ANSYS材料非线性记忆金属解读

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS材料非线性+几何非线性分析之

记忆合金

ANSYS材料非线性+几何非线性分析之

记忆合金

问题背景:

在20世纪60年代由美国海军武器实验室发现了镍钛合金的记忆属性,并称之为SMA,其中它的最主要的使形状记忆效应、伪弹性效应、类橡皮性。本课题主要研究SMA金属在矫正牙齿方面的应用,基于ansys软件的有限元分析,得到记忆金属在发生变形后内部的应力状况,以及释放位移后金属的残余应力,而且可以得到金属在加载和卸载过程中的应力应变曲线,这对于设计牙套非常有帮助。

关键词记忆金属分步加载应力应变曲线

问题描述:

如图所示的模型,当A和B点向外拉开的时候,将牙卡在3和11之间,然后释放A和B由于金属具有记忆属性,它会对牙有一个压力,这样的话就能达到矫正牙齿的作用。由于对称性,我们可以建立一半模型来分析。先对B施加一个x方向的位移5mm,然后再施加一个x方向的位移2mm。分析模型的等效应力图和等效应力与应变关系图。

图1.模型

材料的参数

图2.材料参数实验步骤:

1.实验分析模型Structure

图3.分析模型2.选择材料的单元类型solid182和solid185

图4.材料单元类型

3.输入材料的各项参数。

图5.弹性模量和泊松比

图6.记忆金属各项参数4.建立平面点坐标

图7.点坐标

5.利用指令“a,1,9,10,8”建立平面

图8.平面图6.通过直线和倒角,建立曲线

图9.曲线图7.进行拉伸操作建立三维立体图形

图10.立体图

8.画网格将网格的大小设置为0.15,然后通过sweep画全部的网格。

图11.画完网格后的图形

9.在左上角端部施加固定端约束

图12.施加固定端约束

10.施加位移载荷,分两个步骤。第一,在右下角处施加x方向5mm 的面位移,写入载荷步“lswrite,1”;

图13.第一次加位移

第二,在右下角处施加2mm的面位移,写入载荷步“lswrite,2”。

图14.第二次加位移

图15.施加位移后的图像

11.设置载荷步进行分步求解

图16.设置求解步骤

12.分布求解

图17.分布求解

13.查看等效应力云图。

图18.位移为5mm时的等效应力图

图19.位移为2mm的时等效应力图

14.导出应力最大点的等效应力和应变的数据。

图20.导出数据15.用excel将数据打开,绘成散点图。

图21.应力应变图

思维扩展:

牙套在使用过程中,由于人在咀嚼食物的过程中,食物对牙齿有一个压力,因为牙套的固定作用使得压力作用在牙套上,而在平时不吃东西时,牙套只受到了2mm的残余压力作用,那么牙套在受到压力的反复作用时,是否记忆金属还能恢复到原来的形状呢?

试验步骤:

1.步骤同前建立相同的模型

图22.模型

2.施加载荷,分为三步

第一步,将左上角的面固定住,右下角施加x方向2mm的位移,写入载荷步“lswrite,1”。

图23.施加固定端约束

图24.施加位移约束

图25.施加位移约束后

第二步,在上弧端内部节点施加x方向的力30N。写入载荷步“lswrite,2”。

图26.施加力后的图像

第三步,在同样的节点上施加x方向的力为0,写入载荷步“lswrite,3”。

3.设置载荷步进行求解

图27.载荷步设置

4.进行求解。查看每一步结束后的等效应力图

图28.只有位移约束下的等效应力

图29.加力后的等效应力

5.

图31.应力应变曲线

结论:

由上图的应力应变曲线我们能够看出,记忆金属除了在受到大变形能够恢复到原状外,在受到反复力的作用时也是能够恢复到原状的,但是这两种约束方式之间是存在不同的。不同点有2。

第一,第一种位移约束方式的应力变化趋于缓和,最大应力也只有700MPa左右,第二种加力的方式会存在集中力过大的现象,由上图可以看出,应力的最大值逼近1200MPa。这有可能使记忆金属发生局部损坏。

第二,第一种位移约束方式的应力应变曲线呈现一种典型的P 字形,而第二种加力方式并不是直接达到最大的应力,而是有一段趋于缓和阶段,这个阶段中应变变化很大而应力基本保持平稳。而且在卸载的过程中,应力应变的变化会存在一个线性阶段,当应力下降到与第一种P字形相同的应力值时才会收缩。

相关文档
最新文档