电磁学课后习题答案

合集下载

大学物理电磁学课后作业答案(清华大学出版社)

大学物理电磁学课后作业答案(清华大学出版社)

1
I A
2
O
I2 I C
B1
大小:B1
0 I1
2R
2 2
0 I
2R
2
2 2
方向: ⊙
I2在圆心处产生
B2
大小:B2
0 I2
2R
2
0 I 2 2R 2 2
方向:
B1 B2 0 ∴圆心处的总磁感应强度为0.
8.5解:
d
(1)所求磁感应强度方向:⊙ I1 大小为
l I2
dB dt
L 2
R2 L2 / 4 dB dt
方向:a →b(可由楞次定律判断),b端电势高。
∴整个带电直线在P点的场强大小为
E
dE
L/ 2 L/ 2
dx 4 0 ( r
x
)2
L 4 0 ( r 2
L2
/
4)
方向沿X轴正向。
1.11解(弥补法):
设电荷线密度为,缝隙宽为d. 先补上 d ,构成完整的圆 环,
其在圆心处的场强为 EO1 0.
o
R●
E0 d
再补上 - d ,可视作点电荷,
∴所求磁通量为
21
0 I1l
ln r1 r2 r1
2.2 106Wb
8.28解:
(1)
Id
0 S板
dE dt
0R2
dE dt
8.85 1012 0.052 1.0 1012 7.0 102 A
(2) 以极板边缘线作为安培回路L,则
B dl
0 Id
B
0 Id 2R
B 2 0 I 4.0 105T 2 d / 2
O
x x+dx

张三慧《大学物理学:力学、电磁学》(第3版)(B版)(课后习题 静电场中的导体)【圣才出品】

张三慧《大学物理学:力学、电磁学》(第3版)(B版)(课后习题 静电场中的导体)【圣才出品】

第9章 静电场中的导体9.1 求导体外表面紧邻处场强的另一方法。

设导体面上某处面电荷密度为σ,在此处取一小面积ΔS,将ΔS 面两侧的电场看成是ΔS 面上的电荷的电场(用无限大平面算)和导体上其他地方以及导体外的电荷的电场(这电场在ΔS 附近可以认为是均匀的)的叠加,并利用导体内合电场应为零求出导体表面紧邻处的场强为σ/ε0(即教材式(8.2))。

解:如图8-1所示,导体表面小面积ΔS 上所带电荷在它的两侧分别产生场强为σ/2ε的电场E'1和E'2,ΔS以外的电荷在ΔS 附近产生的电场为E",可视为均匀的。

由电场叠加原理,在ΔS 的导体内一侧应有于是在ΔS的导体外一侧,则合电场应为这说明E ex 的大小为2σ/(2ε0)=σ/ε0,而其方向垂直于导体表面。

图8-19.2 一导体球半径为R1,其外同心地罩以内、外半径分别为R2和R3的厚导体壳,此系统带电后内球电势为φ1,外球所带总电量为Q 。

求此系统各处的电势和电场分布。

解:设内球带电为q 1,则球壳内表面带电将为-q1,而球壳外表面带电为q 1+Q ,这样就有由此式可解得于是,可进一步求得9.3 在一半径为R1=6.0 cm 的金属球A 外面套有一个同心的金属球壳B 。

