九年级数学重难点突破专题

合集下载

初中数学教学重难点的突破

初中数学教学重难点的突破

初中数学教学重难点的突破
初中数学教学的重点和难点集中在以下几个方面:
1. 算法和公式的掌握:初中数学的基本计算和数学公式是学生理解和掌握数学知识的基础,教师可以通过举一些生动的生活实例引导学生掌握算法和公式。

2. 几何知识的理解与应用:初中数学中的几何学知识涉及空间想象、图形变换等方面,学生需要通过绘图、模拟等方法加强对几何知识的理解。

3. 方程式的理解与应用:初中数学中的方程式知识反映了数学中的代数思想,学生需要通过实验、练习等方式掌握方程解决问题的基本方法和技巧。

4. 统计和概率知识的掌握:初中数学也涉及到概率和统计学方面的知识,这些知识需要老师通过课程设计和案例分析等方式让学生理解。

教师应该把握以下几点,突破初中数学教学的重点和难点:
1. 提高教学兴趣:老师可以参考多种办法,如通过生活化、趣味化的授课方式来吸引学生的兴趣。

2. 强化练习和巩固:在课堂授课与讲解的前提下,利用例题和练习等方式帮助学生理解与掌握所学的重点内容。

3. 考试压力的缓解:初中是中小学生教育转型的关键期,考试成绩和评估体系对学生未来的升学方向产生重要的影响。

老师应该多方面引导学生,减少考试压力,更好地达到教学目标。

中考数学重难点突破专题一:规律探索型问题试题(含答案)

中考数学重难点突破专题一:规律探索型问题试题(含答案)

精品基础教育教学资料,仅供参考,需要可下载使用!专题一 规律探索问题类型1 数字规律1.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2020时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是__337__分.解析:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n 个数为1+3(n -1)=3n -2,3n -2=2020,则n =674,甲报出了674个数,一奇一偶,所以偶数有674÷2=337个,得337分.2.如图,给正五边形的顶点依次编号为1,2,3,4,5,若从某一顶点开始,沿五边形的边顺时针行走,顶点编号是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”,则他所处顶点的编号为__3__.3.(2017·六盘水)计算1+4+9+16+25+…的前29项的和是__8555__.解析:12+22+32+42+52+…+292+…+n 2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n -1)n +n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n -1)n]=n (n +1)2+{13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+13(3×4×5-2×3×4)+…+13[(n -1)·n·(n +1)-(n -2)·(n -1)·n]}=n (n +1)2+13[(n -1)·n·(n +1)]=n (n +1)(2n +1)6, ∴当n =29时,原式=29×(29+1)×(2×29+1)6=8555. 类型2 图形规律4.(2017·天水)观察下列的“蜂窝图”则第n 个图案中的“”的个数是__3n +1__.(用含有n 的代数式表示)5.(2017·临沂)将一些相同的“○“按如图所示摆放,观察每个图形中的“○“的个数,若第n 个图形中“○“的个数是78,则n 的值是( B )A .11B .12C .13D .14解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n 个图形有1+2+3+…+n =n (n +1)2个小圆;∵第n 个图形中“○“的个数是78,∴78=n (n +1)2,解得:n 1=12,n 2=-13(不合题意舍去).6.