简述几种测井方法的原理和特点
测井技术基本原理及方法简介2

由六个臂组成,每臂 一个极板,共有6个极 板。每个极板上有25 个钮扣电极,共有150 个钮扣电极。每个电 极阵列包括上下两排 电极,上排12个,下 排13个。
井壁微电阻率图象地质特征提取和地质应用 (1)裂缝识别和评价; (2)进行高分辨率薄层评价; (3)地层沉积环境分析; (4)地层层内结构分析和地质构造解释; (5)帮助岩心定位和描述。 (6)储集层储集类型的分析 (7)地应力和井眼稳定性分析
计算岩石力学参数和岩石破裂压力梯度,为钻井和压 裂酸化提供依据;斯通利波渗透率分析;确定地层的 各向异性;裂缝评价与烃类检测;岩性和岩石特征。
14
3、声测井原理及方法
井周声波扫描成像仪USI(斯伦贝谢)、CAST-V(哈里伯顿) 和CBIL(贝克-阿特拉斯)采用旋转式声波换能器对井周进 行扫描,发射出的声波被井壁反射而返回,通过接受超 声脉冲回波与数字成像。对采集接收波的能量和时间等 信息进行处理分析,把结果按井周360°显示,提供全井 眼成像剖面,为地层特性评价和套管井工程评价提供信 息。
井壁声成像测井(USI) (CBIL)、(CAST-V)
井周构造和沉积层序分析;灰岩裂缝与储集类型 分析;地应力和井眼整体性分析;套管内壁的腐 蚀及机械磨损程度分析,还可以检查射孔孔眼。
15
3、声测井原理及方法
固井质量评价测井
声幅测井方式,通过记录声波在传播过程中各部分的能量衰减来 判断套管与地层间的水泥交结情况,又称水泥交结测井。套管与 水泥之间的界面称为第一交结面,水泥与地层之间的界面称为第 二交结面,固井质量好的井段两个面的交结均要良好。
8
2、电测井原理及方法
断层
溶洞
裂缝
井壁坍塌
3、声测井原理及方法
测井方法原理

测井方法原理测井方法原理一名词解释地层因素:F=孔隙中100%含水时的地层电阻率;地层水电阻率视电阻率:电阻率值既不可能等于某一岩层的真电阻率,,也不是电极周围各部分介质电阻率的平均值,而是在离电极装置一定距离范围内各介质电阻率综合影响的结果。
岩石体积物理模型:根据测井方法的探测特性和储集层的组成,按其物理性质的差异,把实际岩石简化为对应的性质均匀的几个部分,研究每一部分对测量结果的贡献,并把测量结果看成是各部分贡献的总和。
绝对渗透率:岩石孔隙中只有一种流体时测量的渗透率。
有效渗透率:当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率。
相对渗透率:岩石的有效渗透率与绝对渗透率之比值称为相对渗透率。
周波跳跃:在正常情况下,第一接收器R1和第二接收器R2应该被弹性振动的同一个波峰的前沿所触发。
由于某种原因,造成声波的能量发生严重衰减。
当首波衰减到只能触发接收器R1而不能触发接收器R2时,接收器R2便可能被第二个或者后续波峰所触发,于是造成时波差值显著增大。
由于每跳越一个波峰,在时间上造成的误差正好是一个周期。
故称之为周波跳跃。
标准测井:在一个油田或一个区域内,为了研究岩性变化、构造形态和大段油层组的划分等工作,常使用几种测井方法在全地区的各口井中,用相同的深度比例(1:500)及相同的横向比例,对全井段进行测井,这种组合测井叫标准测井。
减速长度:由快中子减速成热中子所经过的直线距离的平均值。
扩散长度:从产生热中子起到其被俘获吸收为止,热中子移动的距离。
热中子寿命:从热中子生成开始到它被俘获吸收为止所经过的平均时间叫热中子寿命。
含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值。
统计起伏(放射性涨落):由于地层中放射性元素的衰变是随机的,因此,在一定时间间隔内衰变的原子核数,即放射出的伽马射线数,不可能完全相同。