已知球壳B 的内、外半径分别为R2=8.0 cm ,R3=10.0 cm 。

设A 球带有总电量QA =3×10-8 C ,球壳B 带有总电量QB =2×10-8C 。

(1)求球壳B 内、外表面上各带有的电量以及球A 和球壳B 的电势;(2)将球壳B 接地然后断开,再把金属球A 接地。

求金属球A 和球壳B内、外表面上各带有的电量以及球A 和球壳B 的电势。

解:(1)由高斯定律和电荷守恒可得球壳内表面带的电量为球壳外表面所带电量为于是(2)B 接地后断开,则它带的总电量变为然后球A 接地,则φ'a=0。

设此时球A 带电量为q'A ,则由此解得9.4 一个接地的导体球,半径为R ,原来不带电。

程稼夫电磁学第二版第一章习题解析

程稼夫电磁学第二版第一章习题解析

程稼夫电磁学篇第一章《静电场》课后习题1-1设两个小球所带净电荷为q,距离为l,由库仑定律:由题目,设小球质量m,铜的摩尔质量M,则有:算得1-2 取一小段电荷,其对应的圆心角为dθ:这一小段电荷受力平衡,列竖直方向平衡方程,设张力增量为T:解得1-3(1)设地月距离R,电场力和万有引力抵消:解得:(2)地球分到,月球分到,电场力和万有引力抵消:解得:1-4设向上位移为x,则有:结合牛顿第二定律以及略去高次项有:1-5由于电荷受二力而平衡,故三个电荷共线且q3在q1和q2之间:先由库仑定律写出静电力标量式:有几何关系:联立解得由库仑定律矢量式得:解得1-6(1)对一个正电荷,受力平衡:解得,显然不可能同时满足负电荷的平衡(2)对一个负电荷,合外力提供向心力:解得1-7(1)设P限制在沿X轴夹角为θ的,过原点的直线上运动(θ∈[0,π)),沿着光滑直线位移x,势能:对势能求导得到受力:小量近似,略去高阶量:当q>0时,;当q<0时,(2)由上知1-8设q位移x,势能:对势能求导得到受力:小量展开有:,知1-9(1)对q受力平衡,设其横坐标的值为l0:,解得设它在平衡位置移动一个小位移x,有:小量展开化简有:受力指向平衡位置,微小谐振周期(2)1-101-11先证明,如图所示,带相同线电荷密度λ的圆弧2和直线1在OO处产生的电场强度相等.取和θ.有:显然两个电场强度相等,由于每一对微元都相等,所以总体产生的电场相等.利用这一引理,可知题文中三角形在内心处产生的电场等价于三角形内切圆环在内心处产生的电场.由对称性,这一电场强度大小为0.1-12(1)如图,取θ和,设线电荷密度λ,有:积分得(2)(3)用圆心在场点处,半径,电荷线密度与直线段相等的,张角为θ0 ()的一段圆弧替代直线段,计算这段带电圆弧产生的场强大小,可以用其所张角对应的弦长与圆弧上单位长度所产生的电场强度大小的积求得:1-13我们先分析一个电荷密度为ρ,厚度为x的无穷大带电面(图中只画出有限大),取如图所示高斯面,其中高斯面的两个相对面平行于电荷平面,面积为S,由高斯定理:算得,发现这个无穷大平面在外部产生的电场是匀强电场,且左右两边电场强度相同,大小相反.回到原题,由叠加原理以及,算得在不存在电荷的区域电场强度为0(正负电荷层相互抵消.)在存在电荷的区域,若在p区,此时x处的电场由三个电荷层叠加而成,分别是左边的n区,0到x范围内的p区,以及右边的p区,有:,算得同理算出n区时场强,综上可得1-14(1)取半径为r的球形高斯面,有:,解得(2)设球心为O1,空腔中心为O2,空腔中充斥着电荷密度为−ρ的电荷,在空腔中任意一点A处产生的电场为:(借助第一问结论)同时在A处还有一个电荷密度为+ρ则有:1-15取金属球上一面元d S,此面元在金属球内侧产生指向内的电场强度,由于导体内部电场处处为0,所以金属球上除该面元外的其他电荷在该面元处产生的电场强度为所以该面元受到其他电荷施加的静电力:球面上单位面积受力大小:半球面受到的静电力可用与其电荷面密度相等的,该半球面的截口圆面的面积乘该半球面的单位面积受力求得:1-16设轴线上一点到环心距离为x,有:令其对x导数为0:解得1-17写出初态体系总电势能:1-18系统静电势能大小为:1-19由对称性,可以认为四个面分别在中心处产生的电势,故取走后,;设BCD,ACD,ABD在P2处产生的电势为U,而ABD在P2处产生的电势为,有:;取走后:,解得1-20构造如下六个带电正方体(1到6号),它们的各面电荷分布彼此不相同,但都能通过一定的旋转从程中电荷直接相加而不重新分布).这个带电正方体各面电势完全相同,都为.容易证明,正方体内部的每一个点的电势也都为(若不然,正方体内部必存在电场线,这样的电场线必定会凭空产生,或凭空消失,或形成环状,都与静电场原理不符).故此时中心电势同样为1-21 O4处电势:O1处电势:故电势差为:1-22从对称性方面考虑,先将半球面补全为整个球面.再由电势叠加原理,即一个半球面产生的电势为它的一半,从而计算出半球面在底面上的电势分布.即1-23设上极板下版面面电荷密度为,下极板上版面面电荷密度为.取一个长方体型的高斯面,其形状是是两极板中间间隔的长方体,并且把和囊括进去.注意到金属导体内部没有电场,故这个高斯面电通量为0,其中净电荷为0,有:再注意到上下极板电势相等,其中E1方向向上,E2方向向下:再由高斯定理得出的结论:解得1-24先把半圆补成整圆,补后P、Q和O.这说明,新补上的半圆对P产生的电势为,而由于对称性,这个电势恰好也是半球面ACB对Q产生的电势.故:1-25在水平方向上,设质点质量m,电量为q:运动学:整体带入得:1-26(1)先将半球面补全为整个球面,容易计算出此时半球底面的电势.再注意到这个电势由对称的两个半球面产生的电势叠加得到,即一个半球面产生的电势为它的一半,即可求出一个半球面对底面产生的电势恒为定值,故底面为等势面,由E点缓慢移至A点外力做功为W1=0.(2)由上一问的分析知由E点缓慢移至O点外力不做功,记电势能为E,E的右下标表示所代表的点,则有:依然将半球面补为整球面,此时q在球壳内部任意一点电势能为2EO.此时对于T点,其电势能为上下两个球面叠加产生,由对称性,有:综上有W2=−W.1-27小球受电场力方程:将a与g合成为一个等效的g′:方向与竖直夹角再将加速度分解到垂直于g′和平行与g′的方向上.注意到与g′平行的分量最小为0,而垂直的分量则保持不变,故速度的最小值为垂直分量:1-28假设给外球壳带上电量q2,先考虑q2在内外表面各分布了多少.取一个以内球壳外表面和外球壳内表面为边界的高斯面,并把内球壳外表面和外球壳内表面上的电荷囊括进去,真正的高斯面边界在金属内部.由于金属内部无电场,高斯面电通量为0,高斯面内电荷总量为0,得到外球壳内表面分布了−q1电荷,外表面分布了q2+q1电荷.由电势叠加原理知球心处的电势:解得由电势叠加原理及静电屏蔽:1-29设质点初速度为v0,质量为m,加速度为a,有:,其中.设时竖直向下速度为v1,动能为Ek1,初动能为Ek0,有:解得1-30球1依次与球2、球3接触后,电量分别为.当球1、4接触时满足由于解得.注:若此处利用,略去二阶小量则可以大大简便计算,有意思的是,算出的答案与笔者考虑二阶小量繁重化简过后所得结果完全一致,这是因为在最后的表达式中没有r与a的和或差的项的缘故。

电磁学作业答案-精品

电磁学作业答案-精品

C AQ
B
AABA BEdl
x
EABdAB
(A、B板间是匀强电场, 方向沿x轴正向)
2345 20

4 0
d AB
dAB(因为425300)σ1
8.8 55 110 60 12410 3(V)
σ2 σ3
σ4 σ5
σ6
2.25103(V)
考察每个油滴所带的电量都否为上述基元电荷的整数倍:
6 .5 1 6 1 C 0 3 9 4 1 .6 1 4 1 C 0 1 9 1 .1 3 1 3 1 C 0 9 8 1 .6 1 4 1 C 0 1 9 1 .7 9 1 1 1 C 0 9 1 1 . 2 6 1 4 1 C 0 3 9 8 .2 1 0 1 C 0 4 9 5 1 .6 1 4 1 C 0 1 9 1 .4 6 1 8 1 C 0 9 1 1 . 0 6 1 4 1 C 0 8 9 2 .8 2 1 9 1 C 0 9 1 1 .4 6 1 3 1 C 0 5 9 1 .5 1 1 0 1C 0 9 7 1 .6 1 4 1C 0 3 9 1 .0 8 1 8 1 C 0 9 1 1 .1 6 1 4 1 C 0 4 9 2 .1 6 1 3 1 C 0 9 1 1 .6 6 1 3 1 C 0 3 9
根据对称性可知,正负电荷在x方向产生的电场互相抵消,
y
故: E xd E xd E x0
dq
正负电荷在y方向产生的电场相等,互相增强,故:

