史上最全的反应器结构及工作原理图解!

合集下载

最终版流化床反应器.ppt

最终版流化床反应器.ppt
精选
精选
精选
流态化的形成
1.流速较小,流体从颗粒 缝隙通过,床层静止。 u↑→P↑,固定床阶段。
2.流速增加,颗粒吹起, △P u↑→ε↑→P不变。
3.流速继续增加,颗粒被 带出床层,空隙率增加, u↑→P↓,输送床阶段。
U
精选
临界流化速度U临
特征: 因为
所以
U操<U临 固定床阶段 U操>U临 流化床阶段 U临 时, P固 = P流
流化速度umf 、ut、u、k
异常现象:大气泡、腾涌
影响因素、确定开孔率 型式、直径、高度
影响因素 换热器形式 换热面积的确定 计算umf、ut 膨胀比、空隙率 床层压降 床层结构尺寸
高速流态化技术 高速流态化与传统流态化比较 高速流态化技术的应用
操作训练
流化床反应器操作指导
精选 流化床反应器操作训练
Δtm——平均传热温度差,K
精选
(三)流化床内换热器的结构型式
列管式换热器:单管式和套管式 管束式换热器:直列和横列 鼠笼式换热器 蛇管式换热器
精选
列管式换热器:单管式
精选
列管式换热器:套管式
精选
立式管束式
精选
横排管束式换热器
精选
鼠笼式换热器
精选
蛇管式换热器
精选
三、流化床反应器的计算
精选
内旋挡板
精选
外旋挡板
精选
多旋挡板
精选
精选
第三节 高速流态化技术
提高速度后的流态化现象
气固并流上行快速流化床
精选
精选
高速流态化与传统流态化的比较
比较 气速[m/s] 颗粒直径[mm]
空隙率 气体返混

生化反应器ppt课件

生化反应器ppt课件

rP
max
(1
P Pmax
)[(P P0 ) YP/ X
X0]
代入积分得: 分 反馈回反应器的入口,
t 2)带循环时的 X1,S1,rXr,Dcr,Xr,XF
状态参数与操作变量的关系
max r
6 管式反应器CPFR
Pt
Pmax P0 YP/ X X 0
ln
X t (Pmax X 0 (Pmax

力学,,有则 效因子与转化率, 无关,因此
令:

2)带循环时的 X1,S1,rXr,Dcr,Xr,XF

K 当为单底物无抑制时,且酶无失活,将米氏方程代入L积分得m:
t r
(1 )r L max
ln S0 St
3、微生物反应
• 微生物反应过程以对数生长期和减速期的时间作为反应时
间,tr tr1 tr2,若对数期开始时细胞浓度为X0,指数期末为X1,减速期
若微生物的生长符合Monod方程,且YX/S为常数,则代入积分得
输入量=输出量+反应量+累积量
响反应速率的因素,均能影响反应时间tr,即反应时间只与动
力学有关,而与反应器大小无关。
体积的计算
• 反应器的有效体积VR:是物料所占有的体积,是由物料的处理量决定 的,也就是说是由设计生产能力决定的,若单位时间内物料的处理量
P0 ) Pt )
2)带循环时,因为

,所以 , ,
实际生产过程中有产物抑制时产物浓度的最佳值为 理想的微生物生长是菌量相对于时间以指数规律增加,所以可以使流加的物料以时间的指数函数增加,即指数流加。
为什么同一个反应过程,在其他条件均相同的条件下,采用BSTR所需的反应时间要小于CSTR中的反应时间?

