(新)人教版九年级数学上册:期中难点突破 突破三 二次函数与全等
2023年中考数学难点突破----二次函数专题研究之二次函数图象中的圆

2
【例3】(2019•日照)如图1,在平面直角坐标系中,直线y=-5x+5与轴,y轴分 别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.
(1)求抛物线解析式及B点坐标;
解:(1)直线y=-5x+5,x=0时,y=5 ,∴C(0,5) ; 当y=-5x+5=0时,x=1; ∴A(1,0)
【例2】(2020•西藏)在平面直角坐标系中,二次函数y= x2+bx+c的图象与x轴交于A (﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点. (2)如图甲,连接AC,PA,PC,若S△PAC= ,求点P的坐标;
(2)如图甲中,连接OP.设P(m, m2﹣m﹣4). 由题意,A(﹣2,0),C(0,﹣4), ∵S△PAC=S△AOC+S△OPC﹣S△AOP, ∴ = ×2×4+×4×m﹣ ×2×(﹣ m2+m+4), 整理得, m2+2m﹣15=0, 解得m=3或﹣5(舍弃), ∴P(3,﹣ ).
∴设抛物线表达式为:y=a(x+4)(x﹣2)
把C(0,4)带入得:4=a(0+4)(0﹣2)
∴a=﹣0.5
∴抛物线表达式为:y=﹣0.5(x+4)(x﹣2)=﹣0.5x2﹣x+4
【例4】(2018威海市)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),
B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于
【例4】(2018威海市)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-4,0), B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴 交于点F,与BC交于点E,对称轴l与x轴交于点H.
人教版九年级数学上册 二次函数(提升篇)(Word版 含解析)

人教版九年级数学上册 二次函数(提升篇)(Word 版 含解析)一、初三数学 二次函数易错题压轴题(难)1.在平面直角坐标系中,将函数2263,(y x mx m x m m =--≥为常数)的图象记为G .(1)当1m =-时,设图象G 上一点(),1P a ,求a 的值;(2)设图象G 的最低点为(),o o F x y ,求o y 的最大值;(3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ;(4)设1112,,2,16816A m B m ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围.【答案】(1)0a =或3a =-;(2)118;(3)21136x -<<-;(4)18m <-或116m >- 【解析】【分析】(1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值;(2)分m >0和m ≤0两种情况,结合二次函数性质求最值;(3)结合二次函数与x 轴交点及对称轴的性质确定取值范围;(4)结合一元二次方程根与系数的关系确定取值范围.【详解】解:(1)当1m =-时,()22613y x x x =++≥ 把(),1P a 代入,得22611a a ++=解得0a =或3a =-(2)当0m >时,,(3)F m m -此时,0o y m =-<当0m ≤时,2223926=2()22y x mx m x m m m =----- ∴239,22F m m m ⎛⎫-- ⎪⎝⎭此时,229911=()22918m m m ---++ ∴0y 的最大值118=综上所述,0y 的最大值为118(3)由题意可知:当图象G 与x 轴有两个交点时,m >0 当抛物线顶点在x 轴上时,22=4(6)42()=0b ac m m -=--⨯⨯-△解得:m=0(舍去)或29m =- 由题意可知抛物线的对称轴为直线x=32m 且x ≥3m ∴当图象G 与x 轴有两个交点时,设右边交点的横坐标为x 2,则x 2的取值范围是21136x -<<- (4)18m <-或116m >- 【点睛】本题属于二次函数综合题,考查了二次函数的性质,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.2.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF 折叠,使点A 落在CD 边上点E 处,如图②;(Ⅱ)在第一次折叠的基础上,过点C 再次折叠,使得点B 落在边CD 上点B′处,如图③,两次折痕交于点O ;(Ⅲ)展开纸片,分别连接OB 、OE 、OC 、FD ,如图④.(探究)(1)证明:OBC ≌OED ;(2)若AB =8,设BC 为x ,OB 2为y ,是否存在x 使得y 有最小值,若存在求出x 的值并求出y 的最小值,若不存在,请说明理由.【答案】(1)见解析;(2)x=4,16【解析】【分析】(1)连接EF ,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS 证明OBC ≌OED 即可;(2)连接EF 、BE ,再证明△OBE 是直角三角形,然后再根据勾股定理得到y 与x 的函数关系式,最后根据二次函数的性质求最值即可.【详解】(1)证明:连接EF.∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BCD=∠ADE=∠DAF=90°由折叠得∠DEF=∠DAF,AD=DE∴∠DEF=90°又∵∠ADE=∠DAF=90°,∴四边形ADEF是矩形又∵AD=DE,∴四边形ADEF是正方形∴AD=EF=DE,∠FDE=45°∵AD=BC,∴BC=DE由折叠得∠BCO=∠DCO=45°∴∠BCO=∠DCO=∠FDE.∴OC=OD.在△OBC与△OED中,BC DEBCO FDEOC OD=⎧⎪∠=∠⎨⎪=⎩,,,∴△OBC≌△OED(SAS);(2)连接EF、BE.∵四边形ABCD是矩形,∴CD=AB=8.由(1)知,BC=DE∵BC=x,∴DE=x∴CE=8-x由(1)知△OBC≌△OED∴OB=OE,∠OED=∠OBC.∵∠OED+∠OEC=180°,∴∠OBC+∠OEC=180°.在四边形OBCE中,∠BCE=90°,∠BCE+∠OBC+∠OEC+∠BOE=360°,∴∠BOE =90°.在Rt △OBE 中,OB 2+OE 2=BE 2.在Rt △BCE 中,BC 2+EC 2=BE 2.∴OB 2+OE 2=BC 2+CE 2.∵OB 2=y ,∴y +y =x 2+(8-x)2.∴y =x 2-8x +32∴当x=4时,y 有最小值是16.【点睛】本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.3.如图1.在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,442D AB =,,设点(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180︒,得到新的抛物线'C .()1求抛物线C 的函数表达式:()2若抛物线'C 与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. ()3如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线'C 上的对应点P',设M 是C 上的动点,N 是'C 上的动点,试探究四边形'PMP N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】()12142y x =-+;()2222m <<()3四边形'PMP N 可以为正方形,6m = 【解析】【分析】(1)由题意得出A,B 坐标,并代入,,A B D 坐标利用待定系数法求出抛物线C 的函数表达式;(2)根据题意分别求出当C '过点()0,4D 时m 的值以及当C '过点()22,0B 时m 的值,并以此进行分析求得;(3)由题意设(),P n n ,代入解出n ,并作HK OF ⊥,PH HK ⊥于H ,利用正方形性质以及全等三角形性质得出M 为()2,2m m --,将M 代入21: 42C y x =-+即可求得答案.【详解】解:()142AB =(), 22,0)2,0(2A B ∴-将,,A B D 三点代入得2 y ax bx c =++ 820.820.4a b c a b c c ⎧-+=⎪⎪++=⎨⎪=⎪⎩解得1204a b c ⎧=-⎪⎪=⎨⎪=⎪⎩2142y x ∴=-+; ()2如图21:42C y x =-+.关于(),0F m 对称的抛物线为()21:242C y x m '=-- 当C '过点()0,4D 时有()2140242m =-- 解得:2m = 当C '过点()22,0B 时有()21022242m =-- 解得:22m =222m ∴<<;()3四边形'PMP N 可以为正方形由题意设(),P n n ,P 是抛物线C 第一象限上的点2142n n ∴-+= 解得:122,2n n ==-(舍去)即()2,2P如图作HK OF ⊥,PH HK ⊥于H ,MK HK ⊥于K四边形PMP N '为正方形易证PHK FKM ≌2FK HP m ∴==-2MK HF ==M ∴为()2,2m m --∴将M 代入21: 42C y x =-+得 ()212242m m -=--+ 解得:126,0m m ==(舍去)∴当6m =时四边形PMP N ''为正方形.