R
+q
θ
O
x
-q d E θ d E
Dq’ E
E

大学物理 I(力学、相对论、电磁学)_北京交通大学中国大学mooc课后章节答案期末考试题库2023年

大学物理 I(力学、相对论、电磁学)_北京交通大学中国大学mooc课后章节答案期末考试题库2023年

大学物理 I-(力学、相对论、电磁学)_北京交通大学中国大学mooc 课后章节答案期末考试题库2023年1.如图所示,一斜面固定在卡车上,一物块置于该斜面上。

在卡车沿水平方向加速起动的过程中,物块在斜面上无相对滑动。

此时斜面对物块的摩擦力的冲量的方向[ ]。

【图片】参考答案:沿斜面向上或向下均有可能2.如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的且固定在地面上,物体在从A至C的下滑过程中,下面哪个说法是正确的?[ ]【图片】参考答案:轨道支持力的大小不断增加3.一个质点在某一运动过程中,所受合力的冲量为零,则[ ]。

参考答案:质点的动量的增量为零_质点的动量不一定守恒4.关于质点系内各质点间相互作用的内力做功问题,以下说法中正确的是[ ]。

参考答案:一对内力所做的功之和一般不为零,但不排斥为零的情况5.下列说法中正确的是[ ]。

参考答案:系统内力不改变系统的动量,但内力可以改变系统的动能6.静止在原点处的某质点在几个力作用下沿着曲线【图片】运动。

若其中一个力为【图片】,则质点从O点运动到【图片】点的过程中,力【图片】所做的功为[ ]。

参考答案:12J7.质量为m=0.01kg的质点在xOy平面内运动,其运动方程为【图片】,则在t=0 到t=2s 时间内,合力对其所做的功为[ ]。

参考答案:2J8.如图所示,质量为M半径为R的圆弧形槽D置于光滑水平面上。

开始时质量为m的物体C与弧形槽D均静止,物体 C 由圆弧顶点 a 处下滑到底端 b 处的过程中,分别以地面和槽为参考系,M与m之间一对支持力所做功之和分别为[ ]。

【图片】参考答案:=0;=09.对质点系有以下几种说法:① 质点系总动量的改变与内力无关;② 质点系总动能的改变与内力无关;③ 质点系机械能的改变与保守内力无关;④ 质点系总势能的改变与保守内力无关。