管式反应器结构和工作原理

管式反应器结构和工作原理

管式反应器结构和工作原理由长径比较大的空管或填充管构成,可用于实现气相反应和液相反应。

性能特点:1、由于反应物的分子在反应器内停留时间相等,所以在反应器内任何一点上的反应物浓度和化学反应速度都不随时间而变化,只随管长变化。

2、管式反应器具有容积小、比表面大、单位容积的传热面积大,特别适用于热效应较大的反应。

3、由于反应物在管式反应器中反应速度快、流速快,所以它的生产能力高。

4、管式反应器适用于大型化和连续化的化工生产。

5、和釜式反应器相比较,其返混较小,在流速较低的情况下,其管内流体流型接近与理想流体。

6、管式反应器既适用于液相反应,又适用于气相反应。

用于加压反应尤为合适。

此外,管式反应器可实现分段温度控制。

其主要缺点是,反应速率很低时所需管道过长,工业上不易实现。

(一)水平管式反应器由无缝钢管与U形管连接而成。

这种结构易于加工制造和检修。

高压反应管道的连接采用标准槽对焊钢法兰,可承受1600-10000kPa压力。

如用透镜面钢法兰,承受压力可达10000-20000kPa。

(二)立管式反应器立管式反应器被应用于液相氨化反应、液相加氢反应、液相氧化反应等工艺中。

(三)盘管式反应器将管式反应器做成盘管的形式,设备紧凑,节省空间。

但检修和清刷管道比较困难。

(四)U形管式反应器U形管式反应器的管内设有多孔挡板或搅拌装置,以强化传热与传质过程。

U形管的直径大,物料停留时间增长,可应用于反应速率较慢的反应。

(五)多管并联管式反应器多管并联结构的管式反应器一般用于气固相反应,例如气相氯化氢和乙炔在多管并联装有固相催化剂的反应器中反应制氯乙烯,气相氮和氢混合物在多管并联装有固相铁催化剂的反应器中合成氨。

反应器基础知识 第一讲

反应器基础知识  第一讲

锻焊结构 : 反应器的筒节经过由锻坯 墩粗、拔长、墩粗、冲孔的锻 造加工过程,筒节上没有纵向 焊缝,这种结构称为锻焊结构 如右图。 这种结构可适用于高温高 压场合,对提高反应器耐周向 应力的可靠性有利,焊后检测 较为容易,一般适用于壁厚大 于150mm的场合,最大厚度 480mm。
板焊结构 : 反应器的筒节由钢板卷 曲后焊接而成,这种结构称 为板焊结构,如右图。 这种结构也适用于高温 高压场合,但筒节上有纵、 环向焊缝,焊缝多,工作量 大,钢板内特性难以保证, 不如锻件筒节。最大厚度 300mm。
出口收集器 用于支承下部的催化剂床层,以减轻床层 的压降和改善反应物料的分配。
加氢反应器结构上的改进
(1)催化剂支承结构
(2)法兰密封结构
(3)反应器支承结构
(4)反应器裙座连接结构
(5)反应器外部附件 连接结构 保温支撑圈多采用 现在流行的不直接 焊于反应器外部而 是披挂其上的鼠笼 式结构。当附件非 与反应器壁相焊不 可时,应尽量使其 焊透。
制造加氢反应器的常用材料 制造加氢反应器的常用材料一般为Cr-Mo钢系, 因为这些钢材既具有优良的抗高温氢腐蚀性能, 又有良好的短时和长时高温力学性能。根据不同 的温度和压力,一般都选用 1Cr-0.5Mo; 1.25Cr-0.5Mo; 2.25Cr-1Mo; 2.25Cr-1Mo 0.25V; 3Cr-1Mo 0.25V;
要防止回火脆性破坏现象的出现,就要从 以下几点考虑:
1、尽量减少钢中P、Sb、Sn、As等杂质元素的含量; 2、采用真空碳脱氧(VCD)的冶炼工艺,将Si的含量降低; 3、对回火脆化敏感性系数(J系数和X系数)推荐按下面的值控 制: J系数 =(Si + Mn)(P + Sn)×104 ≤100% (仅用于母材 X系数 =(10P + 5Sb + 4Sn + As)×10-2 ≤ 15×10-6 ; 4、控制脆化处理后的韧性指标; 5、制造中应选择合适的热处理工艺,使钢材既能满足规定的力 学要求,又具有优越的抗回火脆性性能这一综合指标; 6、采用热态的开停工方案,开工时先升温、后升压,停工时先 降压、后降温; 7、采用合适的开停工升降温速度,建议温度小于150℃时,升 温速度不超过25℃/h为宜。