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为( C )A .121B .362C .364D .729解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,类型3 坐标变化规律7.在平面直角坐标系中,对于平面内任一点(a ,b),若规定以下三种变换:①△(a ,b)=(-a ,b);②○(a ,b)=(-a ,-b);③Ω(a ,b)=(a ,-b),按照以上变换例如:△(○(1,2))=(1,-2),则○(Ω(3,4))等于__(-3,4)__.8.(2017·衢州)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚3次后点B的对应点的坐标是__(5,3)__,翻滚2017次后AB 中点M 经过的路径长为 (134633+896)π .解析:如图作B 3E ⊥x 轴于E ,易知OE =5,B 3E =3,∴B 3(5,3),观察图象可知三次一个循环,一个循环点M 的运动路径为120·π·3180+120π·1180+120π·1180=(23+43)π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672·(23+43)π+233π=(134633+896)π.9.(2017·菏泽)如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y =-33x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y =-33x 上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为__(-9-93,9+33)__.解:观察图象可知,O 12在直线y =-33x 时,OO 12=6·OO 2=6(1+3+2)=18+63, ∴O 12的横坐标=-(18+63)·cos30°=-9-93,O 12的纵坐标=12OO 12=9+33,∴O 12(-9-93,9+33). 10.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( C )A .2B .3C .4D .5解析:如图,∵到直线l 1的距离是l 的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离为2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上,∴“距离坐标”是(1,2)的点是M 1,M 2,M 3,M 4,一共4个.11.(2017·绍兴模拟)在平面直角坐标系中,对图形F 给出如下定义:如图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度.例如,图中的矩形ABCD 的坐标角度是90°.现将二次函数y =ax 2(1≤a ≤3)的图象在直线y =1下方的部分沿直线y =1向上翻折,则所得图形的坐标角度α的取值范围是( B )A .30°≤α≤60°B .60°≤α≤90°C .90°≤α≤120°D .120°≤α≤150°12.(2017·昆山二模)赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x 轴和y 轴,大正方形的顶点B 1,C 1,C 2,C 3,…,C n 在直线y =-12x +72上,顶点D 1,D 2,D 3,…,D n 在x 轴上,则第n 个阴影小正方形的面积为__(23)2n -2__.解:设第n 个大正方形的边长为a n ,则第n 个阴影小正方形的边长为55a n,当x =0时,y =-12x +72=72,∴72=55a 1+52a 1,∴a 1= 5.∵a 1=a 2+12a 2,∴a 2=235,同理可得:a 3=23a 2,a 4=23a 3,a 5=23a 4,…,∴a n =(23)n -1a 1=5(23)n -1,∴第n 个阴影小正方形的面积为(55a n )2=[(23)n -1]2=(23)2n -2.。