在上述说法中[ ]。

参考答案:①和③是正确的10.质量分别为【图片】和【图片】的两个小球,连接在劲度系数为k的轻弹簧两端,并置于光滑的水平面上,如图所示。

电磁学经典练习题及答案之欧阳语创编

电磁学经典练习题及答案之欧阳语创编

高中物理电磁学练习题时间:2021.03.01 创作:欧阳语一、在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.1.如图3-1所示,有一金属箔验电器,起初金属箔闭合,当带正电的棒靠近验电器上部的金属板时,金属箔张开.在这个状态下,用手指接触验电器的金属板,金属箔闭合,问当手指从金属板上离开,然后使棒也远离验电器,金属箔的状态如何变化?从图3-1的①~④四个选项中选取一个正确的答案.[]图3-1A.图①B.图②C.图③D.图④2.下列关于静电场的说法中正确的是[]A.在点电荷形成的电场中没有场强相等的两点,但有电势相等的两点B.正电荷只在电场力作用下,一定从高电势向低电势运动C.场强为零处,电势不一定为零;电势为零处,场强不一定为零D.初速为零的正电荷在电场力作用下不一定沿电场线运动3.在静电场中,带电量大小为q的带电粒子(不计重力),仅在电场力的作用下,先后飞过相距为d的a、b两点,动能增加了ΔE,则[]A.a点的电势一定高于b点的电势B.带电粒子的电势能一定减少C.电场强度一定等于ΔE/dqD.a、b两点间的电势差大小一定等于ΔE/q4.将原来相距较近的两个带同种电荷的小球同时由静止释放(小球放在光滑绝缘的水平面上),它们仅在相互间库仑力作用下运动的过程中[]A.它们的相互作用力不断减少B.它们的加速度之比不断减小C.它们的动量之和不断增加D.它们的动能之和不断增加5.如图3-2所示,两个正、负点电荷,在库仑力作用下,它们以两者连线上的某点为圆心做匀速圆周运动,以下说法正确的是[]图3-2A.它们所需要的向心力不相等B.它们做圆周运动的角速度相等C.它们的线速度与其质量成反比D.它们的运动半径与电荷量成反比6.如图3-3所示,水平固定的小圆盘A,带电量为Q,电势为零,从盘心处O由静止释放一质量为m,带电量为+q的小球,由于电场的作用,小球竖直上升的高度可达盘中心竖直线上的c点,Oc=h,又知道过竖直线上的b点时,小球速度最大,由此可知在Q所形成的电场中,可以确定的物理量是[]图3-3A.b点场强B.c点场强C.b点电势D.c点电势7.如图3-4所示,带电体Q固定,带电体P的带电量为q,质量为m,与绝缘的水平桌面间的动摩擦因数为μ,将P在A点由静止放开,则在Q的排斥下运动到B点停下,A、B相距为s,下列说法正确的是[]图3-4A.将P从B点由静止拉到A点,水平拉力最少做功2μmgsB.将P从B点由静止拉到A点,水平拉力做功μmgsC.P从A点运动到B点,电势能增加μmgsD.P从A点运动到B点,电势能减少μmgs8.如图3-5所示,悬线下挂着一个带正电的小球,它的质量为m、电量为q,整个装置处于水平向右的匀强电场中,电场强度为E.[]图3-5A.小球平衡时,悬线与竖直方向夹角的正切为Eq/mgB.若剪断悬线,则小球做曲线运动C.若剪断悬线,则小球做匀速运动D.若剪断悬线,则小球做匀加速直线运动9.将一个6V、6W的小灯甲连接在内阻不能忽略的电源上,小灯恰好正常发光,现改将一个6V、3W的小灯乙连接到同电源上,则[]A.小灯乙可能正常发光B.小灯乙可能因电压过高而烧毁C.小灯乙可能因电压较低而不能正常发光D.小灯乙一定正常发光10.用三个电动势均为1.5V、内阻均为0.5Ω的相同电池串联起来作电源,向三个阻值都是1Ω的用电器供电,要想获得最大的输出功率,在如图3-6所示电路中应选择的电路是[]图3-611.如图3-10所示的电路中,R1、R2、R3、R4、R5为阻值固定的电阻,R6为可变电阻,A为内阻可忽略的电流表,V为内阻很大的电压表,电源的电动势为的滑动触头P向a端移动时,内阻为r.当R[]图3-10A.电压表V的读数变小B.电压表V的读数变大C.电流表A的读数变小D.电流表A的读数变大12.如图3-11所示的电路中,滑动变阻器的滑片P从a滑向b的过程中,3只理想电压表的示数变化的绝对值分别为ΔU1、ΔU2、ΔU3,下列各值可能出现的是[]图3-11A.ΔU1=3V、ΔU2=2V、ΔU3=1VB.ΔU1=1V、ΔU2=3V、ΔU3=2VC.ΔU1=0.5V、ΔU2=1V、ΔU3=1.5VC.ΔU1=0.2V、ΔU2=1V、ΔU3=0.8V13.如图3-12甲所示电路中,电流表A1与A2内阻相同,A2与R1串联,当电路两端接在电压恒定的电源上时,A1示数为3A,A2的示数为2A;现将A2改为与R2串联,如图3-12乙所示,再接在原来的电源上,那么[]图3-12A.A1的示数必增大,A2的示数必减小B.A1的示数必增大,A2的示数必增大C.A1的示数必减小,A2的示数必增大D.A1的示数必减小,A2的示数必减小14.如图3-13所示为白炽灯L1(规格为“220V,100W”)、L2(规格为“220V,60W”)的伏安特性曲线(I-U图象),则根据该曲线可确定将L1、L2两灯串联在220V的电源上时,两灯的实际功率之比大约为[]图3-13A.1∶2 B.3∶5 C.5∶3 D.1∶315.如图3-14所示的电路中,当R1的滑动触头移动时[]图3-14A.R1上电流的变化量大于R3上电流的变化量B.R1上电流的变化量小于R3上电流的变化量C.R2上电压的变化量大于路端电压的变化量D.R2上电压的变化量小于路端电压的变化量16.电饭锅工作时有两种状态:一种是锅内水烧干前的加热状态,另一种是锅内水烧干后保温状态,如图3-15所示是电饭锅电路原理示意图,S是用感温材料制造的开关.下列说法中正确的是[]图3-15A.其中R2是供加热用的电阻丝B.当开关S接通时电饭锅为加热状态,S断开时为保温状态C.要使R2在保温状态时的功率为加热状态时的一半,R1/R2应为2∶1D.要使R2在保温状态时的功率为加热状态时的一半,R1/R2应为(-1)∶117.如图3-16所示M为理想变压器,电源电压不变,当变阻器的滑动头P向上移动时,读数发生变化的电表是[]图3-16A.A1B.A2C.V1D.V218.如图3-17甲所示,两节同样的电池(内电阻不计)与滑线变阻器组成分压电路和理想变压器原线圈连接,通过改变滑动触头P的位置,可以在变压器副线圈两端得到图3-17乙中哪些电压? []图3-1719.如图3-18所示的电路中,L1和L2是完全相同的灯泡,线圈L的电阻可以忽略.下列说法正确的是[]图3-18A.合上开关S接通电路时,L1先亮,L2后亮,最后一样亮B.合上开关S接通电路时,L1和L2始终一样亮C.断开开关S切断电路时,L1立刻熄灭,L2过一会儿才熄灭D.断开开关S切断电路时,L1和L2都要过一会儿才熄灭20.如图3-19所示,理想变压器的副线圈上通过输电线接有三个灯炮L1、L2和L3,输电线的等效电阻为R,原线圈接有一个理想的电流表.开始时,开关S接通,当S断开时,以下说法中正确的是[]图3-19A.原线圈两端P、Q间的输入电压减小B.等效电阻R上消耗的功率变大C.原线圈中电流表示数增大D.灯炮L1和L2变亮21.如图3-20所示是一个理想变压器,A1、A2分别为理想的交流电流表,V1、V2分别为理想的交流电压表,R1、R2、R3均为电阻,原线圈两端接电压一定的正弦交流电源,闭合开关S,各交流电表的示数变化情况应是[]图3-20A.A1读数变大B.A2读数变大C.V1读数变小D.V2读数变小22.如图3-21所示电路中,电源电动势为,内电阻为r,R1、R2为定值电阻,R3为可变电阻,C为电容器.在可变电阻R3由较小逐渐变大的过程中[]图3-21A.流过R2的电流方向是由b到aB.电容器被充电C.电容器的带电量在逐渐减少D.电源内部消耗的功率变大23.如图3-22所示是一理想变压器的电路图,若初级回路A、B两点接交流电压U时,四个相同的灯泡均正常发光,则原、副线圈匝数比为[]图3-22A.4∶1 B.2∶1 C.1∶3 D.3∶124.