【点睛】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,难度大.4.已知抛物线2(0)y ax bx c a =++≠过点(0,2)A -.(1)若点(2,0)-也在该抛物线上,请用含a 的关系式表示b ;(2)若该抛物线上任意不同两点()11,M x y 、()22,N x y 都满足:当120x x <<时,()()12120x x y y --<;当120x x <<时,()()12120x x y y -->;若以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B 、C (点B 在点C 左侧),且ABC ∆有一个内角为60,求抛物线的解析式;(3)在(2)的条件下,若点P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分MPN ∠.【答案】(1)21b a =-;(2)22y x =-;(3)见解析.【解析】【分析】(1)把点()0,2-、()2,0-代入抛物线解析式,然后整理函数式即可得到答案.(2)根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向上,进而可得出0b =,由抛物线的对称性可得出ABC ∆为等腰三角形,结合其有一个60︒的内角可得出ABC ∆为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;(3)由(1)的结论可得出点M 的坐标为1(x ,212)x -+、点N 的坐标为2(x ,222)x -+,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点'N 的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点'N 在直线PM 上,进而即可证出PA 平分MPN ∠.【详解】解:(1)把点()0,2-、()2,0-分别代入,得2420c a b c =-⎧⎨-+=⎩.所以21b a =-.(2),如图1,当120x x <<时,()()12120x x y y --<,120x x ∴-<,120y y ->,∴当0x <时,y 随x 的增大而减小;同理:当0x >时,y 随x 的增大而增大,∴抛物线的对称轴为y 轴,开口向上,0b ∴=.OA 为半径的圆与拋物线的另两个交点为B 、C ,ABC ∴∆为等腰三角形,又ABC ∆有一个内角为60︒,ABC ∴∆为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒,又2OB OC OA ===,·303CD OC cos ∴=︒=,·301OD OC sin =︒=. 不妨设点C 在y 轴右侧,则点C 的坐标为31).点C 在抛物线上,且2c =-,0b =,321a ∴-=,1a ∴=,∴抛物线的解析式为22y x =-.(3)证明:由(1)可知,点M 的坐标为1(x ,212)x -,点N 的坐标为2(x ,222)x -.如图2,直线OM 的解析式为()110y k x k =≠.O 、M 、N 三点共线,10x ∴≠,20x ≠,且22121222x x x x --=, 121222x x x x ∴-=-, ()1212122x x x x x x -∴-=-,122x x ∴=-,即212x x =-, ∴点N 的坐标为12(x -,2142)x -. 设点N 关于y 轴的对称点为点'N ,则点'N 的坐标为12(x ,2142)x -. 点P 是点O 关于点A 的对称点,24OP OA ∴==,∴点P 的坐标为()0,4-.设直线PM 的解析式为24y k x =-,点M 的坐标为1(x ,212)x -,212124x k x ∴-=-,21212x k x +∴=, ∴直线PM 的解析式为21124x y x x +=-. ()222111221111224224·42x x x x x x x +-+-==-,∴点'N在直线PM上,∠.∴平分MPNPA【点睛】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a、b满足的关系式;(2)①利用等边三角形的性质找出点C的坐标;②利用一次函数图象上点的坐标特征找出点'N在直线PM上.5.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【答案】(1) y=x2﹣4x+3;(2) P1(1,0),P2(2,﹣1);(3) F1(22,1),F2(22,1).【解析】【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P 点的坐标;(3)很显然当P、B重合时,不能构成以A、P、E、F为顶点的四边形,因为点P、F都在抛物线上,且点P为抛物线的顶点,所以PF与x轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P 、F 的纵坐标互为相反数,可据此求出F 点的纵坐标,代入抛物线的解析式中即可求出F 点的坐标. 【详解】(1)∵抛物线的顶点为Q (2,﹣1), ∴设抛物线的解析式为y=a (x ﹣2)2﹣1, 将C (0,3)代入上式,得: 3=a (0﹣2)2﹣1,a=1;∴y=(x ﹣2)2﹣1,即y=x 2﹣4x+3; (2)分两种情况:①当点P 1为直角顶点时,点P 1与点B 重合; 令y=0,得x 2﹣4x+3=0,解得x 1=1,x 2=3; ∵点A 在点B 的右边, ∴B (1,0),A (3,0); ∴P 1(1,0);②当点A 为△AP 2D 2的直角顶点时; ∵OA=OC ,∠AOC=90°, ∴∠OAD 2=45°;当∠D 2AP 2=90°时,∠OAP 2=45°, ∴AO 平分∠D 2AP 2; 又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO ,∴P 2、D 2关于x 轴对称;设直线AC 的函数关系式为y=kx+b (k≠0). 将A (3,0),C (0,3)代入上式得:303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩;∴y=﹣x+3;设D 2(x ,﹣x+3),P 2(x ,x 2﹣4x+3), 则有:(﹣x+3)+(x 2﹣4x+3)=0,即x 2﹣5x+6=0;解得x 1=2,x 2=3(舍去);∴当x=2时,y=x 2﹣4x+3=22﹣4×2+3=﹣1; ∴P 2的坐标为P 2(2,﹣1)(即为抛物线顶点). ∴P 点坐标为P 1(1,0),P 2(2,﹣1);(3)由(2)知,当P 点的坐标为P 1(1,0)时,不能构成平行四边形; 当点P 的坐标为P 2(2,﹣1)(即顶点Q )时, 平移直线AP 交x 轴于点E ,交抛物线于F ; ∵P (2,﹣1), ∴可设F (x ,1); ∴x 2﹣4x+3=1,解得x 1=2﹣2,x 2=2+2; ∴符合条件的F 点有两个,即F 1(2﹣2,1),F 2(2+2,1).【点睛】此题主要考查了二次函数的解析式的确定、直角三角形的判定、平行四边形的判定与性质等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.6.如图,抛物线2y x bx c =-++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】 【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求DQ=2,可得FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解. 【详解】解:(Ⅰ)依题意()()2330{3b c c --+⨯-+==解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4yx x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称 设Q 的横坐标为a则()11a x --=-- ∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++ 当2x =-时,d 取最大值,此时,(2,0)M - ∴2(3)1AM =---= 设直线AC 的解析式为y kx b =+ 则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3y x将2x =-代入3y x,得1y =∴(2,1)E -, ∴1EM=∴11111222AEM S AM ME ∆=⋅=⨯⨯=(Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合, ∴3OQ = ∵2223(1)4yx x x∴()1,4D -过D 作DK y ⊥轴于K , 则1DK =,4OK = ∴431OK OK OQ =-=-=∴DKQ 是等腰直角三角形,DQ =∴4FG ==设()2,23F m m m --+,则(,3)G m m +()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m = 当4m =-时,2235m m --+=- 当1m =时,2230m m --+=. ∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.7.