《釜式反应器》课件

《釜式反应器》课件

ABCD
严格控制温度和压力
按照工艺要求,严格控制釜式反应器的温度和压 力,防止超温超压运行。
定期维护保养
对釜式反应器及其附件进行定期检查、保养,确 保设备正常运行。
釜式反应器的安全防护措施
防爆装置
在釜式反应器上安装防爆装置,以防止因超温超压引发的爆炸事故。
安全阀
设置安全阀,在压力过高时自动开启泄压,保护釜式反应器和操作人 员的安全。
材料应具备足够的机械 强度,能够承受操作过
程中的压力和振动。
经济性
在满足工艺要求的前提 下,应尽量选择价格低
廉、易采购的材料。
釜式反应器的尺寸与容量设计
01
根据工艺要求确定反应 器的容量和尺寸,确保 足够的反应空间和混合 效果。
02
考虑物料在反应器内的 停留时间,确保物料能 够充分反应。
03
根据反应速度和传热要 求,合理设计反应器的 结构,如搅拌装置、挡 板等。
02 釜式反应器的工作原理
釜式反应器的结构组成
釜体是反应器的主体,用于 容纳反应物料,并承受反应
压力和温度。
釜式反应器主要由釜体、搅 拌装置、加热/冷却系统、密
封装置等组成。
01
02
03
搅拌装置用于使反应物料混 合均匀,促进传热和传质过
程。
加热/冷却系统用于控制反应 温度,保证反应在适宜的温
度下进行。
釜式反应器的故障诊断与处理
故障诊断
当釜式反应器出现异常时,需要 及时诊断故障原因,分析故障类 型,以便采取有效措施进行处理 。
故障处理
针对不同类型的故障,采取相应 的处理措施,如更换损坏部件、 调整工艺参数、清洗设备等,尽 快恢复设备的正常运行。

加氢反应器介绍 ppt课件

加氢反应器介绍  ppt课件
(2)尽量保持TP347堆焊金属或焊接金属有较高的延性。为此,一是 要控制TP347中δ—铁素体含量,以避免含量过多时在焊后最终热处理 过程转变成较多的相而产生脆性;二是对于前述那些易发生氢脆的部 位,应尽量省略TP347堆焊金属或焊接金属的焊后最终热处理,以提 高其延性。
(3)装置停工时冷却速度不应过快,且停工过程中应有使钢中吸藏的 氢能尽量释放出去的工艺过程,以减少器壁中的残留氢含量。
加氢反应器
一.加氢反应器
加氢反应器是各类加氢工艺(Hydrogen Cracking Unit)的关键设备 加氢是在催化剂存在的条件下从外界补入氢气以提高油品的氢碳比。 加氢裂化实质上是加氢和催化裂化过程的有机结合,一方面能使重 质油品通过裂化反应转化为汽油、煤油和柴油等轻质油品,另一方 面又可防止像催化裂化那样生成大量焦炭,而且还可将原料中的硫、 氯、氧化合物杂质通过加氢除去,使烯烃饱和。 因此,加氢裂化具有轻质油收率高、产品质量好的突出优点。
影响高温氢腐蚀的主要因素
1)温度、压力和暴露时间的影响
温度和压力对氢腐蚀的影响很大,温度越高或者压力越大发生高 温腐蚀的起始时间就越早。
2)合金元素和杂质元素的影响
在钢中凡是添加能形成很稳定碳化物的元素(如铬、钼、钒、钛、 钨等),就可使碳的活性降低,从而提高钢材抗高温氢腐蚀的能力。
在合金元素对抗氢腐蚀性能的影响中,元素的复合添加和各自添 加的效果不同。例如铬、钼的复合添加比两个儿素单独添加时可使抗 氢腐蚀性能进一步提高。在加氢高压设备中广泛地使用着铬-钼钢系, 其原因之一也在于此。
床层的下沉。
4. 催化剂支撑盘
催化剂支撑盘由T形大梁、格栅和丝网组成。大梁的两边搭在反应器 器壁的凸台上,而格栅则放在大梁和凸台上。格栅上平铺一层粗不锈钢丝 网,和一层细不锈钢丝网,上面就可以装填磁球和催化剂了。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