第二十三章 旋转(易错28题5个考点)(原卷版)九年级数学上册《重难点题型 高分突破》(人教版)

第二十三章 旋转(易错28题5个考点)(原卷版)九年级数学上册《重难点题型 高分突破》(人教版)

第3单元旋转(易错28题5个考点)一.利用轴对称设计图案(共1小题)1.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).二.旋转的性质(共20小题)2.如图,将△ABC绕点A逆时针旋转40°至△ADE,点B、C的对应点分别为点D、E,下列结论中不一定正确的是()A.∠BAD=40°B.∠B=70°C.∠DAC=40°D.∠ADE=70°3.边长相等的两个正方形ABCD和OEFG如图所示,若将正方形OEFG绕点O 按顺时针方向旋转120°,在旋转的过程中,两个正方形重叠部分四边形OMAN的面积()A.先增大再减小B.先减小再增大C.不断增大D.不变4.如图,将△ABC绕点A逆时针旋转一定角度得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.65°B.70°C.75°D.85°5.如图,在Rt△ABC中,∠ACB=90°,∠B=70°,将Rt△ABC绕点C顺时针旋转角度α(0°<α<180°)得到Rt△A1B1C,使得A1、B1、A三点共线,则α的度数为()A.110°B.120°C.130°D.140°6.如图,将△ABC绕点A逆时针旋转60°得到△ADE,若∠E=70°且AD⊥BC于点F,则∠BAC的度数为()A.65°B.70°C.75°D.80°7.如图,在△ABC中,AB=2,将△ABC以点A为旋转中心按逆时针方向旋转60°,得到△AB'C',连接BB',则BB'等于()A.1B.2C.3D.48.如图,直线c与直线a相交于点A,与直线b相交于点B,∠1=130°,∠2=60°,若要使直线a∥b,则将直线a绕点A按如图所示的方向至少旋转()A.10°B.20°C.60°D.130°9.如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD 绕点A旋转后得到△ACE,则CE的长度为()A.6B.5C.3D.210.如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,且这两个正方形的边长都为2.若正方形A1B1C1O绕点O转动,则两个正方形重叠部分的面积为()A.16B.4C.1D.211.如图,点A、B、C、D、O都在方格纸的格点上,若△COD可以由△AOB 旋转得到,则合理的旋转方式为()A.绕点O顺时针旋转90°B.绕点D逆时针旋转60°C.绕点O逆时针旋转90°D.绕点B逆时针旋转135°12.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.13.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D 恰好落在AB上,且∠AOC=105°,则∠C的度数是.14.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2018的坐标为.15.如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为.16.如图,直线PQ∥MN,点A在PQ上,直角△BEF的直角边BE在MN上,且∠EBF=90°,∠BEF=30°.现将△BEF绕点B以每秒1°的速度按逆时针方向旋转(E,F的对应点分别是E′,F′),同时,射线AQ绕点A以每秒4°的速度按顺时针方向旋转(Q的对应点是Q′).设旋转时间为t秒(0≤t≤45).(1)∠MBF′=.(用含t的代数式表示)(2)在旋转的过程中,若射线AQ′与边E′F′平行时,则t的值为.17.如图,长方形ABCD中AB=2,BC=4,正方形AEFG的边长为1.正方形AEFG绕点A旋转的过程中,线段CF的长的最小值为.18.阅读下面材料,并解决问题:(1)如图①等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段P A、PB、PC转化到一个三角形中,从而求出∠APB=;(2)基本运用请你利用第(1)题的解答思想方法,解答下面问题已知如图②,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2;(3)能力提升如图③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.19.如图,将△ABC绕点A逆时针旋转60°得到△AEF,点E落在BC边上,EF与AC交于点G.(1)求证:△ABE是等边三角形;(2)若∠ACB=28°,求∠FGC的度数.20.如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC =90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.(1)求证:AD=DE;(2)求∠DCE的度数;(3)若BD=1,求AD,CD的长.21.如图,P是等边△ABC内的一点,且P A=5,PB=4,PC=3,将△APB绕点B逆时针旋转,得到△CQB.(1)旋转角为度;(2)求点P与点Q之间的距离;(3)求∠BPC的度数.三.中心对称图形(共3小题)22.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.23.下列图形中,绕着某个点旋转180°后可与本身重合的是()A.平行四边形B.等边三角形C.等腰直角三角形D.正五边形24.在①平行四边形、②正方形、③等边三角形、④等腰梯形、⑤菱形、⑥圆、⑦正八边形这些图形中,既是轴对称图形又是中心对称图形的是(填序号).四.关于原点对称的点的坐标(共2小题)25.在平面直角坐标系中,点P(﹣3,m2+1)关于原点的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限26.若点P(a﹣1,5)与点Q(5,1﹣b)关于原点成中心对称,则a+b=.五.坐标与图形变化-旋转(共2小题)27.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,)C.()D.(﹣1,1)28.如图,在平面直角坐标系中,将△OAB绕着旋转中心顺时针旋转90°,得到△CDE,则旋转中心的坐标为()A.(1,4)B.(1,2)C.(1,1)D.(﹣1,1)。

