运动的粒子都与一个对应的波相联系,这种与实物粒子相联系的波称为德布罗意波,也叫物质波。

2.粒子的能量ε和动量p 跟它所对应的波的频率ν和波长λ之间的关系:ν=εh ,λ=h p。

(二)物质波的实验验证1.实验探究思路:干涉、衍射是波特有的现象,如果实物粒子具有波动性,则在一定条件下,也应该发生干涉或衍射现象。

2.实验验证:1927年戴维孙和汤姆孙分别用单晶和多晶晶体做了电子束衍射的实验,得到了电子的衍射图样,证实了电子的波动性。

3.说明:除了电子以外,人们陆续证实了中子、质子以及原子、分子的波动性,对于这些粒子,德布罗意给出的ν=εh 和λ=hp关系同样正确。

4.电子、质子、原子等粒子和光一样,也具有波粒二象性。

【知识拓展】 1.对物质波的理解(1)任何物体,小到电子、质子,大到行星、太阳都存在波动性,这种波叫物质波,其波长λ=hp .我们之所以观察不到宏观物体的波动性,是因为宏观物体对应的波长太小。

知识精讲目标导航(2)德布罗意假说是光的波粒二象性的一种推广,使之包括了所有的物质粒子,即光子与实物粒子都具有粒子性,又都具有波动性,与光子对应的波是电磁波,与实物粒子对应的波是物质波。

2.计算物质波波长的方法(1)根据已知条件,写出宏观物体或微观粒子动量的表达式p =mv 。

(2)根据波长公式λ=hp求解。

(3)注意区分光子和微观粒子的能量和动量的不同表达式.如光子的能量:ε=h ν,动量p =hλ;微观粒子的动能:E k =12mv 2,动量p =mv 。

高二物理量子论初步知识精讲

高二物理量子论初步知识精讲

高二物理量子论初步【本讲主要内容】量子论初步量子论初步⎪⎪⎩⎪⎪⎨⎧物质波能级玻尔原子模型光的波粒二象性子说光电效应、光子说、量【知识掌握】 【知识点精析】[光电效应] 演1: 装置:现象:验电器张开原理:锌板失去电子带正电。

结论:光照射物体、发射电子,这种现象叫光电效应。

演2:装置:K 、A 密封在高真空容器中,如图操作:①用不同频率光照K0ν<ν无论光怎么强,○G 中都无电流—无光电流。

0ν>ν无论光怎么弱,○G 中都有电流—有光电流。

K 换一种金属,0ν不同。

②调E ,使u=0,当0ν>ν时,○G 中都有电流<1>u=0,说明KA 间场强为0,而○G 有电流,说明电子从K 发出时具有动能,——初动能0K E 。

<2>改变入射光ν,发现电流增加,即↑0K E ,且↑↑ν0K E ,,与光强度无关。

③0ν>ν时无论光强怎么弱,○G 中立即有电流,即立即发射光电子。

④0ν>ν,调E 使↑u ,○G 中电流变大,u 再增到一定值,I 不再增,达一定值I 饱 改变入射光强度,I 饱变大光强一定(单位时间内,发射光电子数一定),∴○G I 一定——I 饱 光强变大,I 饱变大且成正比。

综上,光电效应规律:1、对应演2 ①任何一种金属都有一极限频率⎩⎨⎧ν<νν>ν不能产生光电效应入才能产生光电效应入002、对应演2 ②光电子最大初动能跟入射光ν成正比,跟入射光强度无关3、对应演2 ③光照射金属时,光电子的发射几乎是瞬时的,不超s 109-4、对应演2 ④当0ν>ν时,饱合光电流跟入射光的强度成正比。