如图3-23所示,一个理想变压器的原、副线圈匝数之比为n1∶n2=10∶1,在原线圈上加220V的正弦交变电压,则副线圈两端c、d间的最大电压为[]图3-23A.22VB.22VC.零D.11V25.如图3-24所示,某理想变压器的原、副线圈的匝数均可调节,原线圈两端电压为一最大值不变的正弦交流电,在其它条件不变的情况下,为了使变压器输入功率增大,可使[]图3-24A.原线圈匝数n1增加B.原线圈匝数n2增加C.负载电阻R的阻值增大D.负载电阻R的阻值减小26.如图3-26甲所示,闭合导体线框abcd从高处自由下落,落入一个有界匀强磁场中,从bc边开始进入磁场到ad边即将进入磁场的这段时间里,在图3-26乙中表示线框运动过程中的感应电流-时间图象的可能是[]图3-2627.如图3-28所示,abcd是粗细均匀的电阻丝制成的长方形线框,导体棒MN有电阻,可在ad边与bc边上无摩擦滑动,且接触良好,线框处在垂直纸面向里的匀强磁场中,在MN由靠近ab边处向dc边匀速滑动的过程中,下列说法正确的是[]图3-28A.矩形线框消耗的功率先减小后增大B.MN棒中的电流强度先减小后增大C.MN棒两端的电压先减小后增大D.MN棒上拉力的功率先减小后增大28.一平行板电容器充电后与电源断开,负极板接地.在两极板间有一正电荷(电量很小)固定在P点,如图3-30所示.以E表示两板间的场强,U表示电容器两板间的电压,W表示正电荷在P点的电势能.若保持负极板不动,将正极板移到图中虚线所示位置,则[]图3-30A.U变小,E不变B.E变大,W变大C.U变小,W不变D.U不变,W不变29.如图3-31所示,有一固定的超导体圆环,在其右侧放着一条形磁铁,此时圆环中没有电流.当把磁铁向右方移走时,由于电磁感应,在超导体圆环中产生了一定的电流[]图3-31A.此电流方向如图中箭头所示,磁铁移走后,电流很快消失B.此电流方向如图中箭头所示,磁铁移走后,电流继续维持C.此电流方向与图中箭头方向相反,磁铁移走后,电流很快消失D.此电流方向与图中箭头方向相反,磁铁移走后,电流继续维持30.如图3-32所示的哪些情况中,a、b两点的电势相等,a、b两点的电场强度矢量也相等? []图3-32A.平行板电容器带电时,极板间除边缘以外的任意两点a、bB.静电场中达到静电平衡时的导体内部的任意两点a、bC.离点电荷等距的任意两点a、bD.两个等量异号电荷间连线的中垂线上,与连线中点O等距的两点a、b31.在图3-33中虚线所围的区域内,存在电场强度为E的匀强电场和磁感强度为B的匀强磁场.已知从左方水平射入的电子,穿过这区域时未发生偏转.设重力可以忽略不计,则在这区域中E和B的方向可能是[]图3-33A.E和B都沿水平方向,并与电子运动方向相同B.E和B都沿水平方向,并与电子运动方向相反C.E竖直向上,B垂直纸面向外D.E竖直向上,B垂直纸面向里32.在一根软铁棒上绕有一组线圈,a、c是线圈的两端,b为中心抽头,把a端和b抽头分别接到两条平行金属导轨上,导轨间有匀强磁场,方向垂直于导轨所在平面并指向纸内,如图3-35所示,金属棒PQ在外力作用下以图示位置为平衡位置左右做简谐运动,运动过程中保持与导轨垂直,且两端与导轨始终接触良好,下面的过程中a、c点的电势都比b点的电势高的是[]图3-35A.PQ从平衡位置向左边运动的过程中B.PQ从左边向平衡位置运动的过程中C.PQ从平衡位置向右边运动的过程中D.PQ从右边向平衡位置运动的过程中33.质量为m、电量为q的带电粒子以速率v垂直磁感线射入磁感强度为B的匀强磁场中,在磁场力作用下做匀速圆周运动,带电粒子在圆周轨道上运动相当于一环形电流,则[]A.环形电流的电流强度跟q成正比B.环形电流的电流强度跟v成正比C.环形电流的电流强度跟B成正比D.环形电流的电流强度跟m成反比34.在光滑绝缘水平面上,一轻绳拉着一个带电小球绕竖直方向的轴O在匀强磁场中做逆时针方向的水平匀速圆周运动,磁场方向竖直向下,其俯视图如图3-36所示.若小球运动到A点时,绳子突然断开,关于小球在绳断开后可能的运动情况,以下说法正确的是[]图3-36A.小球仍做逆时针匀速圆周运动,半径不变B.小球仍做逆时针匀速圆周运动,但半径减小C.小球做顺时针匀速圆周运动,半径不变D.小球做顺时针匀速圆周运动,半径减小35.如图3-37所示,竖直面内放置的两条平行光滑导轨,电阻不计,匀强磁场方向垂直纸面向里,磁感强度B=0.5T,导体棒ab、cd长度均为0.2m,电阻均为0.1Ω,重力均为0.1N,现用力向上拉动导体棒ab,使之匀速上升(导体棒ab、cd与导轨接触良好),此时cd静止不动,则ab上升时,下列说法正确的是[]图3-37A.ab受到的拉力大小为2NB.ab向上运动的速度为2m/sC.在2s内,拉力做功,有0.4J的机械能转化为电能D.在2s内,拉力做功为0.6J36.如图3-38所示,闭合矩形线圈abcd与长直导线MN在同一平面内,线圈的ab、dc两边与直导线平行,直导线中有逐渐增大、但方向不明的电流,则[]图3-38A.可知道线圈中的感应电流方向B.可知道线圈各边所受磁场力的方向C.可知道整个线圈所受的磁场力的方向D.无法判断线圈中的感应电流方向,也无法判断线圈所受磁场力的方向37.如图3-39甲所示,A、B表示真空中水平放置相距为d的平行金属板,板长为L,两板加电压后板间电场可视为匀强电场,现在A、B两极间加上如图3-39乙所示的周期性的交变电压,在t=T/4时,恰有一质量为m、电量为q的粒子在板间中央沿水平方向以速度v0射入电场,忽略粒子重力,下列关于粒子运动状态表述正确的是[]图3-39A.粒子在垂直于板的方向的分运动可能是往复运动B.粒子在垂直于板的方向的分运动不可能是单向运动C.粒子不可能沿与板平行的方向飞出D.只要电压的周期T和u0的值同时满足一定条件,粒子可以沿与板平行的方向飞出.38.如图3-40甲所示,两块大平行金属板A、B之间的距离为d,在两板间加上电压U,并将B板接地作为电势零点,现将正电荷q逆着电场线方向由A板移到B板,若用x表示称动过程中该正电荷到A板的距离,则其电势能随x变化的图线为图3-40乙中的[]图3-4039.如图3-41所示,用绝缘细丝线悬吊着的带正电小球在匀强磁场中做简谐振动,则[]图3-41A.当小球每次通过平衡位置时,动能相同B.当小球每次通过平衡位置时,动量相同C.当小球每次通过平衡位置时,丝线拉力相同D.撤消磁场后,小球摆动周期不变40.如图3-42甲所示,直线MN右边区域宽度为L的空间,存在磁感强度为B的匀强磁场,磁场方向垂直纸面向里.由导线弯成的半径为R(L>2R)的圆环处在垂直于磁场的平面内,且可绕环与MN的切点O在该平面内转动.现让环以角速度ω顺时针转动.图3-42乙是环从图示位置开始转过一周的过程中,感应电动势的瞬时值随时间变化的图象,正确的是[]图3-4241.空间某区域电场线分布如图3-43所示,带电小球(质量为m,电量为q)在A点速度为v1,方向水平向右,至B点速度为v2,v2与水平方向间夹角为α,A、B间高度差为H,以下判断正确的是[]图3-43A.A、B两点间电势差U=((1/2)mv22-(1/2)mv12)/qB.球由A至B,电场力的冲量为m(v2cosα-v1)C.球由A至B,电场力的功为(1/2)mv22-(1/2)mv12-mgHD.小球重力在B点的即时功率为mgv2sinα42.如图3-44所示,一块金属导体abcd和电源连接,处于垂直于金属平面的匀强磁场中,当接通电源、有电流流过金属导体时,下面说法中正确的是[]图3-44A.导体受自左向右的安培力作用B.导体内部定向移动的自由电子受自右向左的洛伦兹力作用C.在导体的a、d两侧存在电势差,且a点电势低于d点电势D.在导体的a、d两侧存在电势差,且a点电势高于d点电势43.如图3-45所示,MN、PQ是间距为l的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置,并以速度v向右匀速滑动.则[]图3-45A.a、b两点间电压为BlvB.a、b两点间电压为Blv/3C.a、b两点间电压为2Blv/3D.a端电势比b端高44.如图3-46所示,Q1、Q2带等量正电荷,固定在绝缘平面上,在其连线上有一光滑的绝缘杆,杆上套一带正电的小球,杆所在的区域同时存在一个匀强磁场,方向如图,小球的重力不计.