九年级数学重点难点题

九年级数学重点难点题

九年级数学重点难点题
九年级数学重点难点题
一、代数表达式
1.求解代数式的值:给定代数式,求解该代数式的值是九年级数学中的重点难点。

学生需要理解变量的含义,并根据给定的数值替换变量,最终计算出代数式的值。

2.化简代数式:化简代数式是九年级数学中的难点之一。

学生需要运用各种代数运算规则,如合并同类项、分配律等,将复杂的代数式化简为简化形式。

二、方程与不等式
1.一元一次方程的解:解一元一次方程需要学生掌握方程的解的概念,运用逆运算原则解方程,同时需要注意特殊情况的处理。

2.一元一次不等式的解:解一元一次不等式也是九年级数学中的难点。

学生需要了解不等式的解的概念,并根据不等式的性质进行运算,最终确定不等式的解集。

三、平面图形
1.平面图形的性质:九年级数学中,学生需要掌握各种平面图形的性质,如三角形的内角和为180度、平行四边形的性质等。

理解和应用这些性质是解题的关键。

2.平面图形的相似与全等:判断平面图形的相似与全等是九年级数学中的重点难点。

学生需要比较图形的各个角度和边长,并运用相似和全等的判定条件进行推理判断。

四、统计与概率
1.频数统计与频率统计:九年级数学中的统计与概率部分,学生需要掌握频数统计和频率统计的概念,并且能够运用统计图表进行数据的分析和比较。

2.概率计算:概率计算是九年级数学中的难点之一。

学生需要理解概率的定义,掌握计算概率的方法,如事件的排列组合、事件的互斥与相容等。

以上是九年级数学中的重点难点题目,希望对学生的复习和备考有所帮助。

通过充分理解和掌握这些题目,学生可以更好地应对数学
考试中的各类问题。

初中数学知识点重难点攻略与突破

初中数学知识点重难点攻略与突破

初中数学知识点重难点攻略与突破数学作为一门重要的学科,是培养学生思维能力和逻辑思维的重要途径。

然而,对于许多初中学生来说,数学常常被认为是一门难以攻克的学科。

本文将针对初中数学知识点中的重难点进行分析,并提供一些攻略和突破的方法,帮助学生克服困难,提高数学成绩。

一、代数方程的解法代数方程作为初中数学的重要内容之一,常常是学生们头疼的难题。

其中,一元一次方程和一元二次方程是最为常见的类型。

对于一元一次方程,学生可以通过逐步运用等式性质和变形规则,利用逆运算找到方程的解。

而对于一元二次方程,学生可以通过配方法、因式分解、二次根式等方法来求解。

此外,对于复杂的方程,可以运用代数方程的性质,将其转化为简单的方程进行求解。

二、几何图形的性质和计算几何图形的性质和计算也是初中数学的难点之一。

例如,对于三角形的性质,学生需要熟练掌握三角形内角和为180度、等腰三角形底角相等、直角三角形斜边平方等于两直角边平方和等规律。

此外,对于平行线和垂直线的性质,学生需要了解平行线的判定方法和平行线与直线的交角关系。

在计算几何中,学生需要掌握计算图形的周长、面积和体积的方法,如矩形的周长和面积、圆的周长和面积等。

三、概率与统计概率与统计是初中数学中的另一个重要内容。

学生需要掌握概率的基本概念和计算方法,如事件的概率、互斥事件和相互独立事件的概率计算等。

此外,统计学也是初中数学中的难点之一。

学生需要了解如何收集和整理数据,并通过图表的形式进行展示和分析。

在统计学中,学生还需要掌握平均数、中位数、众数等概念和计算方法。

四、解决实际问题的能力数学的应用是培养学生实际问题解决能力的重要途径。

在数学学习中,学生需要将抽象的数学概念与实际问题相结合,通过建立数学模型来解决实际问题。

例如,在解决几何问题时,学生需要将几何图形的性质应用到实际情境中,找到解决问题的方法。

此外,对于代数方程的应用问题,学生需要将问题转化为代数方程,通过求解方程来得出答案。

冀教版-数学-九年级上册-平行线分线段成比例的基本事实重难点突破

冀教版-数学-九年级上册-平行线分线段成比例的基本事实重难点突破

平行线分线段成比例的基本事实重难点突破一、平行线分线段成比例的基本事实的探究突破建议1.平行线分线段成比例的基本事实,是后续学习相似三角形的判定的重要基础.对于这一基本事实的探究,可以从等距平行线入手,这样可以使学生更容易发现对应线段的比的关系,在此基础上通过改变平行线间的距离,再由学生动手测量、计算,进而发现事实.2.实际教学中,可以使用媒体技术,通过改变平行线的间距和被截线与平行线的夹角,进行动态演示,在图形的变化过程中发现对应线段的比不变的本质,从而更好地验证这一基本事实.例1 (1)如图1,两条直线m,n被三条平行线a,b,c所截,其中三条平行线的间距相等.通过观察、度量,你能说出AB.BC.DE.EF这四条线段的关系吗?