高分辨率阵列感应测井的原理及应用
阵列感应测井仪讲义

1.前 言 2. 理论基础、测量原理 3. 仪器性能 4. 仪器刻度 5.测 井 6. 仪器电路描述 7. 仪器常规检查 8. 信号处理 9. 地质应用简介
前言
传统聚焦型感应测井仪存在如下问题:
•电阻率测量范围小,测量精度低。 •聚焦线圈系的探测深度与垂直分辨率难以调和, 只能折中兼顾,造成仪器的两个主要技术指标不 能满足生产需要。 •常规聚焦型感应仪器只提供深、中、浅三条电阻 率曲线,测量信息不够丰富,不能确定侵入深度, 更不能对复杂侵入剖面做出正确解释。 •浅电阻率测量仪器(八侧向或球形聚焦测井仪) 不能用于油基泥浆测井。
理论基础、测量原理
电磁感应原理为理论基础
线圈系结构
6
•三线位于
4
它们之间的补偿线圈;接收线圈和相应的补偿
线圈构成一个接收阵列
3
•多阵列
7个接收阵列(源距为6~94英寸)
2
•多频率
1
8种频率(10、30、50、70、90、
110、130、150KHz)
0
地面信号处理流程
进行傅立叶变 上传8道时间域 换,在频域中 采样,每道信号 得到8个频率
96个采样点 的实部与虚部 分量,共
7*8*2+1*8*2 =128个分量
计算视电 导率,得
到 7*8*2=11
2个视电导 率值
进行趋 肤效应 校正, 得到7条
视电导 率曲线
进行井 眼校 正,得 到7条视
电导率 曲线
T
仪器的总体结构、测量原理
指数 令据
编码译码 电路
控制测量 电路
前置放大 电路
控制信号
参考信号
接收线圈阵列ROR7
高分辨率阵列感应测井仪及其应用

不过 X信号对地层 的磁性质较敏感 , 一般在 高电阻率地
层环境中 , X信号噪声大 , 采用较低 的 8 H 频率减少在 kz
可 以测量井眼内泥浆电阻率和 自然 电位 。仪器内部设置 有一个温度传感器 , 用来测量线 圈系的温度 , 进行仪器温
阻率测井曲线读值 , 其垂直分辨 率很高 , 一致性好 ; 种处理的 结果是在做径 向信 号处理之 前 可以对每 个发射 一接收 线 圈测量结果进行滤波 , 而且具有 常规垂直分辨率 。通
常在井眼附近的影响是局部性 的 , 且仅仅 是浅探测测井 曲线受影响 ; 深探测测井 曲线所受影 响明显减弱 。
房延 亮, 马继文 , 吴学刚
(- q 国石化 集 团江汉石 油管理局 测录 井工程公 司, 北 潜江 4 32 ) 湖 3 1 3 [ 摘 要] 高分辨率阵列感应具有深、 浅电阻率测量能力 , 专门设计的线圈组合 , 实现深 、 通过 可以 浅电阻率相 同质量 的垂直分辨率 , 并且可以做到将垂直信 号与水平信号分开处理 。本 文阐述 了这种新型 高分辨 率阵列感应 测井仪 器的
流。测量两个工作频率下每道的同相信号 ( 和异相信 R)
号() x 。但是 目前处理算法仅 用相同的信号分量 。为了 进行趋附效应校正 , 一般 感应 仪器 一直是 使用 X信号。
圈1 一线圈 4 位于发射线 圈两边 , ) 相对于发射线 圈呈 对 称排列 。两个探测深度较 浅的测量线 圈阵列 ( 圈 5和 线
设 计 原 理 以及应 用 范 围和 这种 仪 器的优 点 。