但从统计的角度来看,它基本上围绕着一个平均值在一定的范围内波动。
测井知识点答案

测井知识点答案测井是石油勘探与开发中不可或缺的一项技术,它通过测量地下储层的一系列物理和化学性质来评估油气资源的含量、分布和可开发性。
本文将从测井的基本原理、常见测井方法和数据解释中的一些关键知识点入手,逐步介绍测井的基本概念和操作。
1.测井的基本原理测井的基本原理是通过向井下发送电磁波、声波或电流,然后测量它们在地层中传播的速度、强度或反射情况,从而推断地层的性质。
常见的测井工具包括自然伽玛探测仪、电阻率测井仪、声波测井仪等。
2.常见的测井方法 2.1 自然伽玛测井自然伽玛测井是通过测量地层中放射性元素的放射性衰减来判断地层的性质。
放射性元素的含量与地层类型和成因有关,通过测量地层中放射性元素的能量分布,可以判断地层的岩性、含油气性和含水性等。
2.2 电阻率测井电阻率测井是通过测量地层的电阻率来判断地层的性质。
地层的电阻率与地层的含水性、孔隙度、盐度等密切相关。
通过测井仪测量地层的电阻率,可以判断地层中的含水层、含油气层和岩性变化。
2.3 声波测井声波测井是通过测量地层中声波的传播速度和衰减情况来判断地层的性质。
地层的声波速度与地层的岩性、孔隙度、含水性等有关。
通过测井仪测量地层中声波的传播速度和衰减情况,可以确定地层中的含水层、含油气层和岩性变化。
3.数据解释中的关键知识点 3.1 测井曲线测井曲线是测井仪器记录的地层物性参数与井深之间的关系曲线。
常见的测井曲线包括自然伽玛曲线、电阻率曲线、声波曲线等。
根据测井曲线的形态和特征,可以判断地层的岩性、含水性和含油气性等。
3.2 测井解释测井解释是根据测井数据以及地质、地球物理等其他资料对测井曲线进行分析和解释。
通过测井解释,可以判断地层的含水层、含油气层的位置、厚度和性质等。
3.3 测井评价测井评价是根据测井解释的结果,评估地层的含油气性和可开发性。
通过测井评价,确定油气井的开发方案,指导油气勘探与开发工作。
综上所述,测井是一项重要的地球物理勘探技术,通过测量地层的物理和化学性质,可以评估油气资源的含量、分布和可开发性。
测井原理与综合解释

测井原理与综合解释测井是指通过在井中进行各种物理和化学测量,获取岩石与地层流体的相关参数,以进一步研究地层性质、划分地层并评价储层的一种技术。
测井数据是石油勘探和开发中不可或缺的一项工作,它能提供地层、岩性、含矿性、砂体的性质、产层流体情况和含油、含水饱和度等信息。
本文将介绍一些测井的基本原理和综合解释方法。
测井的基本原理可以分为两大类:电测井和常规测井。
电测井是指利用地层的电性差异进行测量,主要应用在地层的电性性质识别和解释上。
常规测井则是通过测量地层的物理性质来分析地层的结构和岩石组成。
电测井主要包括自然电位测井、直流电阻率测井和感应测井。
自然电位测井是指测量地层电位的变化,通过解释地层界面的电位变化来分析地层结构;直流电阻率测井是指测量地层电阻率的大小,通过分析电阻率的变化来判断地层的岩性以及含水饱和度;感应测井是指利用感应原理,测量地层的电导率,通过电导率的变化来判断地层的饱和度。
常规测井主要包括伽马测井和声波测井。
伽马测井是通过测量地层伽马射线的能量,来识别地层的岩性和含油饱和度;声波测井是通过测量地层声波的传播速度和衰减情况,来评价地层的孔隙度、饱和度和岩石组分。
综合解释是指通过将多种测井曲线进行综合分析和解释,获得更全面的地层信息。
常用的综合解释方法包括轻质矿物解释、井壁构造解释、沉积相解释和储集层评价。
轻质矿物解释是通过测井曲线的测量值和标定数据,计算得出地层轻质矿物(如长石、云母等)的含量,进而判断地层的成因和古环境。