(2)如图2,两条直线m,n被三条平行线a,b,c所截,其中三条平行线的间距不相等.通过观察、度量,你能说出AB.BC.DE.EF这四条线段的关系吗?解析:图1中,三条平行线间距相等,学生易于观察和分析对应线段间的关系,图2是在图1的基础上由特殊到一般,通过观察、度量、计算等手段,发现和认定对应线段的比相等.二、平行线分线段成比例基本事实应用于三角形中突破建议1.探究平行线分线段成比例的基本事实,主要目的是为了利用它的推论证明三角形相似的第一个定理.在条件允许时,易采用信息技术手段,通过平移被截线到特殊位置,形成三角形两边或其延长线被平行线所截的两种情形,可以使学生迅速将平行线分线段成比例的基本事实应用于三角形中.2.实际教学中,应当引导学生挖掘将平行线分线段成比例的基本事实应用于三角形中的两种基本图形──“A”和“X”型,并能正确识别对应线段,从而通过列出相应的比例式,求未知线段的长.例2 (1)如图3,在△ABC中,DE∥BC,AC=6 ,AB=5,EC=2.求AD和BD的长.图3(2)如图4,ED∥BC,AB=6,AC=8,AD=2,求AE的长.图4解析:两个问题中,都是将平行线分线段成比例的基本事实的推论的应用.两个问题放在一起,一方面让学生进一步熟悉基本图形,另一方面通过对比,能够正确写出比例式,从而求出未知线段长.。

2022年九年级中考数学冲刺难点突破 瓜豆原理与最值问题 训练

2022年九年级中考数学冲刺难点突破 瓜豆原理与最值问题 训练

瓜豆原理1.动点轨迹直线型最值问题【知识精讲】动点轨迹为一条直线时,利用“垂线段最短”求最值。

(1)当动点轨迹确定时可直接运用垂线段最短求最值(2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线。

②当某动点到某条直线的距离不变时,该动点的轨迹为直线。

③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线。

如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q点轨迹线段.【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).结论:P、Q两点轨迹所在直线的夹角等于∠P AQ(当∠P AQ≤90°时,∠P AQ等于MN与BC夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )【精典例题】1、如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A B C .1 D .22、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.3、如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______.4、如图,等边三角形ABC 的边长为4,点D 是直线AB 上一点.将线段CD 绕点D 顺时针旋转60°得到线段DE,连结BE.(1)若点D在AB边上(不与A,B重合)请依题意补全图并证明AD=BE;(2)连接AE,当AE的长最小时,求CD的长.2.动点轨迹圆或圆弧型最值问题动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。

学习新课标后初中数学教学重难点及突破策略

学习新课标后初中数学教学重难点及突破策略

学习新课标后初中数学教学重难点及突破
策略
一、新课标初中数学教学重难点:
1、函数概念的认识:函数的概念是新课标数学课程的重要组成部分,学生要掌握函数的概念,能够正确地理解函数的定义、性质和运算规律,掌握函数的分类、求解方法及其应用。

2、几何图形的认识:几何图形在新课标数学中占有重要的地位,学生要掌握平面几何图形的基本概念,能够正确地理解几何图形的定义、性质和运算规律,掌握图形的分类、求解方法及其应用。

3、数列的认识:数列是新课标数学课程的重要组成部分,学生要掌握数列的概念,能够正确地理解数列的定义、性质和运算规律,掌握数列的分类、求解方法及其应用。

4、概率论的认识:概率论是新课标数学课程的重要组成部分,学生要掌握概率论的概念,能够正确地理解概率论的定义、性质和运算规律,掌握概率论的分类、求解方法及其应用。

二、新课标初中数学教学突破策略:
1、充分调动学生学习积极性:新课标数学课程的内容较多,学生的学习积极性很容易降低,因此,教师要充分调动学生的学习积极性,采用多种激励措施,激发学生学习的热情,使学生在学习过程中保持较高的学习积极性。