[ 关键词] 阵列感应 ; 高分辨 率; 测井仪 器 [ 中图分类号] P 3 .3 [ 6 18 文献标识码] B [ 文章编号] 1o —3 1 (0 00一 o5—0 o 9 0X 21 )4 0 1 3
阵列感应测井原理及应用

阵列感应测井原理及应用摘要:本文探讨了阵列感应测井原理,论述了在判断地层水矿化度方面的应用效果,阵列感应在使用中也存在一些缺陷,阵列感应在处理中,人为因素较大,不同的参数处理结果差异较大,这就造成了阵列感应在使用过程中对解释有一定的误导,引起对阵列感应可靠性的怀疑,这在以后的处理方法中有待改进。
关键词:阵列感应测井矿化度应用效果一、阵列感应测井原理简介阵列感应测井的最基本原理与普通感应测井原理类似,但它在硬件上采用简单的三线圈系结构,这种线圈系没有硬件聚焦功能,它采用数学方法对呈不对称形状的纵向响应曲线进行软件聚焦处理。
它由7组接收线圈对和1个共用的发射线圈组成,实际上相当于具有7种线圈距的三线圈系。
在接收线圈系的设计上充分考虑了以下几个问题:(1)、消除直藕信号;(2)、三线圈子阵列纵向特性的频率响应没有盲频;(3)、要有若干子阵列分别反映浅部和深部地层信息;(4)、各接收子阵列之间的间距应按一定规律变化和分布;(5)、离发射线圈较远的接收子阵列应考虑发射功率和接收信号的强度。
高分辨率阵列感应测井仪在硬件设计时充分考虑了上述因素,它的每个接收线圈系都由两个相互对称的线圈组成,即一个主接收线圈和一个辅助接收线圈,它利用了两个线圈电磁场叠加原理,来实现消除直藕信号影响的目的。
在线圈系的排列上设计了最小线圈距为6in,最大线圈距为94in,在这两个线圈距之间采用了近似于指数形式的线圈系分布,即全部子阵列间距为6in、10in、15.7in、24.5in、38.5in、60in、94in。
这种排列方式不仅有利于采集浅部地层和深部地层信号,而且有利于径向有效信息的均匀采样。
发射信号是加到一个单独的发射线圈上的,这种方法能使发射器的有效功率变为最大,由发射线圈发射出的是一个形状为方形的电压波形(即方波),发射波采用方波是由于其具有较高的发射频率,对于给定的电压能使发射线圈的功率变为最大。
而且它具有宽的频谱,它包括了方波频率(约等于10KHZ)及所有的奇次谐波的能量,因此每个线圈可以在10、30、50、70、90、110、130、150KHZ共8个频率下同时进行工作。
高分辨率阵列感应测井评价技术多媒体2002

测量信息进行井眼环境影响
校正,然后进行优化合成, 可以形成多种纵向分辨率电 阻率曲线曲线。
多种径向探测深度
常规感应采用硬件聚焦, 其探测深度随地层的电导率 的变化而变化,在高电导率 地层,探测深度降低。而
HDIL采用先进的数字处理
技术,可以同时获得六种不
同径向探测深度的电阻率曲
zh4x2hdil_subarray4_1400_wrong
zh4x2hdil_curve_1400_wrong
zh105x1hdil_subarray0_2920_ok
zh105x1hdil_subarray3_2920_ok
zh105X1Hdil_curve_2920_OK
HDIL测井资料的应用
六种探测深度、 四组纵向 深、中两种探测深度曲 分辨率曲线 线 10in、 20in、 30in、 60in、 90in、120in 中感应:0.81 米 深感应:1.63 米 中感应:0.81 米 深感应:1.63 米 0.2-200Ω ·m