井壁构造解释是通过分析测井曲线上的微小变化和异常,来识别地层中的构造特征和异常体,并揭示地层的构造状态和构造演化过程。
沉积相解释是通过分析测井曲线的特征和变化规律,在井下评价地层的沉积环境、沉积相和相界面等,为油气勘探提供依据。
储集层评价是指通过综合分析测井曲线的多种参数,如孔隙度、饱和度、渗透率等,来评价储层的质量和可储性。
总之,测井原理和综合解释是石油勘探和开发中不可或缺的一环。
测井原理及应用

3 补偿中子 4 补偿密度 5 自然伽马 6 自然电位 7 微电极 8 4米 9 井径
选测项目
地层倾角 自然伽马能 谱
气开井测井系列
1:500测井项 目(全井 )
1:200测井项目 (目的层段)
选测项目
1 双侧向
1 双侧向—微球形聚焦 地层倾角
2 声波时差 3 自然电位 4 自然伽马 5 井径 6 井斜
4、密度测井和岩性—密度测 井
岩石体积密度是单位体积岩石的 质量,单位是g/cm3。岩石体积 密度是表征岩石性质的一个重要 参数,它不但与岩石矿物成分及 其含量有关,还与岩石孔隙和孔 隙中流体类别、性质及含量有关。
密度、岩性密度测井的应用
确定岩性和孔隙度
根据Pe和ρb交会快速解释岩性,一 般Pe <2,为砂岩;P e =3左右, 为白云岩; Pe=5左右,为石灰岩 等。硬石膏ρb=2.98g/cm3,岩盐 ρb=2.02g/cm3。
3 自然电位
3 补偿中子
核磁共振
4 自然伽马
4 声波时差
5 井径 6 井斜
5 自然电位 6 自然伽马能谱
7 井径
8 地层倾角
9 双感应—八侧向
油探井测井系列
1:500测井项目
1:200测井项目
(全井 )
(目的层段)
1 双感应
1 双感应—八侧向
2 声波时差
2 声波时差
3 自然电位 4 自然伽马 5 井径 6 井斜
5、补偿中子测井
通过探测地层的含氢量来求地层孔隙度的。
补偿中子测井的主要用途有: 1.计算储层孔隙度; 2.与密度、声波时差等曲线组合判识储层
曲线应用
3.声波时差测井
原理:不同的地层中,声波的传播速度是不 同的。声波速度测井仪在井下通过探头发射 声波,声波由泥浆向地层传播,其记录的是 声波通过1米地层所需的时间△t(取决于岩 性和孔隙度)随深度变化的曲线。
测井方法

测井方法1.1 双侧向测井用于导电性泥浆(盐水基泥浆)的钻孔中确定地层电阻率。
这个测量系统由两个不同探测深度的侧向测井系统所组成,它向地层发出水平聚焦的电流。
测量时,两条曲线使用同一个电极系。
测量深侧向时使用较长的屏蔽电极,测量浅侧向时只使用深测向屏蔽电极的一部分作为屏蔽电极,而另一部分作为回路电极。
如果岩石的电阻率非常高(104-105Ω-m),则测量电流不能有效地聚焦,因此不能够确定岩石的真实电阻率。
在结晶岩地区,双侧向测井可用于划分钻孔周围的岩性、裂隙带和估计裂隙孔隙度。
1.2 视电阻率测井电阻率法测井通常测得的是视电阻率ρs,故过去常称它为视电阻率测井。
由于电阻率法测井的电极系种类越来越多,所以把使用普通电极系的电阻率测井专称为视电阻率测井。
工作时,电极系的A、B电极供电,M、N电极测量电位差,最后根据计算结果绘出与岩层电阻率有关的曲线ρs。
计算公式为ρs =K*ΔU MN/I。
式中K为电极系系数,由电极系排列方式和距离决定。
视电阻率测井主要用来划分钻孔的岩性剖面和进行剖面对比。
有时可用于探测井中金属落物的深度或摸“鱼顶”(探测落井钻具的顶部深度),指导钻具打捞。
1.3 微电阻率测井是电阻法测井的一种,它的特点是电极距只有几厘米。
它包括微电位电极系和微梯级电极系。
为避免钻井液影响,用弹簧片将镶在绝缘板上的电极紧贴井壁。
微梯度电极系比微电位电极系的探测深度小。
在渗透性地层上,微梯度电极系受泥饼的影响较大。
因泥饼的电阻率较低,测得的微电位曲线幅度高于微梯度曲线幅度,称为“正幅度差”。