如图1所示,抛物线223y x bx c=++与x轴交于A、B两点,与y轴交于点C,已知C 点坐标为(0,4),抛物线的顶点的横坐标为72,点P是第四象限内抛物线上的动点,四边形OPAQ是平行四边形,设点P的横坐标为m.(1)求抛物线的解析式;(2)求使△APC的面积为整数的P点的个数;(3)当点P在抛物线上运动时,四边形OPAQ可能是正方形吗?若可能,请求出点P的坐标,若不可能,请说明理由;(4)在点Q随点P运动的过程中,当点Q恰好落在直线AC 上时,则称点Q 为“和谐点”,如图(2)所示,请直接写出当Q 为“和谐点”的横坐标的值.【答案】(1)2214433y x x=-+;(2)9个;(3)33,22或44,;(4)33【解析】【分析】(1)抛物线与y轴交于点C,顶点的横坐标为72,则472223cb,即可求解;(2)APC∆的面积PHA PHCS S S,即可求解;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP为等腰直角三角形,设点(,)P x y ,则0x y +=,即可求解; (4)求出直线AP 的表达式为:2(1)(6)3y m x ,则直线OQ 的表达式为:2(1)3ym x ②,联立①②求出Q 的坐标,又四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点,即可求解. 【详解】解:(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,解得1434bc,故抛物线的抛物线为:2214433y x x =-+; (2)对于2214433y x x =-+,令0y =,则1x =或6,故点B 、A 的坐标分别为(1,0)、(6,0);如图,过点P 作//PH y 轴交AC 于点H ,设直线AC 的表达式为:y kx b =+ 由点A (6,0)、C (0,4)的坐标得460b kb,解得423b k, ∴直线AC 的表达式为:243y x =-+①, 设点2214(,4)33P x x x ,则点2(,4)3H x x ,APC ∆的面积221122146(44)212(16)22333PHAPHCSSSPH OA x x x x x,当1x =时,10S =,当6x =时,0S =, 故使APC ∆的面积为整数的P 点的个数为9个;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=,即2214433yx x x ,解得:32x =或4, 故点P 的坐标为3(2,3)2或(4,4)-; (4)设点2214(,4)33P m m m ,为点(6,0)A ,设直线AP 的表达式为:y kx t =+,由点A ,P 的坐标可得260214433kt kmt m m ,解之得:2(1)326(1)3km tm∴直线AP 的表达式为:2(1)(6)3ym x , //AP OQ ,则AP 和OQ 表达式中的k 值相同,故直线OQ 的表达式为:2(1)3ym x ②, 联立①②得:2(1)3243ym x yx ,解得:446mm y x ,则点6(Q m ,44)m, 四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点, 如图2,作QC x ⊥轴于点C ,PD x ⊥轴于点D ,∴OC AD =, 则有,66m m ,解得:33m,经检验,33m 是原分式方程得跟,则633m,故Q 的横坐标的值为33 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形正方形的性质、面积的计算等,能熟练应用相关性质是解题的关键.8.如图,直线3yx与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫--⎪⎝⎭或(4,3)-- 【解析】 【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可. 【详解】解:(1)令y=0,则x+3=0, 解得x=-3, 令x=0,则y=3,∴点A (-3,0),C (0,3), ∴OA=OC=3, ∵tan ∠CBO=3OCOB=, ∴OB=1, ∴点B (-1,0),把点A、B、C的坐标代入抛物线解析式得,9303a b ca b cc-+=⎧⎪-+=⎨⎪=⎩,解得:143abc=⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x=++,∵y=x2+4x+3=(x+2)2-1,∴顶点(2,1)D--;(2)∵A(-3,0),B(-1,0),∴AB=-1-(-3)=2,∵OA=OC,∠AOC=90°,∴△AOC是等腰直角三角形,∴AC=2OA=32,∠BAC=45°,∵B(-1,0),D(-2,-1),∴∠ABD=45°,①AB和BP是对应边时,△ABC∽△BPA,∴AB ACBP BA=,即2322BP=,解得BP=223,过点P作PE⊥x轴于E,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB 和BA 是对应边时,△ABC ∽△BAP , ∴AB ACBA BP =, 即2322=, 解得BP=32, 过点P 作PE ⊥x 轴于E , 则BE=PE=32×22=3, ∴OE=1+3=4,∴点P 的坐标为(-4,-3);综合上述,当52,33P ⎛⎫-- ⎪⎝⎭或(4,3)--时,以点P ,A ,B 为顶点的三角形与ABC ∆相似; 【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.9.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y值同时随着x 的增大而增大时,则x 的取值范围是_______; (2)判断四边形AMDN 的形状(直接写出,不必证明); (3)抛物线1L ,2L 均会分别经过某些定点; ①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少? 【答案】(1)()1,41m --+,13x;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+或423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m -+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:423x =±,抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.在平面直角坐标系中,二次函数y =ax 2+bx +2的图象与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【解析】【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标.【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得 ∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .则PM=﹣23m2﹣43m+2.,PN=﹣m,AO=3.∵当x=0时,y=﹣23×0﹣43×0+2=2,∴OC=2,∴S△PAC=S△PAO+S△PCO﹣S△ACO=12AO•PM+12CO•PN﹣12AO•CO=12×3×(﹣23m2﹣43m+2)+12×2×(﹣m)﹣12×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m=﹣2ba=﹣32时,S△PAC有最大值.∴n=﹣23m2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52,∴存在点P(﹣32,52),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵11324Q C BC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(﹣2,1);同理可证△CBO≌△BQ2E,∴BE=OC=2,Q2E=OB=1,∴OE=OB+BE=1+2=3,∴Q2(3,1),同理,Q3(﹣1,﹣1),∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.。
【重点突围】2023学年九年级数学上册重难点专题提优训练(人教版)-用二次函数解决实际问题(原卷版)