[波动理论解释光电效应] 波动理论说:光是电磁波,金属中电子受其中电场强度E 作用做热运动。

1、光强足够大,即光的振幅足够大,无论频率高低,电子就能从金属中逸出。

与上述实验规律1不符2、光电子初动能,跟入射光强度有关,光强足够大,热运动激烈,逸出时初动能大,跟入射光γ无关。

关于量子力学的知识点总结

关于量子力学的知识点总结

关于量子力学的知识点总结量子力学是现代物理学的一个重要分支,研究微观世界的行为规律。

它涉及到很多的知识点,下面将对其中的一些重要知识点进行总结。

1. 波粒二象性:量子力学中的基本粒子既可以表现出粒子的性质,又可以表现出波动的性质。

例如,电子、光子等粒子既可以像粒子一样具有位置和动量,又可以像波动一样具有频率和波长。

2. 不确定性原理:由于波粒二象性的存在,无法同时准确测量粒子的位置和动量,因为测量其中一个属性会对另一个属性造成不确定性。

这是因为波粒二象性使得微观粒子的位置和动量不能同时具有确定值。

3. 波函数:在量子力学中,波函数描述了一个量子系统的状态,其平方表示在不同位置寻找粒子的概率。

波函数形式为ψ(x),其中x代表位置。

4. 叠加原理:当两个或多个波函数重叠时,它们可以相互叠加形成新的波函数。

这种叠加可以导致干涉现象,即波的相位相加或相减,形成波纹增强或波纹消除的现象。

5. 薛定谔方程:薛定谔方程是描述量子系统随时间演化的基本方程。

它能够确定系统的波函数随时间的变化,并给出粒子的能量以及其他物理量。

6. 量子态与态矢量:量子力学描述粒子的态称为量子态,用态矢量表示。

一个粒子的量子态是一个复数的线性组合,它确定了粒子在不同物理量上的测量结果的概率。

7. 纠缠:当两个或多个粒子通过量子力学的相互作用使得它们的量子态互相关联时,就产生了纠缠现象。

纠缠态的特点是不能将其视为单个粒子的状态,而必须将其作为整个系统的态来描述。

8. 可观测量与算符:在量子力学中,物理量的观测结果用可观测量表示。

每个可观测量都有对应的算符,通过作用于波函数求得其期望值。

例如,位置可观测量对应位置算符,动量可观测量对应动量算符。

9. 自旋:自旋是粒子特有的内禀角动量,与其自身特性相关。

自旋可能采取离散值,如电子的自旋即为1/2。

10. 荷质比:荷质比是粒子带电性质与其质量的比值。

根据量子力学理论,荷质比具有量子化的性质。

量子力学知识点总结

量子力学知识点总结

量子力学期末复习完美总结一、 填空题1.玻尔-索末菲的量子化条件为:pdq nh =⎰,(n=1,2,3,....),2.德布罗意关系为:hE h p k γωλ====; 。

3.用来解释光电效应的爱因斯坦公式为:212mV h A υ=-, 4.波函数的统计解释:()2r t ψ,代表t 时刻,粒子在空间r 处单位体积中出现的概率,又称为概率密度。

这是量子力学的基本原理之一。

波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。

5.波函数的标准条件为:连续性,有限性,单值性 。

6.,为单位矩阵,则算符的本征值为:1± 。

7.力学量算符应满足的两个性质是 实数性和正交完备性 。

8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。

即()m n mn d d λλφφτδφφτδλλ**''==-⎰⎰或。

9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ,所描写的态中测量粒子动量所得结果在p p dp →+范围内的几率。

10.i ;ˆxi L ;0。

11.如两力学量算符有共同本征函数完全系,则_0__。

12.坐标和动量的测不准关系是: ()()2224x x p ∆∆≥。

自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒13.量子力学中的守恒量A 是指:ˆA不显含时间而且与ˆH 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。

14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。

15. 为氢原子的波函数,的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。

16.对氢原子,不考虑电子的自旋,能级的简并为: 2n ,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为 22n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+j 。