在非渗透性地层上幅度差不明显。
根据微电阻率测井曲线的“正幅度差”,可以划分出渗透性岩层。
同时,微电阻率测井划分薄岩层的效果很好。
微球形聚焦测井是微电阻率测井的一种,它对贴井壁极板电极系统的特殊设计可获得特殊的电场,从而克服泥饼的影响,获得紧靠井壁的泥浆滤液冲洗带的电阻率。
通常与双侧向测井同时记录。
在石油测井中,渗透性地层被钻井液滤液饱和的井壁冲洗带的电阻率是计算可动油气的重要参数。
主要测井方法、技术指标及其作用

第二章主要测井方法、技术指标及其作用第一节常规测井方法一、电法测井1.自然电位测井自然电位测井是在裸眼井中测量井轴上自然产生的电位变化,以研究井剖面地层性质的一种测井方法。
它是世界上最早使用的测井方法之一,是一种简便而实用意义很大的测井方法,至今仍然是砂泥岩剖面必测的工程之一,是识别岩性、研究储层性质和其它地质应用中不可缺少的根本测井方法之一。
有时一些特殊岩性,如某些碳酸盐岩〔阳5井〕也有较强的储层划分能力。
其曲线的主要作用为:①划分储层;②判断岩性;③判断油气水层;④进行地层比照和沉积相研究;⑤估算泥质含量;⑥确定地层水电阻率〔矿化度〕;⑦判断水淹层。
在自然电位曲线采集过程中,主要受储层岩性、厚度、含油性和电阻率、侵入带直径、泥浆电阻率、井温、井眼扩径、岩性剖面缺少泥岩等影响,易产生多解性,在测井资料综合解释时应予以考虑。
2.普通电阻率测井普通电阻率测井是指各种尺寸的梯度电极系和电位电极系组成的测井方法,它采用不同的电极排列方式和不同的电极距,通过测量人工电场电位梯度或电位的变化来确定地层电阻率的变化。
利用具有不同径向探测深度的横向测井技术,可以识别岩性、划分储层、确定地层有效厚度、进行地层剖面比照、确定地层真电阻率及定性判断油气水层等。
目前还保存了2.5m、4m梯度视电阻率测井,0.5m、0.4m电位视电阻率测井以及微电极〔微电位和微梯度组合〕等普通电阻率测井方法。
〔1〕梯度视电阻率测井目前在用的有2.5m梯度视电阻率测井和4m梯度视电阻率测井。
其主要作用为:①地层比照和地质制图〔标准测井曲线之一〕;②粗略判断油气水层;特别是长电极〔如4m梯度〕,可较好地判识侵入较深地层的油气层;③划分岩性和确定地层界面;④近似估计地层电阻率。
进行该类资料分析时,应注意高电阻邻层屏蔽、电极距、围岩-层厚、井眼条件及地层或井眼倾斜的影响等。
〔2〕电位视电阻率测井目前在用的有0.5m、0.4m电位电极系。
该类测井电极距短,但有中等探测深度且不必考虑高阻邻层的屏蔽影响,因而是一种获取地层视电阻率的简单易行的方法。
测井

测井:测井,也叫地球物理测井或石油测井,简称测井,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性,测量地球物理参数的方法,属于应用地球物理方法(包括重、磁、电、震、测井)之一。
石油钻井时,在钻到设计井深深度后都必须进行测井,又称完井电测,以获得各种石油地质及工程技术资料,作为完井和开发油田的原始资料。
这种测井习惯上称为裸眼测井。
而在油井下完套管后所进行的二系列测井,习惯上称为生产测井或开发测井。
其发展大体经历了模拟测井、数字测井、数控测井、成像测井四个阶段。
测井方法众多。
电、声、放射性是三种基本方法。
特殊方法(如电缆地层测试、地层倾角测井、成像测井、核磁共振测井),其他形式如随钻测井。
各种测井方法基本上是间接地、有条件地反映岩层地质特性的某一侧面。
要全面认识地下地质面貌,发现和评价油气层,需要综合使用多种测井方法,并重视钻井、录井第一性资料。
通常指地球物理测井。
把利用电、磁、声、热、核等物理原理制造的各种测井仪器,由测井电缆下入井内,使地面电测仪可沿着井筒连续记录随深度变化的各种参数。