用二次函数解决实际问题考点一用二次函数解决增长率问题考点二用二次函数解决销售问题考点三用二次函数解决拱桥问题考点四用二次函数解决喷水问题考点五用二次函数解决投球问题考点六用二次函数解决图形问题考点七用二次函数解决图形运动问题考点一用二次函数解决增长率问题例题:(2022·全国·九年级课时练习)某工厂实行技术改造,产量年均增长率为x,已知2020年产量为1万件,那么2022年的产量y(万件)与x间的关系式为___________.【变式训练】1.(2022·江西萍乡·七年级期末)某厂有一种产品现在的年产量是2万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y(万件)将随计划所定的x的值而确定,那么y与x之间的关系式应表示为________.2.(2022·全国·九年级专题练习)为积极响应国家“旧房改造”工程,该市推出《加快推进旧房改造工作的实施方案》推进新型城镇化建设,改善民生,优化城市建设.(1)根据方案该市的旧房改造户数从2020年底的3万户增长到2022年底的4.32万户,求该市这两年旧房改造户数的平均年增长率;(2)该市计划对某小区进行旧房改造,如果计划改造300户,计划投入改造费用平均20000元/户,且计划改造的户数每增加1户,投入改造费平均减少50元/户,求旧房改造申报的最高投入费用是多少元?考点二用二次函数解决销售问题例题:(2021·宁夏·吴忠市利通区扁担沟中心学校九年级期中)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件:(2)当每件商品降价多少元时,该商店每天销售利润最大?【变式训练】1.(2021·广东·陆丰市甲东镇钟山中学九年级期中)某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价是25元/件时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.求销售单价为多少元时,该文具每天的销售利润最大;最大利润为多少元?2.(2022·山东德州·九年级期末)某商厦灯具部投资销售一种进价为每件20元的护眼台灯,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并直接写出自变量x的取值范围.(2)如果想要每月获得的利润为2000元,那么每月的单价定为多少元?(3)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?考点三用二次函数解决拱桥问题例题:(2022·四川广安·中考真题)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降________米,水面宽8米.【变式训练】1.(2022·山东德州·九年级期末)如图是抛物线型拱桥,当拱顶高距离水面2m时,水面宽4m,如果水面上升1.5m ,则水面宽度为________.2.(2022·甘肃定西·模拟预测)有一个抛物线的拱形桥洞,桥洞离水面的最大高度为4m ,跨度为10m ,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)如图,在对称轴右边1m 处,桥洞离水面的高是多少?考点四 用二次函数解决喷水问题例题:(2022·河南·中考真题)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P 距地面0.7m ,水柱在距喷水头P 水平距离5m 处达到最高,最高点距地面3.2m ;建立如图所示的平面直角坐标系,并设抛物线的表达式为()2y a x h k =-+,其中x (m )是水柱距喷水头的水平距离,y (m )是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m,身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【变式训练】1.(2022·四川南充·中考真题)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高_______________m时,水柱落点距O点4m.2.(2022·浙江台州·中考真题)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系DE ,竖直高度为EF的中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度3m长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若 1.5h = 0.5m EF =①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC ;②求下边缘抛物线与x 轴的正半轴交点B 的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d 的取值范围;(2)若1m EF =.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h 的最小值.考点五 用二次函数解决投球问题例题:(2022·上海市张江集团中学八年级期末)如图,以地面为x 轴,一名男生推铅球,铅球行进高度y (单位:米)与水平距离x (单位:米)之间的关系是21251233y x x =-++.则他将铅球推出的距离是___米.【变式训练】 1.(2022·重庆实验外国语学校八年级期末)小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为16(0,)9,则实心球飞行的水平距离OB 的长度为( )A .7mB .7.5mC .8mD .8.5m2.(2022·贵州安顺·九年级阶段练习)如图是小明站在点O 处长抛篮球的路线示意图,球在点A 处离手,且1m OA =.第一次在点D 处落地,然后弹起在点E 处落地,篮球在距O 点6m 的点B 处正上方达到最高点,最高点C 距地面的高度4m BC =,点E 到篮球框正下方的距离2m EF =,篮球框的垂直高度为3m .据试验,两次划出的抛物线形状相同,但第二次的最大高度为第一次的12,以小明站立处点O 为原点,建立如图所示的平面直角坐标系.(1)求抛物线ACD 的函数解析式;(2)求篮球第二次的落地点E 到点O 的距离.(结果保留整数)(3)若小明想一次投中篮球框,他应该向前走多少米?(结果精确到0.1m )(参考数据:36 2.45≈)考点六 用二次函数解决图形问题例题:(2021·江苏镇江·九年级期中)如图,利用一面墙(墙长26米),用总长度49米的栅栏(图中实线部分)围成一个矩形围栏ABCD ,且中间共留两个1米的小门,设栅栏BC 长为x 米.(1)AB = 米(用含x 的代数式表示);(2)若矩形围栏ABCD 面积为210平方米,求栅栏BC 的长;(3)能围成比210平方米更大的矩形围栏ABCD吗?如果能,请求出最大面积;如果不能,请说明理由.【变式训练】1.(2021·宁夏·吴忠市利通区扁担沟中心学校九年级期中)如图,利用一面墙(墙长10米)用20米的篱笆国成一个矩形场地.设垂直于墙的一边为x米.矩形场地的面积为s平方米.(1)求s与x的函数关系式,并求出x的取值范围;(2)若矩形场地的面枳最大,应该如何设计长与宽.2.(2022·山东烟台·九年级期中)某城门的截面由一段抛物线和一个正方形(OMNE为正方形)的三条边围成,已知城门宽度为4米,最高处距地面6米.如图1所示,现以O点为原点,OM所在的直线为x轴,OE所在的直线为y轴建立直角坐标系.(1)求上半部分抛物线的函数表达式,并写出其自变量的取值范围;(2)有一辆宽3米,高4.5米的消防车需要通过该城门,请问该消防车能否正常进入?(3)为营造节日气氛,需要临时搭建一个矩形“装饰门”ABCD,该“装饰门”关于抛物线对称轴对称,如图2所示,其中AB,AD,CD为三根承重钢支架,A、D在抛物线上,B,C在地面上,已知钢支架每米70元,问搭建这样一个矩形“装饰门”,仅钢支架一项,最多需要花费多少元?考点七 用二次函数解决图形运动问题例题:(2022·全国·九年级课时练习)如图1 在Rt ABC △中 90ABC ∠=︒ 已知点P 在直角边AB 上 以1cm/s的速度从点A 向点B 运动,点Q 在直角边BC 上,以2cm/s 的速度从点B 向点C 运动.若点P ,Q 同时出发,当点P 到达点B 时,点Q 恰好到达点C 处.图2是BPQ 的面积()2cm y 与点P 的运动时间()s t 之间的函数关系图像(点M 为图像的最高点),根据相关信息,计算线段AC 的长为( )A .35cmB .45cmC .55cmD .65cm【变式训练】 1.(2022·宁夏·银川唐徕回民中学二模)如图,在矩形ABCD 中,BC >CD ,BC 、CD 分别是一元二次方程x 2-7x +12=0的两个根,连接BD ,并过点C 作CN ⊥BD ,垂足为N ,点P 从B 出发,以每秒1个单位的速度沿BD 方向匀速运动到D 为止;点M 沿线段DA 以每秒1个单位的速度由点D 向点A 匀速运动,到点A 为止,点P 与点M 同时出发,设运动时间为t 秒(t >0).(1)求线段CN 的长;(2)在整个运动过程中,当t 为何值时△PMN 的面积取得最大值,最大值是多少?2.(2021·北京·九年级期中)如图,Rt ABCAC=8∠=︒6C∆中90BC=动点P,Q分别从A,C两点同时出发,点P沿边AC向C以每秒3个单位长度的速度运动,点Q沿边BC向B以每秒4个单位长度的速度t s.运动,当P,Q到达终点C,B时,运动停止.设运动时间为()(1)①当运动停止时,t的值为.