2、多种教学方法的灵活运用:新课标数学课程的内容较多,学生的学习效果受多种因素的影响,因此,教师要灵活运用多种教学方法,提高学生的学习效率,使学生在学习过程中有效地掌握新课标数学课程的内容。

3、实践教学注重实践:新课标数学课程的内容较多,学生的学习效果受实践教学的影响,因此,教师要注重实践教学,采用案例教学、实验教学、讨论教学等多种形式,使学生在学习过程中有效地掌握新课标数学课程的内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15年期中考试重难点突破15年期中考试与往年相比,具有传承性,亦有突破,会是传统与创新、变革激烈碰撞的一年,要想取得好成绩,必须开阔视野,明确考试命题的方向,熟悉中考考点,章节重难点,易错点,易混淆点,自己问题所在,逐一突破,才能在考试中立于不败之地——稳定可靠,藉此讲义,助你成功。

中考考点:一、一元二次方程:三大陷阱:①二次项系数a ≠0;②利用关于x 1,x 2的等式求未知字母系数的值时,验△;③关于方程的类型的分类讨论;中考考点:①利用方程根的定义求代数式的值;(整体代入法,若结合一元二次方程根与系数的关系,还需要注意降次思想)②解一元二次方程;(配方法,熟练理解记忆公式法,含字母系数的十字相乘因式分解法,二次项系数不为1的因式分解法,可化为一元二次方程的分式方程的解法及步骤,高次方程与整体思想注意验△)③韦达定理及根与系数的关系;(据根的分布,求字母系数的取值或范围时注意字母所在位置或利用配方法判断方程根的分布,会求含x 1,x 2的对称式的值及利用构造法求值(非对称式要结合根的定义),注意含x 1,x 2的绝对值的问题的常用解题策略,⑤一元二次方程的应用;常见题型:面积问题(注意平移,分割拼接转化为特殊图形,立体转化为平面)、经济型问题(归一法),单循环、双循环问题(会以选择题形式出现)。

新变化:一元二次方程解决几何图形中的计算问题;(动点位置或运动时间,线段最值,等腰三角形分类讨论,直线与圆的位置关系) 一、一元二次方程:1、如图,正方形ABCD 的边长为2,M 为AD 的中点,N 在边CD 上且∠NMB=∠MBC ,MN 的延长线与BC 的延长线交于点G ,则GN 的长是 。

2、如图,平面直角坐标系中,点M 是直线y=2与x 轴之间的一个动点,且点M 是抛物线c bx x y ++=221的顶点,则方程1212=++c bx x 的解的个数是( ) A 、0或2 B 、0或1 C 、1或2 D 、0或1或23、二次函数y=ax 2+bx+c (a ≠0)图象如图,下列结论:①abc >0;②2a+b=0;③当m ≠1时,a+b >am 2+bm ;④a-b+c >0;⑤若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,x 1+x 2=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤4、已知方程x 2-2(m 2-1)x+3m=0的两个根是互为相反数,则m 的值是( ) A .m=±1 B .m=-1 C .m=1 D .m=0G N DC B AP 1PC 1A 1ECBA 5、定义:如果一元二次方程02=++c bx ax (a ≠0)满足0=++c b a ,那么我们称这个方程为“凤凰”方程. 已知02=++c bx ax (a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是A .a=cB .a=bC .b=cD .a=b=c 练习:1、若x 满足方程(x 2-x )2-(x 2-x )-6=0,则x 2-x=________2、一元二次方程x 2-3x-1=0与一元二次方程x 2-x+3=0的所有实根的和为______。