量子力学知识的总结归纳

量子力学知识的总结归纳

量子力学知识的总结归纳量子力学是20世纪初由诺贝尔物理学家波尔、玻恩、海森堡等人发展起来的一门基础物理学理论。

它描述了微观世界中的粒子行为,涉及到微观粒子的波粒二象性、不确定性原理以及量子态叠加等概念。

本文将对量子力学的重要知识进行总结归纳,帮助读者更好地理解量子力学的基本原理。

一、波粒二象性在经典物理学中,我们将物质看作是粒子,具有确定的位置和动量。

然而,通过许多实验观察发现,微观粒子如电子、光子等却同时表现出粒子和波的性质。

这就是波粒二象性的基本概念。

根据德布罗意的物质波假设,每个物质粒子都与波动现象相对应。

粒子的波长和动量之间存在关系,称为德布罗意关系:λ = h / p其中,λ表示波长,h表示普朗克常数,p表示动量。

二、量子力学的基本原理1.波函数和薛定谔方程在量子力学中,用波函数(Ψ)来描述粒子的状态。

波函数的平方(|Ψ|^2)给出了在空间中找到粒子的概率。

薛定谔方程是描述波函数随时间演化的方程。

它是一个偏微分方程,其解决了波函数随时间的变化,从而可以预测粒子的行为。

2.不确定性原理由海森堡提出的不确定性原理是量子力学的重要概念之一。

它表明,无法同时准确地确定粒子的位置和动量。

不确定性原理可以用数学形式表示为:Δx * Δp >= h / 2π其中,Δx表示位置的不确定度,Δp表示动量的不确定度,h为普朗克常数。

3.量子态叠加和测量在量子力学中,粒子的状态可以叠加为多个态的线性组合。

这种叠加被称为叠加原理。

当我们对粒子进行观测时,测量结果只能是某个确定态,而不是叠加态。

测量之后,粒子的波函数将塌缩到某个确定态,概率由波函数的平方给出。

三、量子力学的应用量子力学不仅仅是一门理论学科,它也有着广泛的应用。

以下是量子力学的一些重要应用领域。

1.原子物理学量子力学解释了原子结构、电子轨道和元素周期表等现象。

它的应用使我们能够理解和探索原子和分子之间的相互作用,进而推动材料科学和化学的发展。

人教版高中物理选修3-5知识点整理及重点题型梳理] 量子、光的粒子性

人教版高中物理选修3-5知识点整理及重点题型梳理]  量子、光的粒子性

人教版高中物理选修3-5知识点梳理重点题型(常考知识点)巩固练习量子、光的粒子性【学习目标】1.了解黑体和黑体辐射的实验规律;2.知道普朗克提出的能量子的假说.3.理解光电效应的实验规律及光电效应与电磁理论的矛盾;4.理解爱因斯坦的光子说及光电效应的解释,了解光电效应方程,并会用来解决简单问题.【要点梳理】要点一、能量量子化1.热辐射(1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射.物体在任何温度下,都会发射电磁波,温度不同,所发射的电磁波的频率、强度也不同.物理学中把这种现象叫做热辐射.(2)热辐射的特性:辐射强度按波长的分布情况随物体的温度而有所不同.当物体温度较低时(如室温),热辐射的主要成分是波长较长的电磁波(在红外线区域),不能引起人的视觉;当温度升高时,热辐射中较短波长的成分越来越强,可见光所占份额增大,如燃烧的炭块会发出醒目的红光.2.绝对黑体(简称黑体)(1)定义:在热辐射的同时,物体表面还会吸收和反射外界射来的电磁波.如果一个物体能够完全吸收入射到其表面的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体.所谓“黑体”是指能够全部吸收所有频率的电磁辐射的理想物体.绝对的黑体实际上是不存在的,但可以用某种装置近似地代替.(2)黑体辐射的实验规律:对于一般材料的物体,辐射的电磁波除与温度有关外,还与材料的种类及表面状况有关.而黑体的辐射规律最为简单,黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.随着温度的升高,一方面黑体辐射各种波长电磁波的本领都有所增加,另一方面辐射本领的极大值向波长较短的方向移动.辐射强度3.普朗克能量量子化假说 (1)能量子.黑体的空腔壁是由大量振子(振动着的带电微粒)组成的,其能量只能是某一最小能量值ε的整数倍.例如可能是ε或2ε、3ε、….当振子辐射或吸收能量时,也是以这个最小能量值为单位一份一份地进行.这个不可再分的最小能量值ε叫做能量子,h εν=,其中ν是电磁波的频率,h 是普朗克常量(346.62610J s h =⨯⋅-). (2)能量的量子化.在微观世界里,能量不能连续变化,只能取分立值,这种现象叫做能量的量子化. (3)普朗克的量子化假设的意义.传统的电磁理论认为光是一种电磁波,能量是连续的,能量大小决定于波的振幅和光照时间.普朗克为了克服经典物理学对黑体辐射现象解释的困难而提出了能量子假说,普朗克的能量子假说,使人类对微观世界的本质有了全新的认识,对现代物理学的发展产生了革命性的影响.普朗克常量危是自然界最基本的常量之一,它体现了微观世界的基本特征. 4.什么样的物体可看成黑体(1)黑体是一个理想化的物理模型.(2)如图所示,如果在一个空腔壁上开一个很小的孔,那么射入小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从空腔射出.这个小孔近似看成一个绝对黑体.(3)黑体看上去不一定是黑的,有些可看做黑体的物体由于自身有较强的辐射,看起来还会很明亮,如炼钢炉口上的小孔.一些发光体(如太阳、白炽灯丝)也被当作黑体来处理.要点二、光的粒子性 1.光电效应现象19世纪末赫兹用实验验证了麦克斯韦的电磁场理论,明确了光的电磁波说.但赫兹也最早发现了光电效应现象.如图所示。