②设P,C之间的距离为y,则y与t满足(选填“正比例函数关系”,“一次函数关系”,“二次函数关系” ).∆的面积为S,(2)设PCQ①求S的表达式(用含有t的代数式表示);②求当t为何值时,S取得最大值,这个最大值是多少?一、选择题1.(2022·黑龙江·鸡西市第一中学校九年级期末)某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元2.(2022·全国·九年级课时练习)如图,一抛物线型拱桥,当拱顶到水面的距离为2m时,水面宽度为4m.那么水位下降1m时,水面的宽度为()A 6mB .26mC .)64mD .()264m 3.(2022·全国·九年级课时练习)从某幢建筑物2.25米高处的窗口A 用水管向外喷水,水流呈抛物线,如果抛物线的最高点M 离墙1米,离地面3米,那么水流落点B 与墙的距离OB 是( )A .1米B .2米C .3米D .4米4.(2022·河南·辉县市城北初级中学一模)如果△ABC 和△DEF 都是边长为2的等边三角形,他们的边BC ,EF 在同一条直线l 上,点C ,E 重合,现将△ABC 沿着直线l 向右移动,直至点B 与点F 重合时停止移动,在此过程中,设点B 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为( )A .B .C .D . 二、填空题5.(2022·上海宝山·九年级期末)据了解,某蔬菜种植基地2019年的蔬菜产量为100万吨,2021年的蔬菜x x ,那么y关于x的函数解析式为产量为y万吨,如果2019年至2021年蔬菜产量的年平均增长率为(0)_________.6.(2021·广东揭阳·九年级期末)用长12m的铝合金条制成矩形窗框(如图所示),那么这个窗户的最大透光面积是___________(中间横框所占的面积忽略不计)7.(2022·湖北襄阳·一模)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t-5t2,则小球飞出______s时,达到最大高度.8.(2022·山西·一模)某物理兴趣小组对一款饮水机的工作电路展开研究,将变阻器R的滑片从一端滑到另一端,绘制出变阻器R消耗的电功率P随电流I变化的关系图象如图所示,该图象是经过原点的一条抛物线的一部分,则变阻器R消耗的电功率P最大为__________W.三、解答题9.(2022·内蒙古北方重工业集团有限公司第一中学三模)北重一中计划利用一片空地建一个学生自行车车棚,其中一面靠墙,墙的最大可用长度为12米.另三边用总长为26米的木板材料围成.车棚形状如图中的矩形ABCD。
【重点突围】2023学年九年级数学上册重难点专题提优训练(人教版) 二次函数的定义(解析版)

二次函数的定义考点一 二次函数的识别 考点二 二次函数的二次项系数、一次项系数、常数项 考点三 根据二次函数的定义求参数 考点四 列二次函数关系式考点一 二次函数的识别例题:(2022·江苏·盐城市初级中学一模)下列函数中为二次函数的是( )A .31y x =-B .231y x =-C .2y x =D .323y x x =+-【答案】B【解析】【分析】直接利用二次函数的定义进而分析得出答案.【详解】解:A 、31y x =- 是一次函数 故此选项不符合题意;B 、231y x =- 是二次函数 故此选项符合题意;C 、2y x = 不是二次函数 故此选项不符合题意;D 、323y x x =+- 未知数的最高次为3 不是二次函数 故此选项错误.故选:B .【点睛】本题考查了二次函数的定义;熟练掌握二次函数解析式的一般形式2y ax bx c =++(0a ≠) 是解题的关键.【变式训练】1.(2020·陕西·西安市大明宫中学三模)观察:①26y x =;②235y x =-+;③2200400y x x =+;④32y x x =-;⑤213y x x=-+;⑥()221y x x =+-.这六个式子中二次函数有( )个. A .2B .3C .4D .5【答案】B【分析】根据二次函数的定义判断即可.【详解】①26y x =是二次函数;②235y x =-+是二次函数;③2200400y x x =+是二次函数;④32y x x =-不是二次函数; ⑤213y x x=-+不是二次函数; ⑥()22121y x x x =+-=+不是二次函数;这六个式子中二次函数有①②③故选:B .【点睛】本题考查二次函数的定义 即一般地 形如2y ax bx c =++(a b c 是常数 0a ≠)的函数 叫做二次函数.2.(2022·全国·九年级课时练习)下列函数①55y x =-;②231y x =-;③3243y x x =-;④2221y x x =-+;⑤21y x =.其中是二次函数的是____________. 【答案】②④##④②【解析】【分析】根据二次函数的定义 函数式为整式且自变量的最高次数为2 二次项系数不为0 逐一判断.【详解】解:①y =5x -5为一次函数;②y =3x 2-1为二次函数;③y =4x 3-3x 2自变量次数为3 不是二次函数;④y =2x 2-2x +1为二次函数;⑤y =21x 函数式为分式 不是二次函数. 故答案为②④.本题考查二次函数的定义 熟记定义“函数式为整式且自变量的最高次数为2 二次项系数不为0”是解题关键.考点二 二次函数的二次项系数、一次项系数、常数项例题:(2022·福建省福州外国语学校八年级期末)二次函数223y x x =-+的一次项系数是( ) A .1B .2C .2-D .3【答案】C【解析】【分析】根据二次函数的定义:一般地 形如y =ax 2+bx +c (a 、b 、c 是常数 a ≠0)的函数 叫做二次函数.其中x 、y 是变量 a 、b 、c 是常量 a 是二次项系数 b 是一次项系数 c 是常数项作答.【详解】解:二次函数y =x 2-2x +3的一次项系数是-2;故选:C .【点睛】此题主要考查了二次函数的定义 关键是注意在找二次项系数 一次项系数和常数项时 不要漏掉符号.【变式训练】1.(2022·全国·九年级)设a b c 分别是二次函数y =﹣x 2+3的二次项系数、一次项系数、常数项 则( ) A .a =﹣1 b =3 c =0B .a =﹣1 b =0 c =3C .a =﹣1 b =3 c =3D .a =1 b =0 c =3 【答案】B【解析】【分析】根据二次函数的一般形式可得答案.【详解】解:二次函数y =﹣x 2+3的二次项系数是a =﹣1 一次项系数是b =0 常数项是c =3;故选:B .此题主要考查了二次函数的一般形式 关键是注意在找二次项系数 一次项系数和常数项时 不要漏掉符号.2.(2022·全国·九年级)已知二次函数y =1﹣5x +3x 2 则二次项系数a =___ 一次项系数b =___ 常数项c =___.【答案】 3 -5 1【解析】【分析】形如:()20y ax bx c a =++≠这样的函数是二次函数 其中二次项系数为,a 一次项系数为,b 常数项为,c根据定义逐一作答即可.【详解】解:二次函数y =1﹣5x +3x 2 则二次项系数a =3 一次项系数b =﹣5 常数项c =1故答案为:3 ﹣5 1.【点睛】本题考查了二次函数的定义 熟记二次函数的定义是解题关键.考点三 根据二次函数的定义求参数例题:(2022·全国·九年级课时练习)已知y =21(1)m m x +-+2x ﹣3是二次函数式 则m 的值为 _____.【答案】-1【解析】【分析】若y =21(1)m m x +-+2x ﹣3是二次函数式 则二次项系数不等于零 可得答案;【详解】 解:由题意得:21012m m -≠⎧⎨+=⎩解得:m =-1故答案为:-1.【点睛】本题考查了二次函数的定义 理解二次函数的定义是解题关键.【变式训练】1.(2021·黑龙江·塔河县第一中学校九年级期中)已知(2)21m y m x x =-+-是y 关于x 的二次函数 那么m 的值____.【答案】2-【解析】【分析】根据二次函数的定义 (2)m m x -中 未知数x 的指数为2 系数不为0 列式计算即可.【详解】解:∵(2)21m y m x x =-+-是y 关于x 的二次函数 ∵2m =且20m -≠∵2m =-.故答案为:2-.【点睛】本题考查的是二次函数的定义 熟练掌握形如y =ax 2+bx +c (a b c 是常数 且a ≠0)的函数 叫做二次函数是解题的关键.2.(2021·广东广州·九年级期中)关于x 的函数()21m m y m x -=+是二次函数 则m 的值为__________.【答案】2【解析】【分析】根据二次函数的定义:一般地 形如y =ax 2+bx +c (a 、b 、c 是常数 a ≠0)的函数 叫做二次函数 求出m 的值即可解决问题.【详解】解:∵()21m m y m x -=+是关于x 的二次函数∵m 2-m =2 m +1≠0解得:m =2.故答案为:2.【点睛】本题主要考查了二次函数的定义及解一元二次方程;牢固掌握定义和方程的解法是解题的关键.考点四 列二次函数关系式例题:(2022·上海市青浦区教育局二模)为防治新冠病毒 某医药公司一月份的产值为1亿元 若每月平均增长率为x 第一季度的总产值为y (亿元) 则y 关于x 的函数解析式为________________.【答案】233y x x =++【解析】【分析】根据题意分别求得每个月的产值 然后相加即可求解.