1ft、2ft、4ft 和实际分 纵向分辨率 辨率 测量范围 0.2-2000Ω ·m
原状地层电阻率
率。常规感应是在代表特定模拟
条件的点之间进行插值,其模拟 采用“台阶剖面”三参数(Rxo、
侵入半径
侵入带地层电阻率
di、Rt)模型。HDIL1、r2、Rt)模型
侵入剖面
计算Rxo、Rt、侵入半径。
多种纵向分辨率
常规感应测井响应是径 向聚焦和纵向聚焦的一种折 中结果,提高纵向分辨率就 增大了对井眼附近地层的影 响,即扩大了井眼影响。而 HDIL测井曲线是通过对阵列
高分辨率阵列感应几何因子示意图 HDIL采用的新的趋肤影响校正 方法是建立在操作频率上的一个函 数,其信号变化的比例随频率而变 化。新的趋肤影响校正降低了噪音 的影响,平滑了不同阵列、不同频 率之间的影响。
高分辨率阵列感应测井仪及其应用探讨

高分辨率阵列感应测井仪及其应用探讨【摘要】高分辨率阵列感应测井仪具有一些很优越的特性,比如它不仅可以测量高的电阻率,也可以测量浅的电阻率,它主要是通过一些特殊的线圈组合在一起,然后来对不行类型的电阻率在同等质量的情况之下发现他们的垂直方向上的分辨率,并进行相关的信号处理。
而本片文章就主要围绕高分辨率阵列测井仪的特点,原理以及它的一些应用来阐述一些观点。
【关键词】分辨率阵列感应测井仪应用探讨当原始的测井技术不能满足目前油气开采程度加深的现状之后,高分辨率阵列测井仪很好地解决了这一矛盾,它同常规的测井仪相比优势就在于,它的垂直分辨率与他的深度是成正比的,随着深度的加深,在垂直方向上的分辨率就变高,由于它可以提供从深到浅的一系列的电阻率的数值,这就便于信号的处理和数值的分析。
根据研究发现,随着深度的加深,它收到的井口的干扰反而变小,这就使得高分辨率阵列测井仪迅速普及并得到很好地应用。
1 高分辨率阵列测井仪的特点测井技术是一门综合性学科,它主要是对地球的一些物理反应比如光的传播和重力感应来对得到的数据加以综合分析,从而知道地下组织的一些特点,高分辨率阵列感性测井仪具有对信息的处理力强大、测量深度深,测量数据精准等特点。
它的主要工作原理是利用电磁感应来探测电阻率这样一种方法。
在测井仪的中间有涡流,接受线圈和发射线圈分别位于涡流的两端,发射线圈的内部分布有发射器振荡器,它的基本子阵列为一个发射2接受3线圈子阵列,发射线圈和接收线圈都是对称排列的,主发射和主接受之间的距离为6in.,9in.,12in.,15in.,21in.,27in.,39in.,72in.,各个不同的线圈的分布都使得它们具有不同的测量方式和标准,这样在探测深浅不固定的井口时,它就可以作出不同的数据分析,各个线圈的分布都是按照一定的规律进行有序的排列的,而不是随意的排列,线圈之间间隔距离的不准确也会导致最终数据的不准确,从而引起一系列不良的后果。
高分辨率阵列感应测井资料应用研究

第1章高分辨率阵列感应测量原理1.1 感应测井的回顾感应测井是利用电磁感应原理测量地层电导率,基本测量单元是双线圈系,一个发射线圈和一个接收线圈。
常规感应测井采用复合线圈系结构,根据电磁场的叠加原理,采用多个基本测量单元进行组合,即多个发射线圈和多个接收线圈进行串联,产生具有直藕信号近似为零的多个测量信号矢量叠加,实现硬件聚焦的效果,从而测量具有一种或两种探测深度的地层电导率。