3、函数y=(m+1)x 2+2mx+(m-3)的图象与x 轴有一个公共点,则m=_______.4、若4x 2+(2k-1)x+9是一个完全平方式,则k=____________. 5、 已知x ≠y,x 2+2x=3,y 2+2y=3,则x+y=____;xy=______6、解方程:x 2-(23+1)x+3+3=0 ;x 2+2nx+n 2-4=07、如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( )A.k >14-B.k >14-且0k ≠C.k <14-D.14k ≥-且0k ≠ 8、已知方程20x bx a ++=有一个根是()0a a -≠,则下列代数式的值恒为常数的是( )A 、abB 、abC 、a b +D 、a b - 9、设x 1和x 2是关于x 的一元二次方程x 2+(2m+1)x+m 2+1=0的两实数根且|x 1|+|x 2|=3,求m旋转:1、如图,在⊿ABC 中,∠A ﹤90°,∠C=30°,AB=4,BC=6,E 为AB 的中点,P 为AC边上一动点,将⊿ABC 绕点B 逆时针旋转α角(︒≤<︒3600α)得到11BC A ∆,点P 的对应点为1P ,连1EP ,在旋转过程中,线段1EP 的长度的最小值是( )A.13- B. 1 C. 23D. 22、如右图,⊿ACB 和⊿ECD 都是等腰直角三角形,⊿ACB 的 顶点A 在⊿ECD 的斜边DE 上,若31=AD AE ,则BCBD= 。

1、如图,四边形ABCD 、BEFG 均为正方形,(1)如图1,连接AG 、CE ,判断AG 和CE 的数量关系和位置关系并证明; (2)将正方形BEFG 绕点B 顺时针旋转β角(0°<β<180°),如图2,连接AG 、CE 相交于点M ,连接MB ,求∠EMB 的度数.(3)若BE=2,BC=6,连接DG, 将正方形BEFG 绕点B 顺时针旋转β角(0°<β<180°),则在这个旋转过程中线段DG 长度的取值范围_______ (直接填空,不写过程).例:已知△ABC ,AB=AC ,∠BAC=2m °,∠ADE=90°,∠DAE=m °G 为BE 中点,H 为BC 中点。

(1)若E 在AC 上,则___=GHGD,_____=∠DGH (2)证明你的结论;(3)将△ADE 绕A 点顺时针旋转一定的角度,其他条件不变,(1)中结论是否仍然成立,证明你的结论。

二次函数: 例:若1212,()x x x x <是关于x 的方程()()()x a x b a b a b --=-<的两个根,则实数12,,,x x a b 的大小关系为A.12x x a b <<<B. 12x a b x <<<C. 12a x x b <<<D. 12a xb x <<< 练习:1、抛物线c ax ax y ++=22上有两点A (t ,2)、B (-t-2,m ),则m=_____. 2、抛物线26y ax ax a =-+的顶点与原点的距离为5,则a =__________.3、已知抛物线22-+=x x y 与直线m x y -=5没有公共点,则m 的取值范围是( ) A. 6<m B.6>m C.6≤m D. 2≥m4、如图,抛物线c bx ax y ++=2分别交坐标轴于A(-2,0)、B(6,0)、 C(0,4),则402<++≤c bx ax 的解集是 。

A B C D E GH A B CD EG H_y_x CABO压轴题:例:已知直线L :k kx y 5+= (k ≠0)与x 轴交于A 点,抛物线的解析式为1412+=x y 。

(1) 直接写出A 点坐标; (2)直线L 与抛物线1412+=x y 交于B 、C 两点,过B 、C 分别作x 轴的垂线,垂足分别为M 、N ,求AN AM ⋅的值;(3)P 为抛物线上任一点,过P 作PQ ⊥x 轴,Q 为垂足,以P 为圆心,PQ 为半径作圆,圆总会经过y 轴上一定点D ,求D 点到直线L 的距离的最大值。

练习:如图,抛物线322++-=ax ax y 与x 轴交于A 、B 两点,与y 轴交于C 点,顶点为D 点,△ABC 的面积为6,已知P (1,t )(t >0)。