【详解】解:∵某医药公司一月份的产值为1亿元 若每月平均增长率为x∵二月份的为()111x x +⨯=+三月份的为()()()2111x x x +⨯+=+第一季度的总产值为y (亿元) 则()2211133y x x x x =++++=++故答案为:233y x x =++【点睛】本题考查了二次函数的应用 根据题意列出函数关系式是解题的关键.【变式训练】1.(2021·山东滨州·九年级期中)某商店从厂家以每件21元的价格购进一批商品 该商店可以自行定价 若每件商品的售价为x 元 则可卖出()35010x -件 那么卖出商品所赚钱y 元与售价x 元之间的函数关系为________.【答案】2105607350y x x =-+-【解析】【分析】由题意分析出每件商品的盈利为:()21x -元 再根据:总利润等于每件商品的利润乘以销售的数量 再化简即可.【详解】解:由题意得:每件商品的盈利为:()21x -元所以:()()2135010y x x =--2102103507350x x x =-++-2105607350x x =-+-故答案为:2105607350y x x =-+-【点睛】本题考查的是列二次函数关系式 掌握“总利润等于每件商品的利润乘以销售的数量”是解题的关键. 2.(2022·内蒙古呼和浩特·三模)如图 ABC 和'''A B C 是边长分别为5和2的等边三角形 点'B 、'C 、B 、C 都在直线l 上 ABC 固定不动 将'''A B C 在直线l 上自左向右平移.开始时 点'C 与点B 重合 当点'B 移动到与点C 重合时停止.设'''A B C 移动的距离为x 两个三角形重叠部分的面积为y 请写出y 与x 之间的函数关系式_________.【答案】22(02)5))(57)x y x x x <≤=<≤-<≤⎩【解析】【分析】根据运动过程可分三种情况讨论:当02x <≤时 两个三角形重叠部分为BC D '△的面积 当25x <≤时 两个三角形重叠部分为A B C '''的面积 当57x <≤时 两个三角形重叠部分为B CD '△的面积 分别求解即可.【详解】当02x <≤时 如图1所示 两个三角形重叠部分为BC D '△的面积由题意得 BC x '=ABC 和'''A B C 是边长分别为5和2的等边三角形BC D '∴是边长x 的等边三角形过点D 作DE ∵BC 于点E12BE x ∴=DE x ∴21122BC D S BC DE x x ''∴=⋅⋅=⋅=即2y =; 当25x <≤时 如图2所示 两个三角形重叠部分为A B C '''的面积由题意得 2BC '=过点A '作A E B C '''⊥于点EA E '∴=11222A B C S B C A E ''''''∴=⋅⋅==即y =当57x <≤时 如图3所示 两个三角形重叠部分为B CD '△的面积由题意得 BC x '=ABC 和'''A B C 是边长分别为5和2的等边三角形BC D '∴是等边三角形 且7B C x '=-过点D 作DE ∵BC 于点E)DE x ∴=-211(7)))22B CDS B C DE x x x ''∴=⋅⋅=⋅--=-即2)y x =-; 综上 写出y 与x之间的函数关系式为22(02)5))(57)x x y x x x <≤=<≤-<≤⎩.【点睛】本题考查了等边三角形的判定和性质 列二次函数解析式 勾股定理 平移与三角形面积问题 熟练掌握知识点并能够分类讨论是解题的关键.一、选择题1.(2022·广西贺州·九年级期末)下列函数表达式中 一定为二次函数的是( )A .51y x =-B .2y ax bx c =++C .231y x =+D .21y x x=+ 【答案】C【解析】【分析】根据二次函数的定义:一般地 形如2(y ax bx c a =++、b 、c 是常数 0)a ≠的函数 叫做二次函数进行分析.【详解】解:A 、是一次函数 故此选项错误;B 、当0a ≠时 是二次函数 故此选项错误;C 、是二次函数 故此选项正确;D 、含有分式 不是二次函数 故此选项错误;故选:C .【点睛】此题主要考查了二次函数定义 解题的关键是掌握判断函数是否是二次函数 首先是要看它的右边是否为整式 若是整式且仍能化简的要先将其化简 然后再根据二次函数的定义作出判断 要抓住二次项系数不为0这个关键条件.2.(2022·广西·靖西市教学研究室九年级期中)若y =(a ﹣2)x 2﹣3x +2是二次函数 则a 的取值范围是( ) A .a ≠2B .a >0C .a >2D .a ≠0 【答案】A【解析】【分析】根据二次函数的二次项系数不为0可得关于a 的不等式 解不等式即得答案.【详解】解:由题意得: 20a -≠ 则2a ≠.故选:A .【点睛】本题考查了二次函数的定义 属于基础题型 掌握二次函数的概念是关键.3.(2020·广东·惠州市惠阳区第一中学九年级期中)已知函数()22227my m x x -=-+-是二次函数 则m 的值为()A .±2B .2C .-2D .m 为全体实数 【答案】C【解析】【分析】根据二次函数定义列式求解即可.【详解】解:∵函数()22227m y m x x -=-+-是二次函数∵m -2≠0 222m -= 解得:m =-2.故选:C .【点睛】本题主要考查了二次函数定义 掌握形如y =ax 2+bx +c (a 、b 、c 是常数 a ≠0)的函数 叫做二次函数.4.(2022·全国·九年级)下列实际问题中的y 与x 之间的函数表达式是二次函数的是( )A .正方体集装箱的体积ym 3 棱长xmB .高为14m 的圆柱形储油罐的体积ym 3 底面圆半径xmC .妈妈买烤鸭花费86元 烤鸭的重量y 斤 单价为x 元/斤D .小莉驾车以108km /h 的速度从南京出发到上海 行驶xh 距上海ykm【答案】B【解析】【分析】根据二次函数的定义逐项判断即可.【详解】解:A .正方体集装箱的体积ym 3 棱长xm 则y =x 3 故不是二次函数;B .高为14m 的圆柱形储油罐的体积ym 3 底面圆半径xm 则y =14πx 2 故是二次函数;C .妈妈买烤鸭花费86元 烤鸭的重量y 斤 单价为x 元/斤 则86y x= 故不是二次函数; D .小莉驾车以108km /h 的速度从南京出发到上海 行驶xh 距上海ykm 则y =南京与上海之间的距离-108x 故不是二次函数.故选:B .【点睛】本题考查二次函数的定义 解答本题的关键是明确题意 写出相应的函数解析式 利用二次函数的定义去判断.5.(2022·全国·九年级课时练习)若抛物线258(3)23mm y m x x -+=-+-是关于x 的二次函数 那么m 的值是( )A .3B .2-C .2D .2或3 【答案】C【解析】【分析】根据二次函数的定义列方程计算即可;【详解】∵258(3)23m m y m x x -+=-+-是关于x 的二次函数∵2582m m -+=且30m -≠∵12m = 23m =且3m ≠∵2m =;故选C .【点睛】本题主要考查了二次函数的定义、一元二次方程的求解 准确计算是解题的关键.6.(2022·全国·九年级)以x 为自变量的函数:①(2)(2)y x x =+-;②2(2)y x =+;③2123y x x =+-;④()21y x x x =--.是二次函数的有( )A .②③B .②③④C .①②③D .①②③④【答案】C【解析】【分析】 根据二次函数的定义进行判断.【详解】解:①2(2)(2)=4y x x x =+-- 符合二次函数的定义 故①是二次函数;②2(2)y x =+ 符合二次函数的定义 故②是二次函数;③2123y x x =+- 符合二次函数的定义 故②是二次函数;④()2221=y x x x x x x x =----=- 不符合二次函数的定义 故④不是二次函数.所以 是二次函数的有①②③故选:C .【点睛】本题考查了二次二次函数的定义 熟记概念是解题的关键.二、填空题7.(2022·全国·九年级)二次函数2(1)y x x =-的二次项系数是________.【答案】2【解析】【分析】首先把二次函数化为一般形式 再进一步求得二次项系数.【详解】解:y =2x (x -1)=2x 2-2x .所以二次项系数2.故答案为:2.【点睛】本题主要考查了二次函数的定义 一般地 形如y =ax 2+bx +c (a 、b 、c 是常数 a ≠0)的函数 叫做二次函数.其中x 、y 是变量 a 、b 、c 是常量 a 是二次项系数 b 是一次项系数 c 是常数项.8.(2021·山东德州·九年级期中)若y =(m ﹣4)x |m |﹣2﹣2x ﹣1是关于x 的二次函数 则m =___.【答案】﹣4【解析】【分析】直接利用二次函数的定义进而分析得出答案.【详解】解:∵y =(m ﹣4)x |m |﹣2﹣2x ﹣1是关于x 的二次函数∵|m |﹣2=2 m ﹣4≠0解得:m =﹣4 .故答案为:﹣4.【点睛】本题考查了二次函数的定义.二次函数的定义:一般地 形如y =ax 2+bx +c (a 、b 、c 是常数 a ≠0)的函数叫做二次函数.其中x 、y 是变量 a 、b 、c 是常量 a 是二次项系数 b 是一次项系数 c 是常数项.y =ax 2+bx +c (a 、b 、c 是常数 a ≠0)也叫做二次函数的一般形式.9.(2022·山东菏泽·九年级期末)已知|2|2m y mx -=+是y 关于x 的二次函数 那么m 的值为_________.【答案】4【解析】【分析】根据二次函数的定义 即可求解.【详解】∵|2|2m y mx -=+是y 关于x 的二次函数 ∵22m -=且0m ≠解得:4m =.故答案为:4【点睛】本题主要考查了二次函数的定义 熟练掌握形如2y ax bx c =++(a b c 是常数 且0a ≠)的函数 叫做二次函数是解题的关键.10.