史上最全的反应器结构及工作原理图解!这里给大家介绍一下常用的反应器设备,主要有以下类型:①管式反应器。

由长径比较大的空管或填充管构成,可用于实现气相反应和液相反应。

②釜式反应器。

由长径比较小的圆筒形容器构成,常装有机械搅拌或气流搅拌装置,可用于液相单相反应过程和液液相、气液相、气液固相等多相反应过程。

用于气液相反应过程的称为鼓泡搅拌釜(见鼓泡反应器);用于气液固相反应过程的称为搅拌釜式浆态反应器。

③有固体颗粒床层的反应器。

气体或(和)液体通过固定的或运动的固体颗粒床层以实现多相反应过程,包括固定床反应器、流化床反应器、移动床反应器、涓流床反应器等。

④塔式反应器。

用于实现气液相或液液相反应过程的塔式设备,包括填充塔、板式塔、鼓泡塔等(见彩图)。

一、管式反应器一种呈管状、长径比很大的连续操作反应器。

这种反应器可以很长,如丙烯二聚的反应器管长以公里计。

反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。

通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流。

分类:1、水平管式反应器由无缝钢管与U形管连接而成。

这种结构易于加工制造和检修。

高压反应管道的连接采用标准槽对焊钢法兰,可承受1600-10000kPa 压力。

如用透镜面钢法兰,承受压力可达10000-20000kPa。

2、立管式反应器立管式反应器被应用于液相氨化反应、液相加氢反应、液相氧化反应等工艺中。

3、盘管式反应器将管式反应器做成盘管的形式,设备紧凑,节省空间。

但检修和清刷管道比较困难。

4、U形管式反应器U形管式反应器的管内设有多孔挡板或搅拌装置,以强化传热与传质过程。

U形管的直径大,物料停留时间增长,可应用于反应速率较慢的反应。

5、多管并联管式反应器多管并联结构的管式反应器一般用于气固相反应,例如气相氯化氢和乙炔在多管并联装有固相催化剂的反应器中反应制氯乙烯,气相氮和氢混合物在多管并联装有固相铁催化剂的反应器中合成氨。