感应测井主要存在以下几方面的问题。
a. 感应测井不能用来划分薄层b. 对高电率地层求得的地层真电阻率误差较大c. 对减阻侵入较深的油层不能如实反映地层电阻率1.2 高分辨率阵列感应测量原理高分辨率阵列感应测井仪仍以电磁感应原理为理论基础,其线圈系采用三线圈系结构(一个发射,两个接收基本单元)。
它运用了两个双线圈系电磁场叠加原理,实现消除直藕信号影响的目的,线圈系由七组基本接收单元(其源距为6-94英寸)组成,共用一个发射线圈,使用八种频率(10KHz、30KHz、50KHz、70KHz、90KHz、110KHz、130KHz、150KHz)同时工作(其测量电路图示意如图1-1),共测量112个原始实分量和虚分量信号。
采用软件进行数字聚焦和环境校正,可获得三种纵向分辨率、六种探测深度的测井曲线。
第2章高分辨率阵列感应测井的数字处理高分辨率阵列感应测井在采用多种频率阵列测量的同时,应用软件数字聚焦、环境校正、和反演技术。
通过对资料的数字处理可以大大提高其测量效果。
2.1新的趋肤影响校正感应仪器是假设在均质环境中测量,其校正方法只适应于同步信号的计算,在高电导率地层该方法存在一定问题。
在双相量感应(DPIL)、阵列感应(AIT)仪器中是使用积分曲线进行趋肤影响校正,该方法克服了高电导率的影响,但在低电导率时积分信号变得不可靠。
高分辨率阵列感应数字处理采用一种新的趋肤影响校正方式,即是建立在操作频率上的一个函数,其信号变化的比例随频率而变化,该方法类似于积分法但克服了低电导率的影响。
1515高分辨率阵列感应测井仪

维普资讯
闰 外 测 井 技 术
2 0 住 07
的距 离 。至 于 D I PL的中感 应 为 4 英 寸 , 深 感 应 8 而 为5 6英 寸。 注意这 个 深感 应 的 V F有个 长 的尾迹 G
离 。正 如 大 家所 见 , 系统 对 环 绕仪 器 的 一个 较 宽 此 的范 围反 应灵 敏 , 是 最大 的灵敏 性 是 在接 收线 圈 但
应 电动势 , 个 电压 与发 射 电流 相位 滞 后 9 这 0度 , 而 此 电压 产 生 的涡 流 按 一 定 比例 流 进 了在 地 层 环 的 地 层 电导 率 等值 回路 中 , 个 电流 在 接 收 线 圈 中产 这
和一 之 间。同 时也要 注意 在靠 近接 收和 发射线 圈
时灵 敏性 相 当强 。
1 有用 信 号和 正交 抑制 信号 . 2
不 同而不 同,与线圈的结构和位置不同也不同 , 这
个 比率 常数 就是 几何 因子 。
对 于一 个给 定 的线 圈 , 几何 因子 是地 层 环 的半
从上述模型中 , 可以推断出接收信号针对发射
还 有一个 与 发射 电流成 9 0度异 相 的信号 , 是 它
受地层电导率 的影响 。 我们把此信号称为 “ 正交信
号 ”。
分 ,就可以得出在其半径内的地层圆柱面的系统的 灵 敏 度 , 为积 分半 径 几何 因子 (R F) 如 图 5的 称 IG ,
DI PL的深 、 中感 应 阵列 所 示 。把半 径 几何 因子 的中
生 一个 感 应 电压 , 这是 可 以测 到 的 。这 个 电压 与在
5700测井技术介绍―阵列感应测井原理及应用.