(2021·云南·大理市民族中学九年级期中)在二次函数21y x =-+中 二次项系数、一次项系数、常数项的和为_____.【答案】0【解析】【分析】分别得出二次项系数 一次项系数和常数项相加即可;【详解】∵21y x =-+∵二次项系数为1- 一次项系数为0 常数项为1∵1010-++=;故答案是0.【点睛】本题主要考查了二次函数一般式的认识 准确分析判断是解题的关键.11.(2021·全国·九年级专题练习)下列函数一定是二次函数的是__________.①2y ax bx c =++;②3y x=-;③2431y x x =-+;④2(1)y m x bx c =-++;⑤y =(x -3)2-x 2 【答案】③【解析】【分析】根据二次函数的定义: 一般地,把形如y =ax ²+bx +c (a ≠0)(a 、b 、c 是常数)的函数叫做二次函数 据此判断即可.【详解】解:①2y ax bx c =++ 必须满足a ≠0才为二次函数 故①不一定是二次函数;②等号右边为分式 故②不是二次函数;③2431y x x =-+是二次函数 故③是二次函数;④2(1)y m x bx c =-++ 1m =时 该式不是二次函数;⑤2222(3)6969y x x x x x x =--=-+-=-+ 该式不是二次函数;故答案为:③.【点睛】本题考查了二次函数的识别 熟知二次函数的定义是解本题的关键.12.(2022·全国·九年级课时练习)如图 在长方形ABCD 中 8cm AB = 6cm AD = 点M N 从A 点出发 点M 沿线段AB 运动 点N 沿线段AD 运动(其中一点停止运动 另一点也随之停止运动).若设cm AM AN x == 阴影部分的面积为2cm y 则y 与x 之间的关系式为______.【答案】y =-212x +48 【解析】【分析】 先求出212AMN S x = 进而即可得到答案. 【详解】 由题意得:21122AMN S AM AN x =⋅= ∵阴影部分的面积=6×8-212x 即:y =-212x +48. 故答案是:y =-212x +48. 【点睛】本题主要考查列二次函数解析式 解题的关键是掌握割补法求面积.三、解答题13.(2022·全国·九年级课时练习)已知函数2(||1)(1)3y m x m x =-+++.(1)若这个函数是一次函数 求m 的值(2)若这个函数是二次函数 求m 的取值范围.【答案】(1)1m =;(2)1m ≠±【解析】【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题;【详解】解:(1)由题意得 1010m m ⎧-=⎨+≠⎩解得1m =; (2)由题意得 ||10m -≠ 解得1m ≠且1m ≠-.【点睛】本题考查一次函数的定义、二次函数的定义 解题的关键是熟练掌握基本概念 (1)根据二次项的系数等于零 一次项的系数不等于零;(2)根据二次项的系数不等于零 可得方程 根据解方程 可得答案. 14.(2021·安徽合肥·九年级阶段练习)已知函数y =(m 2-2)x 2+(m )x +8.(1)若这个函数是一次函数 求m 的值;(2)若这个函数是二次函数 求m 的取值范围.【答案】(1)m (2)m m ≠【解析】【分析】(1)根据一次函数的定义知:二次项的系数等于零 一次项的系数不等于零 即可解决问题;(2)根据二次函数的定义知:二次项的系数不等于零 可得方程 根据解方程 可得答案 即可解决问题;【详解】(1)由题意得 {20m m 解得m ;(2)由题意得 m 2-2≠0 解得m m ≠【点睛】本题考查一次函数的定义、二次函数的定义 解题的关键是熟练掌握基本概念.15.(2021·全国·九年级课时练习)某工厂计划为一批长方体形状的产品表面涂上油漆 长方体的长和宽相等 高比长多0.5m .(1)长方体的长和宽用()m x 表示 长方体的表面积()2m S 的表达式是什么? (2)如果涂漆每平方米所需要的费用是5元 油漆每个长方体所需费用用y (元)表示 那么y 的表达式是什么?【答案】(1)262S x x =+;(2)23010y x x =+【解析】【分析】(1)长方体有6个面 然后根据长方形的面积公式即可得到22[2(0.5)]S x x x =++ 再去括号整理即可; (2)把(1)中的S 除以5即可得到y .【详解】解:(1)22[2(0.5)]S x x x =++262x x =+;(2)253010y S x x ==+.【点睛】本题考查了根据实际问题列二次函数关系式 解题的关键是读懂题意 根据实际问题确定二次函数关系式 建立二次函数的数学模型来解决问题.16.(2021·吉林四平·九年级期末)如图 在Rt ∵ABC 中 ∵C=90° ∵A=45° AC =动点P 从点A 出发 沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD ∵AC 于点D (点P 不与点A B 重合)作∵DPQ=45° 边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒.(1)线段DC 的长为 (用含t 的式子表示).(2)当点Q 与点C 重合时 求t 的值.(3)设∵PDQ 与∵ABC 重叠部分的面积为S 求S 与t 之间的函数关系式.【答案】(1);(2)1t =;(3)当0<t ≤1时 2S t = 当1<t <2时 2384S t t =-+-.【解析】【分析】(1)先证明AD DP = 再由勾股定理 即可求解;(2)由点Q 与点C 重合 可得2AD=AC 从而= 即可求解; (3)分两种情况讨论:当0<t ≤1时;当1<t <2时 即可求解.【详解】解:(1)∵PD ∵AC∵90ADP ∠=︒∵∵A=45°∵45APD ∠=︒∵AD DP =在Rt ADP △ 中 由勾股定理得:22222AP AD DP AD =+=∵点P 的运动时间为t 秒 动点P 从点A 出发沿AB 以每秒2个单位长度的速度向终点B 运动∵2AP t =∵()2222t AD = 解得:AD =∵AC =∵=-=DC AC AD ;(2)∵PD ∵AC ∵A=∵DPQ=45°∵∵A=∵PQD=45°∵P A=PQ∵AD=DQ∵点Q 与点C 重合∵AD+DQ=AC∵2AD=AC即=解得1t =;(3)①当0<t ≤1时212PDQ PDA S S S AD DP t ===⋅== ②当1<t <2时 如图 设PQ 交BC 于点E 则2AQ AD =QC AQ AC =-=-∵22114122(()=⋅=⨯-=-QCE S QC CE t∵22241384()=-=--=-+-PQD QCE S S S t t t t .【点睛】本题主要考查了等腰三角形的判定和性质 动点问题 理解题意 利用方程思想解答问题是解题的关键.。
人教版九年级数学上册二次函数课件(共15张)

1、y =6x2
2、
3、y=20x2+40x+20 上述问题中的函数解析式具有
哪些共同的特征?
化简后具有y=ax²+bx+c 的情势.
(a,b,c是常数, a≠0 )
二次函数概念
我们把形如y=ax²+bx+c
(其中a,b,C是常数,a≠0)的函 数叫做二次函数
称:a为二次项系数, b为一次项系数, c为常数项.
(1)写出y关于x的 函数关系式. (2)当x=3时,矩形 的面积为多少?
x
2、已知二次函数 y=x²+px+q,当x=1时,函数 值为4,当x=2时,函数值 为 -5, 求这个二次函数 的解析式.
课堂小结
a≠0
y=ax²+bx+c
二次项 系数
一次项 系数
常数项
每个队要与其他 (n-1) 个球队各比赛一场,甲
队对乙队的比赛与乙队对甲队的比赛是同一场比赛,
所以比赛的场次数
.即
.
上式表示比赛的场次数m与球队数n的关系,对于 n的每一个值,m都有一个对应值,即m是n的函数.
问题2 某种产品现在的年产量是20 t,计划今后 两年增加产量,如果每年都比上一年的产量增加 x倍,那么两年后这种产品的产量 y 将随计划所 定的x的值而确定,y与x之间的关系应怎样表示?
这种产品的原产量是20 t,一年后的产量是 20(1+x)t,
再经过一年后的产量是 20(1+x)(1+x) t,即两年 后的产量 y=20(1+x)2 , 即 y=20x2+40x+20 .
上式表示两年后的产量y与计划增产的倍数x之间 的关系,对于x的每一个值,y都有一个对应值,即y 是x的函数.
最新人教版初中九年级上册数学【第二十二章 22.2二次函数与不等式】教学课件

=1 或 =2
1<2
1<<2
<1 或 >2
图像
【答疑过程】
例 1 已知二次函数 = − − .
(1) 画出二次函数的图象(如图 1);
(2)顶点在第______象限;
(3)对称轴为直线_______;
(4)与轴的交点坐标为____________;
(5)方程 − − = 的解为________;
(3)看清不等号方向(大于零还是小于零);
(4)写出满足不等式的解集.
2.常用的数学方法:
图象法和数形结合法、观察法.
谢谢观看!
(答疑)
【学习目标】
通过对一道例题的深度剖析,进一步
理解解决二次函数与不等式问题过程中,
数形结合思想的运用以及价值。
【教学回顾】
抛物线 1=2+b+c 与2=k+b的交点(1,1),(2,2)(1
<2)
>0
<0
1>2
<1 或 >2
1<<2
1=2
=1 或 =2
(6)取什么值时,函数值大于 0?
(7)取什么值时,函数值小于 0?
(8)取什么值时,函数值等于 0?