高中物理 有关量子的初步知识 基本粒子要点知识的归纳汇总

高中物理 有关量子的初步知识 基本粒子要点知识的归纳汇总

高中物理竞赛原子物理学教程第二讲相对论初步知识 第三讲有关量子的初步知识第三讲 有关量子的初步知识§3. 1、初期量子理论20世纪之初,物理学家为解释一些经典物理所不能解释的实验规律,提出了量子理论。

量子理论经过进一步发展,形成了量子力学,使量子力学成为近代物理学的两大支柱之一。

3.1.1、 3.1.1、 普朗克量子论一切物体都发射并吸收电磁波。

物体发射电磁波又称热辐射,温度越高,辐射的能量越多,辐射中短波成份比例越大。

完全吸收电磁辐射的物体发射电磁辐射的本领也最强,称这种理想的物体为黑体。

研究黑体辐射电磁波长的能量与黑体温度以及电磁波波长的关系,从实验上得出了著名的黑体辐射定律。

假设电磁辐射是组成黑体的谐振子所发出,按照经典理论,谐振子的能量可以连续地变化,电磁波的能量也是可以连续变化的,但是理论结果与实验定律相矛盾。

1900年,德国物理学家普朗克提出了量子理论:黑体中的振子具有的能量是不连续的,从而,他们发射或吸收的电磁波的能量也是不连续的。

如果发射或吸收的电磁辐射的频率为v ,则发射或吸收的辐射能量只能是hv 的整倍数,h 为一普适常量,称为普朗克常量,普朗克的量子理论成功地解释了黑体辐射定律,这种能量不连续变化的概念,是对经典物理概念的革命,普朗克的理论预示着物理观念上革命的开端。

3.1.2、 爱因斯坦光子理论因为电磁波理论也不能解释光电效应,在普朗克量子论的基础上,爱因斯坦于1905年提出了光子概念。

他认为光的传播能量也是不连续的,而是一份一份的,每一份能量称为一个光子,即光是由光子组成的,频率为v 光的光子能量等于hv ,h 为普朗克常量。

光子理论圆满地解释了光电效应。

人们对光本性的认识前进了一步:光具有波粒二象性。

在经典物理中,波是连续的,粒子是分立的,二者不相容。

所以,不能把光看作经典物理中的波,也不能把光看作经典物理中的粒子。

故此,有了爱因斯坦光电方程: w h mv -=γ221 W 为逸出功,γ为光子频率, m 为光电子质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子理论初步 1.光电效应现象。 光照使物体发射电子的现象叫光电效应现象;所发射的电子叫光电子;光电子定向移动所形成的电流叫光电流。 2. 光电效应现象的实验规律: (1)对于任何一种金属,入射光的频率必须大于某一极限频率才能产生光电效应,低于这个极限频率,无论强度如何,无论照射时间多长,也不能产生光电效应; (2)在单位时间里从金属极板中发射出的光电子数跟入射光的强度成正比; (3)发射出的光电子的最大初动能与入射光强度无关,只随入射光频率的增大而增大; (4)只要入射光的频率高于金属极板的极限频率,无论其强度如何,光电子的产生都几乎是瞬时的,不超过10—9s. 3.光子说 光子说的主要内容为:沿空间传播的光是不连续的,而是一份一份的,每一份叫做一个光量子,简称光子;光子的能量E与光的频率ν成正比,比例系数即为普朗克常量E=hν h=6.63×10 – 34 J.s——普朗克恒量 4. 爱因斯坦光电效应方程

Whmvm22

1

爱因斯坦光电效应方程的图象 爱因斯坦光电效应方程是能量守恒定律在光电效应现象中的表现形式

逸出功和极限频率的关系: 0hW

极限波长和极限频率的关系: 由fv 得00c 5. 光的波粒二象性 光的干涉,衍射等现象充分表明光是波,而光电效应现象和康普顿效应又无可辩驳地证明了光是粒子。事实上,光具有波动和粒子二重特性。俗称光的波粒二象性。 光在传播时更多地表现为波动特性,在与物质微粒发生作用时更多地表现为粒子特征;波长越长的光波动性越显著,频率越高的光粒子性越显著;大量光子的整体行为表现为波动性,少量光子的个别行为表现为粒子性。 光是一种概率波,一切微观粒子都有波粒二象性