现将小球从图示位置从静止释放,在小球运动过程中,下列说法中哪些是正确的[]图3-46A.小球加速度将不断变化B.小球速度将一直增大C.小球所受洛伦兹力将一直增大D.小球所受洛伦兹力大小变化,方向也变化45.一根金属棒MN放在倾斜的导轨ABCD上处于静止,如图3-47所示,若在垂直于导轨ABCD平面的方向加一个磁感强度均匀增大的匀强磁场,随着磁感强度的增大,金属棒在倾斜导轨上由静止变为运动,在这个过程中,关于导轨对金属棒的摩擦力f的大小变化情况是[]图3-47A.如果匀强磁场的方向垂直于导轨平面斜向下,则摩擦力f一直减小B.如果匀强磁场的方向垂直于导轨平面斜向下,则摩擦力f先减小后增大C.如果匀强磁场的方向垂直于导轨平面斜向上,则摩擦力f一直增大D.如果匀强磁场的方向垂直于导轨平面斜向上,则摩擦力f先增大后减小46.如图3-48所示,一个质子和一个α粒子垂直于磁场方向从同一点射入一个匀强磁场,若它们在磁场中的运动轨迹是重合的,则它们在磁场中运动的过程中[]图3-48A.磁场对它们的冲量为零B.磁场对它们的冲量相等C.磁场对质子的冲量是对α粒子冲量的2倍D.磁场对α粒子的冲量是质子冲量的2倍47.如图3-49甲所示,两根竖直放置的光滑平行导轨,其一部分处于方向垂直导轨所在平面且有上下水平边界的匀强磁场中,一根金属杆MN成水平沿导轨滑下.在与导轨和电阻R组成的闭合电路中,其他电阻不计,当金属杆MN进入磁场区后,其运动的速度图象可能是图3-49乙中的[]图3-49二、解答应写出必要的文字说明、方程式和重要演算步骤,答案中必须明确写出数值和单位.1.如图3-87所示的电路中,电源电动势=24V,内阻不计,电容C=12μF,R1=10Ω,R3=60Ω,R4=20Ω,R5=40Ω,电流表G的示数为零,此时电容器所带电量Q=7.2×10-5C,求电阻R2的阻值?图3-872.如图3-88中电路的各元件值为:R1=R2=10Ω,=R4=20Ω,C=300μF,电源电动势=6V,内阻R不计,单刀双掷开关S开始时接通触点2,求:图3-88(1)当开关S从触点2改接触点1,且电路稳定后,电容C所带电量.(2)若开关S从触点1改接触点2后,直至电流为零止,通过电阻R1的电量.3.光滑水平面上放有如图3-89所示的用绝缘材料制成的L形滑板(平面部分足够长),质量为4m,距滑板的A壁为L1距离的B处放有一质量为m,电量为+q的大小不计的小物体,物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中.初始时刻,滑块与物体都静止,试问:图3-89(1)释放小物体,第一次与滑板A壁碰前物体的速度v1多大?(2)若物体与A壁碰后相对水平面的速率为碰前速率的3/5,则物体在第二次跟A壁碰撞之前,滑板相对于水平面的速度v和物体相对于水平面的速度v2分别为多大?(3)物体从开始运动到第二次碰撞前,电场力做的功为多大?(设碰撞所经历时间极短)4.如图3-90所示,半径为r的金属球在匀强磁场中以恒定的速度v沿与磁感强度B垂直的方向运动,当达到稳定状态时,试求:图3-90(1)球内电场强度的大小和方向?(2)球上怎样的两点间电势差最大?最大电势差是多少?5.如图3-91所示,小车A的质量M=2kg,置于光滑水平面上,初速度为v0=14m/s.带正电荷q=0.2C的可视为质点的物体B,质量m=0.1kg,轻放在小车A的右端,在A、B所在的空间存在着匀强磁场,方向垂直纸面向里,磁感强度B=0.5T,物体与小车之间有摩擦力作用,设小车足够长,求图3-91(1)B物体的最大速度?(2)小车A的最小速度?(3)在此过程中系统增加的内能?(g=10m/s2)6.把一个有孔的带正电荷的塑料小球安在弹簧的一端,弹簧的另一端固定,小球穿在一根光滑的水平绝缘杆上,如图3-92所示,弹簧与小球绝缘,弹簧质量可不计,整个装置放在水平向右的匀强电场之中,试证明:小球离开平衡位置放开后,小球的运动为简谐运动.(弹簧一直处在弹性限度内)图3-927.有一个长方体形的匀强磁场和匀强电场区域,它的截面为边长L=0.20m的正方形,其电场强度为E=4×105V/m,磁感强度B=2×10-2T,磁场方向垂直纸面向里,当一束质荷比为m/q=4×10-10kg/C的正离子流以一定的速度从电磁场的正方形区域的边界中点射入如图3-93所示,图3-93(1)要使离子流穿过电磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?(2)在离电磁场区域右边界0.4m处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a点,若撤去磁场,离子流击中屏上b点,求ab间距离.8.如图3-94所示,一个初速为零的带正电的粒子经过M、N两平行板间电场加速后,从N板上的孔射出,当带电粒子到达P点时,长方形abcd区域内出现大小不变、方向垂直于纸面且方向交替变化的匀强磁场.磁感强度B=0.4T.每经t=(π/4)×10-3s,磁场方向变化一次.粒子到达P点时出现的磁场方向指向纸外,在Q处有一个静止的中性粒子,P、Q间距离s=3m.PQ直线垂直平分ab、cd.已知D=1.6m,带电粒子的荷质比为1.0×104C/kg,重力忽略不计.求图3-94(1)加速电压为220V时带电粒子能否与中性粒子碰撞?(2)画出它的轨迹.(3)能使带电粒子与中性粒子碰撞,加速电压的最大值是多少?9.在磁感强度B=0.5T的匀强磁场中,有一个正方形金属线圈abcd,边长l=0.2m,线圈的ad边跟磁场的左侧边界重合,如图3-95所示,线圈的电阻R=0.4Ω,用外力使线圈从磁场中运动出来:一次是用力使线圈从左侧边界匀速平动移出磁场;另一次是用力使线圈以ad边为轴,匀速转动出磁场,两次所用时间都是0.1s.试分析计算两次外力对线圈做功之差图3-9510.如图3-97所示的装置,U1是加速电压,紧靠其右侧的是两块彼此平行的水平金属板,板长为l,两板间距离为d.一个质量为m、带电量为-q的质点,经加速电压加速后沿两金属板中心线以速度v0水平射入两板中,若在两水平金属板间加一电压U2,当上板为正时,带电质点恰能沿两板中心线射出;当下板为正时,带电质点则射到下板上距板的左端l/4处.为使带电质点经U1加速后,沿中心线射入两金属板,并能够从两金属之间射出,问:两水平金属板间所加电压应满足什么条件,及电压值的范围.图3-9711.矩形线圈M、N材料相同,导线横截面积大小不同,M粗于N,M、N由同一高度自由下落,同时进入磁感强度为B的匀强场区(线圈平面与B垂直如图3-99所示),M、N同时离开磁场区,试列式推导说明.图3-9912.匀强电场的场强E=2.0×103Vm-1,方向水平.电场中有两个带电质点,其质量均为m=1.0×10-5kg.质点A带负电,质点B带正电,电量皆为q=1.0×10-9C.开始时,两质点位于同一等势面上,A的初速度vAo=2.0m·s-1,B的初速度vBo=1.2m·s-1,均沿场强方向.在以后的运动过程中,若用Δs表示任一时刻两质点间的水平距离,问当Δs的数值在什么范围内,可判断哪个质点在前面(规定图3-100中右方为前),当Δs的数值在什么范围内不可判断谁前谁后?图3-10013.如图3-101所示,两根相距为d的足够长的平行金属导轨位于水平的xy平面内,一端接有阻值为R的电阻.在x>0的一侧存在沿竖直方向的均匀磁场,磁感强度B随x的增大而增大,B=kx,式中的k是一常量,一金属直杆与金属导轨垂直,可在导轨上滑动,当t=0时位于x=0处,速度为v0,方向沿x轴的正方向.在运动过程中,有一大小可调节的外力F作用于金属杆以保持金属杆的加速度恒定,大小为a,方向沿x轴的负方向.设除外接的电阻R外,所有其它电阻都可以忽略.问:图3-101(1)该回路中的感应电流持续的时间多长?(2)当金属杆的速度大小为v0/2时,回路中的感应电动势有多大?(3)若金属杆的质量为m,施加于金属杆上的外力F与时间t的关系如何?14.如图3-102所示,有一矩形绝缘木板放在光滑水平面上,另一质量为m、带电量为q的小物块沿木板上表面以。