【答疑过程】
【答疑过程】
y>0
y<0
【答疑过程】
(1,3)
(-2,-1)
【
课堂小结
1.解题一般步骤:
(1)看图象找交点;
(2)确定交点坐标(关键是横坐标);
课堂小结
1.解不等式时灵活应用图象法与数形结合
法;
课堂小结
3.解题一般步骤:
(1)看图象找交点;
(2)确定交点坐标(关键是横坐标);
(3)看清不等号方向(大于零还是小于零);
人教版九年级上册数学课件二次函数PPT教学课件
全行为,有权拒绝不符合安全要求或违反操作规程的指挥、调度和安排。
( 2 ) 它 是 一 次 函 数 ? 中国联通在推出了短消息业务以后,有些用户觉得只看到屏幕上的文字进行沟通不方便,希望能够听到声音。于是,中国联通又推出
了短音讯服务。“看短信不如听短信,拨10158短信听”。这就是创新产品,产品的多元化满足了不同顾客的需求。
7.l 竞争性磋商响应报价为竞争性磋商响应总价。必须包括所提供服务、税金及其他不可预见费等全部费用。
赞美别人需要勇气与肚量。一般人为了保护自己的面子与满足优越感,不太愿意赞美别人。但是要做好行销服务,就要掌握肯定和赞
美别人的技巧。这种称赞是发自肺腑的,而不是虚情假意。
解 : ( 1 ) a 0 ②各县、区负责人与市场部签定协议,协议除其他条款外,要针对货、款一项,由负责人对货、款承担安全责任。以家庭财产担保。
场,甲队对乙队的比赛与乙队对甲队的比赛
是同一场比赛,所以比赛的场次数
m 1 n(n 1) 2
即
m1n21n 22
②
②式表示比赛的场次
数m与球队数n的关系,对
于n的每一个值,m都有一
个对应值,即m是n的函数.
问题:
问题2 某种产品现在的年产量是20 t,计划今后两年增加产量.
如果每年都比上一年的产量增加x倍,那么两年后这种产品的产 量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?
2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是 (C )
A.m,n是常数,且m≠0 B.m,n是常数,且n≠0
C.m,n是常数,且m≠n D.m,n为任何实数
1.一个圆柱的高等于底面半径,写出它 的表面积 s 与半径 r 之间的关系式.
人教九年级上册数学课件二次函数与三角形综合专题ppt文档
(3)当0<x<3时,在抛物线上求一点E,使△CBE 的面积有最大值.
(3)如图,过E作EF⊥x轴,交BC于点F,
交x轴于点D,
设E(x,x2﹣4x+3),则F(x,﹣xx+3﹣(x2﹣4x+3)=﹣x2+3x,
∴S△CBE=S△EFC+S△EFB
1EF•OD1EF•BD1EF•OB
1
5
SCM N2
5
5 2
(4)若点M在直线BH上运动,点N在x轴上运动,当 以点C、M、N为顶点的三角形为等腰直角三角形时, 请直接写出此时△CMN的面积.
②以点M为直角顶点且M在x轴下方 时,如图3,作辅助线,构建如图所 示的两直角三角形:Rt△NEM和 Rt△MDC, 得Rt△NEM≌Rt△MDC, ∴EM=CD=5,MD=ME=2, 由勾股定理得:M C2252 29
(4)若点M在直线BH上运动,点N在x轴上运动,当 以点C、M、N为顶点的三角形为等腰直角三角形时, 请直接写出此时△CMN的面积.
(4)以点C、M、N为顶点的三角形为等 腰直角三角形时,分三类情况讨论:
①以点M为直角顶点且M在x轴上方时, 如图2,CM=MN,∠CMN=90°, 则△CBM≌△MHN, ∴BC=MH=2,BM=HN=3﹣2=1, ∴M(1,2),N(2,0), 由勾股定理得:M C2212 5
1
29
SCMN2
29
29 2
(4)若点M在直线BH上运动,点N在x轴上运动,当 以点C、M、N为顶点的三角形为等腰直角三角形时, 请直接写出此时△CMN的面积.
③以点N为直角顶点且N在y轴左侧时, 如图4,CN=MN,∠MNC=90°,作 辅助线, 同理得:M C3252 34
人教版九年级数学上22.1.1二次函数(共15张PPT)
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。2021/8/102021/8/10Tuesday, August 10, 2021
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/8/102021/8/102021/8/108/10/2021 8:06:39 PM
教师展示课件,出示问题,引出课题. 学生观察欣赏图片,初步了解本节课所要研究的问题.
二、合作探究,感受新知 1.问题探究
(1)正方体的六个面是全等的正方形,如果正方体的棱 长为x,表面积为y,那么y与x的关系可以怎样表示?
(2)n边形的对角线数d与边数n之间有怎样的关系? 教师适时引导、点拨,然后由小组推荐三名学生板书三 个问题,其他小组学生讲评.
15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。2021年8月2021/8/102021/8/102021/8/108/10/2021
16、提出一个问题往往比解决一个更 重要。 因为解 决问题 也许仅 是一个 数学上 或实验 上的技 能而已 ,而提 出新的 问题, 却需要 有创造 性的想 像力, 而且标 志着科 学的真 正进步 。2021/8/102021/8/10August 10, 2021
y=20x2+40x+20. 教师对问题(3)引导: ①这种产品的原产量是多少? ②一年后的产量是多少? ③再经过一年后的产量是多少? ④两年后的产量与x有怎样的关系? 学生在自主探究的基础上,尝试分析问题,解决问题, 小组交流.
2.观察思考 请观察下面三个式子,它们的变量对应规律可用怎样的
函数表示?这些函数有什么共同特点?请你结合学习一次函 数概念的经验,给它下个定义.
人教版九年级上册 难点攻关二次函数和图形面积 学案(无答案)
人教版九年级上册 难点攻关二次函数和图形面积 学案(无答案) 1 / 3 难点攻关 二次函数与图形面积 【方法归纳】寻找与面积有关的线段,将线段转化为坐标建立方程。 一、平移等积转换法 利用等积变换(如下图1中,若AB//CD,则S ΔABC=SΔABD,图2中AB=BD,则S ΔABC=SΔBCD)
图1ABCD 图2 ADCB 1.如图,已知抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于C点。点P在抛物线上且在x轴上方,SΔPBC=6,求P点坐标
解:过P作PQ//BC交y轴于点Q,则
SΔPBC=SΔQBC=12CQ*OB=12×CQ×3=6,∴CQ=4, 又C(0,-3),∴Q(1,0) ∵kBC=1, PQ//BC ∴PQ:y=x+1
解方程组y=x+1y=x2-2x-3 得x=-1y=0或x=4y=5 ∴P点坐标为(-1,0)或(4,5)
2. 如图,已直线AB:y=-12x+3与抛物线y=12x2交于A、B两点,在直线AB下方的抛物线上求点P,使△ABP的面积等于5 解:直线y=-12x+3与y轴交于点N(03),在y轴上取点Q(0,1),SΔABQ=5
Q作PQ//AB交抛物线于P,则PQ的解式为y=-12x+1
解y=-12x+1 y=12x2 得 x=-2y=2, x=1y=12 ∴P点标为P1(-2,2),P2(1,12)
QQCBAx
yP
PNB
A
Ox
y
Q人教版九年级上册 难点攻关二次函数和图形面积 学案(无答案)
2 / 3 二、铅垂法求面积 如下图,若CD//y轴,则S△ABC=12CD(xB-xA),利用这个结论求三角形面积很方便。
ACB
x
y
D
3.已知抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于C点,点P在抛物线上,且在第四象限,若S△PBC=3,求P点坐标。
ABO
x
y
解:(方法一)过P点作直线PM∥BC,交x轴于M点, S△MBC=12×3×BM=3, ∴BM=2 ∴M(5,0) ∴PM:y=x-5, 解y=x-5y=x2-2x-3得,P1(1,-4)或P2(2,-3) 方法二,过P点作直线PN∥y轴交BC于N点, S△BCP=12×3×PN=3 ∴ PN=2 ∴P(m,m2-2m-3),N(m,m-3),∴m-3-(m2-2m-3)=2,∴m1=1,m2=2 可得P1(1,-4)或P2(2,-3)