性能特点:1、由于反应物的分子在反应器内停留时间相等,所以在反应器内任何一点上的反应物浓度和化学反应速度都不随时间而变化,只随管长变化。

2、管式反应器具有容积小、比表面大、单位容积的传热面积大,特别适用于热效应较大的反应。

3、由于反应物在管式反应器中反应速度快、流速快,所以它的生产能力高。

4、管式反应器适用于大型化和连续化的化工生产。

5、和釜式反应器相比较,其返混较小,在流速较低的情况下,其管内流体流型接近与理想流体。

6、管式反应器既适用于液相反应,又适用于气相反应。

用于加压反应尤为合适。

此外,管式反应器可实现分段温度控制。

其主要缺点是,反应速率很低时所需管道过长,工业上不易实现。

二、釜式反应器釜式反应器也称槽式、锅式反应器,它是各类反应器中结构较为简单且应用较广的一种。

主要应用于液—液均相反应过程,在气—液、液—液非均相反应过程中也有应用。

在化工生产中,既适用于间歇操作过程,又可单釜或多釜串联用于连续操作过程,但在间歇生产过程应用最多。

1、间歇釜间歇釜式反应器,或称间歇釜。

操作灵活,易于适应不同操作条件和产品品种,适用于小批量、多品种、反应时间较长的产品生产。

间歇釜的缺点是:需有装料和卸料等辅助操作,产品质量也不易稳定。

但有些反应过程,如一些发酵反应和聚合反应,实现连续生产尚有困难,至今还采用间歇釜。

2、连续釜连续釜式反应器,或称连续釜3、釜式搅拌反应器釜式搅拌反应器有立式容器中心搅拌、偏心搅拌、倾斜搅拌,卧式容器搅拌等类型。

其中以立式容器中心搅拌反应器是最典型的一种常用搅拌器及流型示意性能特点:釜式反应器具有适用的温度和压力范围宽、适应性强、操作弹性大、连续操作时温度浓度容易控制、产品质量均一等特点。

但用在较高转化率工艺要求时,需要较大容积。

通常在操作条件比较缓和的情况下操作,如常压、温度较低且低于物料沸点时,应用此类反应器最为普遍。

三、固定床反应器又称填充床反应器,装填有固体催化剂或固体反应物用以实现多相反应过程的一种反应器。

固体物通常呈颗粒状,粒径2~15mm左右,堆积成一定高度(或厚度)的床层。

床层静止不动,流体通过床层进行反应。

它与流化床反应器及移动床反应器的区别在于固体颗粒处于静止状态。

固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类蒸汽转化炉等。

用于气固相或液固相非催化反应时,床层则填装固体反应物。

涓流床反应器也可归属于固定床反应器,气、液相并流向下通过床层,呈气液固相接触。

固定床反应器有三种基本形式:1、轴向绝热式固定床反应器流体沿轴向自上而下流经床层,床层同外界无热交换。

2、径向绝热式固定床反应器流体沿径向流过床层,可采用离心流动或向心流动,床层同外界无热交换。

径向反应器与轴向反应器相比,流体流动的距离较短,流道截面积较大,流体的压力降较小。

但径向反应器的结构较轴向反应器复杂。

以上两种形式都属绝热反应器,适用于反应热效应不大,或反应系统能承受绝热条件下由反应热效应引起的温度变化的场合。

3、列管式固定床反应器由多根反应管并联构成。

管内或管间置催化剂,载热体流经管间或管内进行加热或冷却,管径通常在25~50mm之间,管数可多达上万根。

列管式固定床反应器适用于反应热效应较大的反应。

此外,尚有由上述基本形式串联组合而成的反应器,称为多级固定床反应器。

例如:当反应热效应大或需分段控制温度时,可将多个绝热反应器串联成多级绝热式固定床反应器,反应器之间设换热器或补充物料以调节温度,以便在接近于最佳温度条件下操作。

性能特点:优点:1、返混小,流体同催化剂可进行有效接触,当反应伴有串联副反应时可得较高选择性。

2、催化剂机械损耗小。

3、结构简单。

缺点:1、传热差,反应放热量很大时,即使是列管式反应器也可能出现飞温(反应温度失去控制,急剧上升,超过允许范围)。

2、操作过程中催化剂不能更换,催化剂需要频繁再生的反应一般不宜使用,常代之以流化床反应器或移动床反应器。

固定床反应器中的催化剂不限于颗粒状,网状催化剂早已应用于工业上。

目前,蜂窝状、纤维状催化剂也已被广泛使用。

四、流化床反应器流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。

在用于气固系统时,又称沸腾床反应器。

流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克勒炉(见煤气化炉);但现代流化反应技术的开拓,是以40年代石油催化裂化为代表的。

目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。

性能特点:与固定床反应器相比,流化床反应器的优点是:1、可以实现固体物料的连续输入和输出;2、流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;3、便于进行催化剂的连续再生和循环操作,适于催化剂失活速率高的过程的进行,石油馏分催化流化床裂化的迅速发展就是这一方面的典型例子。