电磁场与电磁波课后练习及答案(谢处方第四版)

一章习题解答1.1给定三个矢量、和如下:求:(1);(2);(3);(4);(5)在上的分量;(6);(7)和;(8)和。

解(1) (2)(3)-11 (4)由,得 (5)在上的分量(6) (7)由于所以(8)A B C 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e A a -A B A B AB θA B ⨯A C ()⨯A B C ()⨯A B C ()⨯⨯A B C ()⨯⨯A B C 23A x y z +-===+-e e e A a e e e A -=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e =A B (23)x y z +-e e e (4)y z -+=e ecos AB θ===A B A B 1cos AB θ-=(135.5= A B B A =A cos AB θ==A B B ⨯=A C 123502xy z-=-e e e 41310x y z ---e e e ⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e ()⨯=A B C(23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e ()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e1.2三角形的三个顶点为、和。

(1)判断是否为一直角三角形; (2)求三角形的面积。

解(1)三个顶点、和的位置矢量分别为,,则,,由此可见故为一直角三角形。

(2)三角形的面积 1.3求点到点的距离矢量及的方向。

解,, 则 且与、、轴的夹角分别为1.4给定两矢量和,求它们之间的夹角和在上的分量。

物理必修2课后习题答案

物理必修2课后习题答案 物理必修2课后习题答案涵盖了多个章节,包括力学、电磁学、热力学和光学等。以下是部分习题的答案示例,具体内容会根据实际教材和习题而有所不同。

第一章:力学基础 习题1: 一个物体的质量为2kg,受到一个大小为10N的力作用,求物体的加速度。

答案: 根据牛顿第二定律,\[ F = ma \],其中\( F \)是力,\( m \)是质量,\( a \)是加速度。将已知数值代入公式,\[ a = \frac{F}{m} = \frac{10N}{2kg} = 5m/s^2 \]。

习题2: 一个物体从静止开始,以加速度\( a \)做匀加速直线运动,求在时间\( t \)后的速度和位移。

答案: 根据匀加速直线运动的公式,速度\( v \)和位移\( s \)分别为: \[ v = at \] \[ s = \frac{1}{2}at^2 \]

第二章:电磁学 习题1: 一个点电荷\( q \)产生电场,求在距离\( r \)处的电场强度。 答案: 根据库仑定律,电场强度\( E \)为: \[ E = \frac{kq}{r^2} \] 其中,\( k \)是库仑常数。

习题2: 一个带电粒子在电场中受到的电场力为\( F \),求该粒子的电荷量。

答案: 根据电场力的定义,\[ F = Eq \],可以解出电荷量\( q \): \[ q = \frac{F}{E} \]

第三章:热力学 习题1: 一个理想气体经历等压过程,求其温度变化。 答案: 对于理想气体,等压过程中温度与体积的关系为: \[ \frac{T_1}{V_1} = \frac{T_2}{V_2} \] 其中,\( T_1 \)和\( T_2 \)分别是初始和最终温度,\( V_1 \)和\( V_2 \)是初始和最终体积。

习题2: 一个系统经历绝热过程,求其温度变化。 答案: 在绝热过程中,没有热量交换,根据能量守恒,温度变化与内能变化有关: \[ \Delta T = \frac{\Delta U}{C_v} \] 其中,\( \Delta U \)是内能变化,\( C_v \)是定容比热容。

大学物理复习题(电磁学)(DOC)

【课后习题】 第12章 一、填空题1、两个大小完全相同的带电金属小球,电量分别为2q 和-1q ,已知它们相距为r 时作用力为F ,则将它们放在相距3r 位置同时其电量均减半,相互作用力大小为____1/36________F 。

2、电场强度可以叙述为电场中某一点上单位正电荷所受的_____电场力___________;电场中某一点的电势可以叙述为:单位正电荷在该点所具有的__电势能_________。

3、真空环境中正电荷q 均匀地分布在半径为R 的细圆环上,在环环心O 处电场强度为____0________,环心的电势为__R q o πε4/_________。