氢原子的能级跃迁 复习精要 一、玻尔的原子理论——三条假设 (1)“定态假设”:原子只能处于一系列不连续的能量状态中,在这些状态中,电子虽做变速运动,但并不向外辐射电磁波,这样的相对稳定的状态称为定态。 定态假设实际上只是给经典的电磁理论限制了适用范围:原子中电子绕核转动处于定态时不受该理论的制约。

(2)“跃迁假设”:电子绕核转动处于定态时不辐射电磁波,但电子在两个不同定态间发生跃迁时,却要辐射(吸收)电磁波(光子),其频率由两个定态的能量差值决定hv=E2-E1。 跃迁假设对发光(吸光)从微观(原子等级)上给出了解释。 (3)“轨道量子化假设”:由于能量状态的不连续,因此电子绕核转动的轨道半径也不能任意取值,必须满足

)3,2,1(2nnhmvr。

轨道量子化假设把量子观念引入原子理论,这是玻尔的原子理论之所以成功的根本原因。 二、氢原子能级及氢光谱 (1)氢原子能级: 原子各个定态对应的能量是不连续的,这些能量值叫做能级。

①能级公式:)6.13(1112eVEEnEn; ②半径公式:)m.r(rnrn1011210530。 (2)氢原子的能级图 (3)氢光谱 在氢光谱中,n=2,3,4,5,……向n=1跃迁发光形成赖曼线系; n=3,4,5,6向n=2跃迁发光形成巴耳末线系; n=4,5,6,7……向n=3跃迁发光形成帕邢线系; n=5,6,7,8……向n=4跃迁发光形成布喇开线系, 其中只有巴耳末线系的前4条谱线落在可见光区域内。 三、几个重要的关系式

(1)能级公式 2126131neV.EnEn

Ek

α ν 0

-W ν0

氢原子的能级图 n E/eV ∞ 0

1 -13.6

2 -3.4 3 -1.51

4 -0.85 3

E1

E2

E3

-1.51 (2)跃迁公式 12

EEh

(3)半径公式 )m.r(rnrn1011210530

(4) 动能跟n 的关系:由 nnnrmvrke222 得 2221221nrkemvEnnkn

(5)速度跟n 的关系nrmrkevnnn112 (6)周期跟n的关系332nrvrTnnnn 关系式(5)(6)跟卫星绕地球运转的情况相似。 四、 玻尔理论的局限性: 玻尔理论能够十分圆满地解释氢光谱并且预言了氢原子辐射电磁波谱的问题,其成功之处在于引进了量子化的观点;但是,在解释其它原子光谱时遇到了很大的困难,因为玻尔理论过多地保留了经典理论。 牛顿力学只适用于低速运动(相对于光速)的宏观物体,对于微观粒子的运动,牛顿力学不适用了。 五、氢原子中的电子云 对于宏观质点,只要知道它在某一时刻的位置和速度以及受力情况,就可以应用牛顿定律确定该质点运动的轨道,算出它在以后任意时刻的位置和速度。 对电子等微观粒子,牛顿定律已不再适用,因此不能用确定的坐标描述它们在原子中的位置。玻尔理论中说的“电子轨道”实际上也是没有意义的。更加彻底的量子理论认为,我们只能知道电子在原子核附近各点出现的概率的大小。在不同的能量状态下,电子在各个位置出现的概率是不同的。如果用疏密不同的电子表示电子在各个位置出现的概率,画出图来,就像一片云雾一样,可以形象地称之为电子云。 12.用大量具有一定能量的电子轰击大量处于基态的氢原子,观测到了一定数目的光谱线。调高电子的能量再此进行观测,发现光谱线的数目比原来增加了5条。用△n表示两次观测中最高激发态的量子数n之差,E表示调高后电子的能量。根据氢原子的能级图可以判断,△n和E的可能值为( AD )

A、△n=1,13.22 eV B、△n=2,13.22 eV C、△n=1,12.75 eV D、△n=2,12.75 eV 解析: 原子的跃迁公式只适用于光子和原子作用而使原子在各定态之间跃迁的情况; 实物粒子与原子相互作用而使原子激发时, 粒子的能量不受上述条件的限制。本题由于是电子轰击, 存在两种可能:第一种n=2到n=4,所以电子的能量必须满足13.6-0.85