然而,由于流态化技术的固有特性以及流化过程影响因素的多样性,对于反应器来说,流化床又存在很明显的局限性:1、由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动,无论气相或固相都存在着相当广的停留时间分布,导致不适当的产品分布,降低了目的产物的收率;2、反应物以气泡形式通过床层,减少了气-固相之间的接触机会,降低了反应转化率;3、由于固体催化剂在流动过程中的剧烈撞击和摩擦,使催化剂加速粉化,加上床层顶部气泡的爆裂和高速运动、大量细粒催化剂的带出,造成明显的催化剂流失;4、床层内的复杂流体力学、传递现象,使过程处于非定常条件下,难以揭示其统一的规律,也难以脱离经验放大、经验操作。

五、移动床反应器一种用以实现气固相反应过程或液固相反应过程的反应器。

在反应器顶部连续加入颗粒状或块状固体反应物或催化剂,随着反应的进行,固体物料逐渐下移,最后自底部连续卸出。

流体则自下而上(或自上而下)通过固体床层,以进行反应。

由于固体颗粒之间基本上没有相对运动,但却有固体颗粒层的下移运动,因此,也可将其看成是一种移动的固定床反应器。

鲁奇炉钢铁工业和城市煤气工业发展之初,移动床反应器就曾被用于煤的气化。

1934年研制成功的移动床加压气化器(鲁奇炉),至今仍是规模最大的煤气化装置,其单台日生产能力已达到1Mm以上。

石油催化裂化发展初期,曾采用移动床反应器,但现已被流化床反应器和提升管反应器所取代。

目前,应用移动床反应器的重要化工生产过程有连续重整、二甲苯异构化等催化反应过程和连续法离子交换水处理过程。

三塔式移动床工艺流程图移动床反应工艺流程性能特点:与固定床反应器及流化床反应器相比,移动床反应器的主要优点是固体和流体的停留时间可以在较大范围内改变,返混较小(与固定床反应器相近),对固体物料性状以中等速度(以小时计)变化的反应过程也能适用。

与此相比,固定床反应器和流化床反应器分别仅适用于固体物料性状变化很慢(以月计)和很快(以分、秒计)的反应过程。

移动床反应器的缺点是控制固体颗粒的均匀下移比较困难。

工业生产中有时采用模拟移动床以避免上述缺点(见固定床传质设备)。

六、涓流床反应器又称滴流床反应器,是气体和液体并流通过颗粒状固体催化剂床层,以进行气液固相反应过程的一种反应器(见图)。

涓流床反应器中催化剂以固定床的形式存在,故这种反应器也可视为固定床反应器的一种。

为了有利于气体在液体中的溶解,涓流床反应器常在加压下操作。

石油炼制中的加氢裂化和加氢脱硫,是应用大型涓流床反应器的工业过程。

涓流床反应器在化工生产中也有应用,但规模较小,例如用于以三氧化钨为催化剂,由丙烯水合制取异丙醇等。

涓流床反应器内的流体流动状况,与填充塔略有不同,气液两相并流向下,不会发生液泛;催化剂微孔内贮存一定量近于静止的液体。

涓流床反应器通常采用多段绝热式,在段间换热或补充物料以调节温度;每段顶部设置分布器使液流均布,以保证催化剂颗粒的充分润湿。

性能特点:与气液固相反应过程常用的浆态反应器相比,涓流床反应器的主要优点是:1、返混小,便于达到较高的转化率;2、液固比低,液相副反应少;3、避免了催比剂细粉的回收问题。

缺点是:温度控制比较困难;催化剂颗粒内表面往往未能充分利用;反应过程中催化剂不能连续排出再生。

七、塔式反应器塔式反应器主要分为以下几种:1、鼓泡塔反应器鼓泡塔反应器广泛应用于液体相也参与反应的中速、慢速反应和放热量大的反应。

例如,各种有机化合物的氧化反应、各种石蜡和芳烃的氯化反应、各种生物化学反应、污水处理曝气氧化和氨水碳化生成固体碳酸氢铵等反应,都采用这种鼓泡塔反应器。

相关文档
最新文档