5700测井技术介绍—阵列感应测井原理及地质应用目录一、前言 (1二、阵列感应测井原理及应用 (11.阵列感应测井原理简介 (12阵列感应资料处理 (23.阵列感应测井的地质应用 (10三、阵列感应测井实例分析 (141、低矿化度泥浆侵入含高矿化度地层水的储层 (142、高矿化度泥浆侵入含低矿化度地层水的储层 (173、在稠油井中的应用效果 (204、水淹层解释应用效果 (215、在判断地层水矿化度方面的应用效果 (23四、总结和建议 (24一、前言阵列感应测井是测井发展史上的一个飞跃,自从测井公司引进了阿特拉斯的阵列感应测井仪HDIL后,经过多年的使用,已经成为测井中一项不可缺少的项目,特别是在沙泥岩地层和低电阻率地层中,发挥了其它测井项目不可替代的作用。
二、阵列感应测井原理及应用1.阵列感应测井原理简介阵列感应测井的最基本原理与普通感应测井原理类似,但它在硬件上采用简单的三线圈系结构,这种线圈系没有硬件聚焦功能,它采用数学方法对呈不对称形状的纵向响应曲线进行软件聚焦处理。
它由7组接收线圈对和1个共用的发射线圈组成,实际上相当于具有7种线圈距的三线圈系。
在接收线圈系的设计上充分考虑了以下几个问题:(1、消除直藕信号;(2、三线圈子阵列纵向特性的频率响应没有盲频;(3、要有若干子阵列分别反映浅部和深部地层信息;(4、各接收子阵列之间的间距应按一定规律变化和分布;(5、离发射线圈较远的接收子阵列应考虑发射功率和接收信号的强度。
高分辨率阵列感应测井仪在硬件设计时充分考虑了上述因素,它的每个接收线圈系都由两个相互对称的线圈组成,即一个主接收线圈和一个辅助接收线圈,它利用了两个线圈电磁场叠加原理,来实现消除直藕信号影响的目的。
在线圈系的排列上设计了最小线圈距为6in,最大线圈距为94in,在这两个线圈距之间采用了近似于指数形式的线圈系分布,即全部子阵列间距为6in、10in、15.7in、24.5in、38.5in、60in、94in。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
密度没 Ω•m
有明显 变化
阵列感应120in 电阻率为
13Ω •m
二、在咸水泥浆中应用
解释失误原因: 1.侧向电阻率上
下没有差别
2.三孔隙度没有 明显含气指示 3.阵列感应120in 21462148m试油, 日产气 108143方
曲线有异常假像
二、在咸水泥浆中应用
海水泥浆(矿化
度30000ppm)
无侵入
3000ppm
二、在咸水泥浆中应用
1.海上储层物性较好 2.海上地层水矿化度较高,造成储层电
阻率相对较低
3.海上一般使用咸水泥浆,泥浆侵入较
深,常规电阻率测井很难测到地层真电
阻率
二、在咸水泥浆中应用
三孔隙 阵列感应120in 电阻率为 40Ω •m 侧向电 侧向电 阻率约 阻率约 为5-6 为5-6 Ω•m Ω•m 度时差 侧向电 有差别, 阻率约 中子、 为5-6
HDIL 1个发射2接收3线 圈子阵列。
HRAI 子阵列2至6是1个发射3接 收4线圈子阵列;子阵列1 是1个发射2接收3线圈子 阵列。 1至4长子阵列上下对称布 置,5和6短子阵列非对称 布置。 共10个子阵列 18in.,30in.,42in., 54in.,69in.,78in.。
阵列感应仪器介绍
泥浆滤 液电阻 率0.93
阵列感应 不同探测 深度曲线 差异明显
三、在稠油井中的应用
泥浆滤 液电阻 率0.93
日产油14
吨,累产 油172吨
四、在水淹层中的应用
文检3井是中原 油田位于文中油 田文25东断块区 中部的一口开发 井。在该井中进
行了核磁共振测
井和阵列感应测 井,其测井主要 目的是为了搞清 剩余油的分布, 3级 水淹
5 6
使用信号 线圈系长 度
(1)实部信号14或8条信号;(2) 实部56条信号。 实部信号+有条件的虚部信号。 AIT-B:8.25英尺。 AIT-H:6英尺。 7.83英尺。
阵列感应处理流程