13. (1)氢原子第n能级的能量为21nEEn,其中E1是基态能量,而n=1,2,…。若一氢原子发射能量为1163E的光子后处

于比基态能量高出143E的激发态,则氢原子发射光子前后分别处于第几能级? 解:(5分)设氢原子发射光子前后分别处于第l与第m能级,则依题意有12121163EmElE ①,112143EEmE ②,由②式解得m=2 ③,由①③式得l=4 ④,氢原子发射光子前后分别处于第4与第2能级。 15.氢原子在某三个相邻能级间跃迁时,可发出三种不同波长的辐射光。已知其中的两个波长分别为λ1和λ2,且λ1>λ2,则另一个波长可能是( C D )

A. λ1+λ2 B. λ1-λ2 C.2121 D. 2121





 【分析】玻尔原子模型的跃迁假设(E初-E终=hν)及λ=c/ν可得:

E3-E1=3hc,E3-E2=2hc,E2-E1=1hc, 所以得:213hchchcλ3=2121, 故C选项正确,同理D选项正确。 十年高考试题分类解析-物理 (二十二)量子论 一.2012年高考题 1. (2012·江苏物理)如图所示是某原子的能级图,a、b、c 为原子跃迁所发出的三种波长的光. 在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是 _____________.

E3 E2

E1 2.(12·上海)在光电效应实验中,用单色光照时某种金属表面,有光电子逸出,则光电子的最大初动能取决于入射光的 (A)频率 (B)强度 (C)照射时间 (D)光子数目 3.(2012·四川理综)如图为氢原子能级示意图的一部分,则氢原子 A.从n=4能级跃迁到n=3能级比从n=3能级跃迁到n=2能级辐射出电磁波的波长长 B.从n=5能级跃迁到n=1能级比n=5能级跃迁到n=4能级辐射出电磁波的速度大 C.处于不同能级时,核外电子在各处出现的概率是一样的 D.从高能级向低能级跃迁时,氢原子核一定向外放出能量 4.(2012·上海物理)根据爱因斯坦的“光子说”可知 (A)“光子说”本质就是牛顿的“微粒说” (B)光的波长越大,光子的能量越小 (C)一束单色光的能量可以连续变化 (D)只有光子数很多时,光才具有粒子性 5.(2012·北京理综)一个氢原子从n=3能级跃迁到n=2能级.该氢原子 A. 放出光子,能量增加 B. 放出光子,能量减少 C. 吸收光子,能量增加 D. 吸收光子,能量减少 6(2012·海南物理)产生光电效应时,关于逸出光电子的最大初动能Ek,下列说法正确的是 A.对于同种金属,Ek与照射光的强度无关 B.对于同种金属,Ek与照射光的波长成反比 C.对于同种金属,Ek与光照射的时间成正比 D.对于同种金属,Ek与照射光的频率成线性关系 E.对于不同种金属,若照射光频率不变,Ek与金属的逸出功成线性关系 7 (2012·江苏物理)A、B 两种光子的能量之比为2∶1,它们都能使某种金属发生光电效应,且所产生的光电子最大初动能分别为EA 、EB . 求A、B 两种光子的动量之比和该金属的逸出功.

8(2012·山东理综)氢原子第n能级的能量为12nEEn,其中E1为基态能量。当氢原子由第4能级跃迁到第2能级时,发出

光子的频率为ν1;若氢原子由第2能级跃迁到基态,发出光子的频率为ν2,则12= 。 二.2011年高考题 1. (2011·天津理综卷)下列能揭示原子具有核式结构的实验是 A. 光电效应实验 B. 伦琴射线的发现 C. 粒子散射实验 D. 氢原子光谱的发现 2.(2011·上海物理)用一束紫外线照射某金属时不能产生光电效应,可能使该金属产生光电效应的措施是 (A)改用频率更小的紫外线照射 (B)改用X射线照射 (C)改用强度更大的原紫外线照射 (D)延长原紫外线的照射时间

3. (2011·全国理综卷)已知氢原子的基态能量为E,激发态能量21/nEEn,其中n=2,3…。用h表示普朗克常量,c表示真空中的光速。能使氢原子从第一激发态电离的光子的最大波长为

A. 143hcEB.12hcE C.14hcE D. 19hcE 4(2011江苏物理)下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射规律的是

相关文档
最新文档