通过表示这类参数的曲线,来识别地下的岩层,如油、气、水层、煤层、金属矿床等。
对石油工业来说,在勘探期间寻找新油田的测井称勘探测井,内容有:①地层倾角测井(了解地下构造及沉积构造);②饱和度测井(识别岩性、油、气、水储集层);③电缆式地层测试(对油、气、水储集层进行测试)。
在开采过程中的测井称开发测井。
主要测定井下油、气、水层的岩石物理性质,监测各油层的工作情况,检查开发井的技术状况等,是开发井采取作业措施和进行油田开发调整的重要依据。
内容有饱和度测井、生产测与自然伽马测井。
中子测井是用中子源向地层中发射连续的快中子流,这些中子与地层中的原子核碰撞而损失一部分能量,用深测器(计数器)测定这些能量用以计算地层的孔隙度并辨别其中流体性质。
自然伽马测井是测量地层和流体中不稳定元素的自然放射性发出的伽马射线,用以判断岩石性质,特别是泥质和粘土岩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述几种测井方法的原理和特点
摘要:测井技术现已被广泛应用于油田、煤田等地质勘探、深海钻探、大洋钻探、国际大陆科学钻探计划、德国的大陆科学钻探计划等项目。
采用测井曲线研究古环境、古气候,确定地层性质等方面取得了进展,使测井技术由油气、煤炭测井的地层分析上升到测井地质的成因研究,也渗透到提取古气候信息的领域上。
关键字:测井;电阻率测井;电化学测井;声测井
1概述
测井方法是许多应用地球物理方法(包括重、磁、电、震、测井)中的一种,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性测量地球物理参数的方法。
可以简单的认为是把地面上的勘探方法移动到了井内,这主要是由于单纯的在地面做勘探具有它的局限性,比如地面电法勘探中,虽然能得到电阻率曲线然后综合分析,但是却是地下勘探体积内的电阻率的综合反映,并不能得到地层的真电阻率,而测井技术中的电阻率却可以反映真电阻率。
而且很多其他地球物理方法勘探完之后都会合理的布置井眼用以验证所测资料的准确性。
目前测井技术主要应用于石油的勘探与开发,煤田的勘探等,随着科技的发展和地质勘探的要求,测井的方法也在不断创新,有电阻率测井、电化学活动性测井、低频电磁法测井、声测井、放射性测井(密度测井、自然伽玛测井、伽玛-伽玛测井、X射线荧光测井、中子测井)等,最近发展起来的测井方法有核磁共振测井、声波成像测井、井间电磁成像测井、电阻率成像测井、多极子声波测井、高分辨率感应测井等。
2测井方法原理
2.1自然伽马测井
自然伽马测井(GammaRayLog)(GR)是以记录钻孔剖面上自然伽马射线强度或能量为基础的核测井方法。
测井岩层中放射性元素(主要为K、Th、U)通过原子衰变放射出来的伽马射线的强度,不同的岩性中放射性元素的含量不同,种类
也有所差异。
根据各种岩性具有不同的伽马射线强度,测井过程便可以得到相关的伽马强度值,间接分析地下岩层的性质。
各地层的天然伽马值随岩石泥质含量、有机质含量的增多而增大,随岩石粒度的增大而减小(含矿层除外),自然伽马曲线可以反映沉积地层的变化情况,从而反映沉积环境的情况。
由于值与岩石成份有关,因此自然伽马曲线可以反映沉积地层的变化情况,从而反映沉积环境的情况。
2.2电阻率测井
电阻率测井是根据自然界中各种不同岩石和矿物的导电能力不同的特点,区别钻井剖面上的岩石性质的一种方法。
它是基于在井中测量被钻孔穿过的矿、岩石的电阻率,并根据电阻率的差异,来划分钻孔地质剖面,研究和解决井下的一些地质问题。
影响岩石电阻率的因素有很多,(1)岩石矿物成分的影响:岩石电阻率与岩石中矿物的成分、含量及其分布特征有关。