预处理 趋肤效应校正 井眼影响校正 真分辨率聚焦曲线 垂直分辨率匹配曲线 侵入剖面的计算及反演
高分辨率阵列感应应用
1英尺深探测阵 薄层电阻率 曲线
列感应曲线
分辨率: 薄层电阻率>阵列 感应电阻率>深侧 向电阻率
深侧向电阻率 曲线
基本应用
在泥岩层和非渗
透性储层,阵列 感应曲线基本重 合
渗透性府层
在渗透性储层, 阵列感应曲线呈 增阻或减阻侵入
泥岩层
致密层
基本应用
当泥浆滤液矿化
度小于地层水矿 化度时,在水层 一般呈现增阻侵 入特征
水层
在油气层一般呈
现减阻侵入特征
油气层
基本应用
● 反演(无模型法)
● 后反演(模型法) 置信系数
侵入类型
减阻侵入、增阻侵入 电阻率比 RT/RXO(RXO/RT) 侵入指示 GR、SP、SH
应用实例分析
一、泥浆滤液矿化度对阵列感 应曲线的影响 二、阵列感应在咸水泥浆中的 应用 三、阵列感应在稠油中的应用 四、阵列感应在水淹层中的应 用
深感应电
阻率40- 50
深侧向电
阻率20
深感应电 阻率10
深侧向电 阻率10
二、在咸水泥浆中应用
实例二
813.5820.5m试 油,日产 说明阵列感应在 咸水泥浆中仍能 油2.91吨, 无水
获得较准确的地
层真电阻率,能 准确识别流体性 质
895-905m 试油,日 产油3吨, 无水
三、在稠油井中的应用
1.提供三种分辨率、六种探测深度的 感应电阻率曲线 2.计算地层的真电阻率和冲洗带电阻 率 3.计算泥浆滤液侵入深度和井眼侵入 剖面
主要地质应用
1.划分薄层;
2.划分渗透性储层 3.求取地层真电阻率和冲洗带电阻率,确定储层泥浆 滤液侵入深度; 4.定性识别储层流体性质;
划分薄层
阵列感应1英尺
曲线可以提供较 高分辨率的电阻 率曲线
感应测井原理
接收线圈 接收器放大器
涡流 间距
发射器振荡器 发射线圈
阵列感应仪器介绍
T
L TR
B
L RB
R
T
L TR
B 1
R
L RB1
B 2
L RB2
HRAI
1 2 Lower R 3 4 5 T 13’ 5 4 Upper R 3 2 1
序号 1
名称 基本子阵 列
AIT 1个发射2接收3线圈子阵列。
2
子阵列布 置方式
AIT-B是双侧非对称布置, AIT-H是单侧非对称布置。 共8个子阵列 6in.,9in.,12in.,15in.,21in., 27in.,39in.,72in.。
单侧非对称布置。 共7个子阵列
3
主发射与 主接收间 距 测量信号
6in.,10in., 15.7in.,24.5in., 38.5in.,60in., 94in.。
一、地层水矿化度在阵列 实例一 感应曲线上的反映
地层水矿化度 14000ppm
增阻侵入
地层水矿化度 14000ppm
减阻侵入
地层水矿化度
无侵入
3000ppm
一、不同地层水矿化度在阵列 感应曲线上的反映
地层水矿化度 14000ppm
增阻侵入
地层水矿化度 14000ppm 日产油 9吨
减阻侵入
地层水矿化度
4
AIT-B:子阵列1和2为1个频率, 105.3kHz;子阵列3和4为2个频率, 52.65kHz,105.3kHz;其余为两 个频率,26.325kHz,52.65kHz。 实部和虚部共28条信号。 AIT-H:1个频率,26.325kHz。实 部和虚部共16条信号。
8个频率:10kHz, 2个频率:8kHz,32kHz。 30kHz,50kHz, 实部和虚部共40条信号。 70kHz,90kHz, 110kHz,130kHz, 150kHz。实部和 虚部共112条信号。 实部20条信号。 13英尺。
研究该块水驱效
果,了解油层物 性在水驱油过程 中的变化,为油 田的后期挖潜提
阵列感应
数值明显 变化 1级水 淹
供基础数据
总结及建议
1、高分辨率阵列感应可以提供三种分辨率,六种探测深 度的感应电阻率曲线。 2、阵列感应可以较准确的反演出地层真电阻率。 3、在一定条件下可以直观的判别渗透性储层。 4、可以定性地识别储层流体性质