(1)求抛物线的解析式;(2)抛物线上是否存在点M ,使得△MBC 的面积为49,若存在,请求出M 点坐标;若不存在,请说明理由;(3)问是否存在实数t ,使得以P 点为圆心的⊙P 恰好在线段AB 和线段BD 上截得的线段长相等,若存在,请求出此时的t 值;若不存在,请说明理由2、某校数学兴趣小组在研究二次函数及其图象问题时,发现了三个结论:①抛物线322++=x ax y (a ≠0),当实数a 变化时,它的顶点都在某条直线1λ上,某点Q 除外;②抛物线32++=bx x y ,当b 变化时,它的顶点都在某条抛物线1f 上; ③如图1,二次函数a c bx ax y (2++=>0)的图象与x 轴的两个交点为A (1x ,0)、B (2x ,0),顶点为C ,若△ABC 为直角三角形,则m ac b =-42; (1)求直线1λ的解析式及Q 点坐标; (2)求抛物线1f 的解析式及m 的值;(3)如图2,将直线1λ沿y 轴向下平移k 个单位得直线2λ,将抛物线1f 沿直线1λ平移得抛物线2f ,若直线2λ与抛物线2f 两个交点P 、Q 间的距离不小于25,求k 的取值范围.3、如图所示,已知直线与x 轴、y 轴分别交于A 、C 两点,抛物线c bx x y ++-=2经过A 、C 两点,点B 是抛物线与x 轴的另一个交点,当21-=x 时y 取最大值425(1)求抛物线和直线的解析式;(2)设点P 是直线AC 上一点,且S △ABP :S △BPC =1:3,求点P 的坐标; (3)直线a x y +=21与(1)中所求的抛物线交于点M 、N ,两点,问: ①是否存在a 的值,使得∠MON=90°?若存在,求出a 的值;若不存在,请说明理由. ②猜想当∠MON >90°时,a 的取值范围.(不写过程,直接写结论)xxyyOOA BCPQ二、圆:例:已知:如图,AB 是半圆的直径,AC 是一条弦,D 是中点,DE ⊥AB 于E ,交AC于F ,DB 交AC 于G .(1)求证:AF =FG .(2)若AC=8cm ,AB=10cm,求AE 和DG 的长。

练习:1、如图,R t △ABC 中,∠ACB=90°,CD ⊥AB 于D 点,以CD 为半径作⊙C 与AE 切于E 点,过B 点作BM ∥AE 。

(1) 求证:BM 为⊙C 的切线;(2) 作DF ⊥BC 于F 点,连接EF 交AC 于G 点,若AB=16,∠DBM=60°,求CG 的长。

2、如图,△ABC 内接于⊙O ,AD 平分∠BAC 交⊙O 于D 点,交BC 于E 点,CI 平分∠ACB 交AD 于I 点。

(1)求证:DI=DB ;(2)连接OI ,若OI ⊥AD,BC=4,求△ABC 的周长。

3、如图,P 为⊙O 内一定点,A 为⊙O 上一动点,射线AP 、AO 分别与⊙O 交于B 、C 两点,若⊙O 的半径为3,OP=3,则弦BC 的最大值为__________三、近期新题型:⑵动点问题,全等变换:例:如图,在正方形ABCD 中,点P 在边AB 上从点A 向点B 运动,连接DP 交AC 于点Q.(1)若∠APQ=67.5°,求证:CQ=AD ;(2)如图2,点E 在AB 上,且BE=AP ,求证:C E ⊥BQ ;(3)若AD=4,当点P 从点A 运动到点B ,再继续在边BC 上运动至点C ,在以上整个的运动过程中,当点P 运动到什么位置时,△ADQ 恰好为等腰三角形,请直接写出点P 的位置是______________.ABC D ABC D PQ P QEA E DB MC GFA B C DEOI⑶一元二次方程与几何问题: 1、如图1,△ABC 、△AED 都是等腰直角三角形,∠ABC=∠E=90°,AE=a ,AB=b ,且(a<b ) 点D 在AC 上,连接BD ,BD=c. (1)如果c=25a ,① 求b a 的值;②若a 、b 是关于x 的方程0535225122=+-+-m m mx x 的两根,求m ;(2)如图2,将△AED 绕点A 逆时针旋转,使BE=100,连接DC ,求五边形ABCDE 的面积。

相关文档
最新文档