(2)岩石含水性的影响:岩石中含水量的多少,地层电阻率与含有饱和水的地层相比,所测得的电阻率值要比含水的值大,天然气水合物层位在电阻率测井曲线上具有相对高的电阻率偏移。
(3)沉积构造的影响:岩石的电阻率具有明显的方向性,即沿层理和垂直层理的导电性不同。
还有岩石电阻率随粒度的增大而增加,随泥质含量的增加而减小等。
利用这些就可以分析得出地下岩性的分布情况,达到勘探的目的。
2.3声波时差测井
声波时差测井是根据不同波阻抗的物质、表面的粗糙程度不同,对声波的反射能力不同,通过测量岩石对声波的反射情况(回波的幅度和传播时间)的一种测井方法。
声波也可以被当做一种弹性波,在地下传播时对不同的岩石,所反映的声波时差曲线不同,主要是因为弹性模量不同造成波的传播不同,得到的曲线也不同。
所以影响声波时差测井的因素可以从波的传播和岩石性质来综合考虑。
比如与饱和水或游离气的层位相比,含天然气水合物层位声波时差就要低一些。
2.4自然电位测井
自然电位形成原因较为复杂,按电化学作用种类的区分主要有扩散与扩散吸附作用、氧化还原作用以及电极极化作用等。
自然电位测井是测量钻井的井中电极与地面电极之间的电位差。
钻探引起的水合物分解除了造成水合物分布层段井径的扩大外,还使得该井段泥浆离子浓度降低,从而导致泥浆活度降低,水合物上下岩层的高活度地层水向该井段扩散(氯离子扩散速度比钠离子大),最终使水合物赋存井段泥浆中负电荷数增多而呈现负的电位异常。
2.5中子孔隙度测井
中子测井是一类利用中子与岩石相互作用的各种效应,来研究钻井剖面岩层性质的测井方法。
中子测井反映的是岩层中的氢含量,是石油和煤田测井中常用的方法。
对于砂质沉积物而言,大体反映了为流体充满的孔隙度,中子孔隙度测井:含天然气水合物层位中子孔隙度略微增加,这与含游离气层位中子孔隙度
明显降低恰好相反。
2.6密度测井
密度测井是以康普顿效应为理论依据,研究地层对伽马射线的散射和吸收特性,通过在钻孔中测定地层的散射伽马射线强度解决地质问题的一种人工伽马测井方法。
由于煤系地层中煤层与岩层有明显的密度差异,因而密度测井是判别煤层的最有效方法。
密度测井经常被用在解释煤层、区分岩性及划分钻孔地质剖面、确定岩层的孔隙度、划分岩溶、裂隙发育带和破碎带等。
2.7成像测井技术
成像测井技术是美国率先推出的具有三维特征的测井技术,是当今世界最新的测井技术。
传统的测井只能获取井下地层井眼周向和径向上单一的信息,它适用于简单的均质地层。
而实际上地层是非均质的,尤其是裂缝性油气层的非均质性最为明显,在地层的周向和径向上的非均质性也非常突出。
地层微电阻率扫描成像测井仪,是在多个极板上分别安装若干个间距很小的钮扣状的小电极,当电极扣向井壁地层发射电流的时候,电极接触的岩石成分、结构及所含的流体的电阻率差异会引起电流的变化,据此生成电阻率的井壁成像。
高分辨率电阻率成像测井是根据岩层中岩石、流体电阻率的不同,通过测量井壁各点的电阻率值,然后把电阻率值的相对高低用灰度(黑白图)或色度(彩色图)来表示的测井方法,可以进行详细的沉积和构造解释。
3结束语
地球物理测井是应用地球物理方法划分钻孔剖面、评价地层,进而解决某些地质问题的一门技术科学,是地质勘探和工程勘探的重要手段。
在具体施工的过程中,我们要根据不同的地区的特性,利用多种测井方法的原理和特点,配合有效的测井方法来达到勘探的目的。
参考文献:
[1]李斌凯,马海州,谭红兵.测井技术的应用及其在科学钻探研究中的意义[J].地球物理学进展,2007,10(22).
[2]吴鹏程,陈一健,杨琳等.成像测井技术研究现状及应用[J].天然气勘探与开发,2007,6(30).
[3]高兴军,于兴河,李胜利等.地球物理测井在天然气水合物勘探中的应用[J].地球科学进展,2003,4(18).
[4]地球物理测井.中国矿业大学资源科学学院,2008.。