4、高斯定理表明磁场是 无源 场,而静电场是有源场。

任意高斯面上的静电场强度通量积分结果仅仅取决于该高斯面内全部电荷的代数和。

现有图1-1所示的三个闭合曲面S 1、S 2、S 3,通过这些高斯面的电场强度通量计算结果分别为:⎰⎰⋅=Φ11S SE d ,⎰⎰⋅=Φ22S S E d ,⎰⎰⋅=Φ33S SE d ,则Φ1=___o q ε/_______;Φ2+Φ3=___o q ε/-_______。

5、静电场的场线只能相交于___电荷或无穷远________。

6、两个平行的无限大均匀带电平面,其电荷面密度分别如图所示,则A 、B 、C 三个区域的电场强度大小分别为:E A =_o εσ/4________;E B =_o εσ/________;E C =__o εσ/4_______。

7、由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小E =____0____________.8、初速度为零的正电荷在电场力的作用下,总是从__高____电势处向_低____电势处运动。

9、静电场中场强环流为零,这表明静电力是__保守力_________。

10、如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b 点,外力所作的功 W =___⎪⎪⎭⎫ ⎝⎛-12114r r Qq πε___________.11、真空中有一半径为R 的均匀带电半园环,带电量为Q ,设无穷远处为电势零点,则圆心O 处的电势为___R Q 04πε_________;若将一带电量为q 的点电荷从无穷远处移到O 点,电场力所作的功为__RqQ04πε__________。

电磁作业答案5-7章.7之欧阳语创编

第5章 恒定电流的磁场5.1简述安培力定理答:在真空中有两个通有恒定电流I 1和I 2的细导线回路,它们的长度分别是l 1和l 2。

通有电流I 1的回路对通有电流I 2 的回路的作用力F 12是5.2一个半径为a 的圆线圈,通有电流I ,求圆线圈轴线上任一点的磁感应强度B 。

解:根据电流的对称性,采用圆柱坐标系,坐标原点设在圆形线圈的圆心,Z 轴与线圈轴线重合,场点P 的坐标为),,0(z α ,取一个电流元'αIad ,源点坐标为),,(0'αa ,如题5-2图所示,则r z ae Ze -R=,当z=0时,Zea I a U B 23220)(2=5.3简述洛仑兹力答:电荷以某一速度v在磁场运动,磁场对运动电荷有作用力,这种作用力称为洛仑兹力,洛仑兹力与运动电荷垂直。

所以,他不作功,只改变运动电荷的方向,不改变运动电荷的速度。

5.4 矢量磁位与磁感应强度的关系是什么? 答:矢量磁位的旋度是磁感应强度5.5已知某一电流在空间产生的矢量磁位A ,求磁感应强度B 。

(xyz e xy e y xe A z y x422-+=)解: )4()(22z y x z y xxyze e xy ye x e ze y exA B -+⨯∂∂+∂∂+∂∂=⨯∇= =z y x x z y ze x y yze xze xze e x yze ey )(44442222-++-=--+5.6 有一根长位2L 的细直导线与柱坐标的z 轴重合,导线的中心在坐标原点。

设导线中通有电流I ,方向沿z 轴的方向。

1)求空间任一点()z p ,,ϕρ 的矢量磁位A ;2)求在z=0的平面上任一点()z p ,,ϕρ的矢量磁位A 。

当ρ<<2L 和ρ>>2L 时,结果又如何?解:1)由于对称性,可以只讨论Z ≥0的情况由矢量磁位方程得:ze RIdz dA πμ40=θsin r R =θrctg Z Z-='θθd r dZ2sin ='θθπμπμd Ie e RdZd zz sin 44I A 00=='在整条线段上积分得 由 C ctg d +-=⎰)sin 1ln(sin θθθθ 得)cos 1(sin )cos 1(sin ln4sin cos sin 1sin cos sin 1ln 4122101112220θθθθπμθθθθθθπμ--=--=z z Ie e Ie A 由图可知 221)(sin l z r r ++=θ 222)(sin l z r r -+=θ(1)z e l z l z r l z l z r I A )()()()(ln422220+-++---+=πμ(2)在Z=0时,r l l r I r l l r I e l l r l l r l l r l l r I e l l r ll r I A z z ++++=++-+++++=-+++=2202222022222222022220ln 2)(ln 4))(())((ln 4ln 4πμπμπμπμ5.7什么是磁偶极子?答:如果观察距离R 远远大于一个小圆形电流线圈的半径(半径为r ),即R>>r 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 静 电 场5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r QεE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r QεE +=若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d(2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d证 (1) 延长线上一点P 的电场强度⎰'=L r πεE 202,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r QεL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εqαE L d π4d sin 2⎰'=利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41Lr rεQrx L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度rελL r L Q r εE l 0220π2 /41/π21lim=+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅0d 0q εSS E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S SS E S E Φd d解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S SS E S E Φd d依照约定取闭合曲面的外法线方向为面元d S 的方向,E R πR E 22πcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为①()r θθθE e e e E sin sin cos sin cos ++=r θθR e S d d sin d 2=ER θθER θθER SS2ππ2222πdsin d sin dd sin sin d ===⋅=⎰⎰⎰⎰S E Φ5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为()()R r ρkr ρ>=≤≤= 0R r 0k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2S π4d r E ⋅=⋅⎰S E根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场rrεqe E 20π4d d =由电场叠加可解得带电球体内外的电场分布()()()()R r r r Rr>=≤≤=⎰⎰d R r 0d 0E E E E解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内(0≤r ≤R ) ()4202πd π41π4r εk r r kr εr r E r==⎰()r εkr r e E 024=球体外(r >R )()4202πd π41π4r εk r r kr εr r E R==⎰()r εkR r e E 024=解2 将带电球分割成球壳,球壳带电r r r k V ρq '''==d π4d d 2由上述分析,球体内(0≤r ≤R )()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰ 球体外(r >R )()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d rπE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面内无电荷,0=∑q ,故01=E R 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4r R R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故2013π4r εQ E =r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故20214π4r εQ Q E +=电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B )所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量230234π4ΔεσR εQ E E E ==-=这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 ,0=∑q01=E在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,L λq =∑rελE 02π2=r >R 2,0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE ===这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零()02π4π420312021=+dεQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2yd εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQd εQ d εQ V 003010π2π4π4=+=将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 5 -23 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2=为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明. 解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.5 -27 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=pp V l E d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQV 0π4=在球面内电场强度为零,电势处处相等,等于球面的电势RεQV 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211π4π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r+=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞lE l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r+=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞lE l E当r ≥R 2 时,有rεQ Q V r02133π4d +=⋅=⎰∞l E(2) 两个球面间的电势差⎪⎪⎭⎫⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-==第六章 静电场中的导体与电介质6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定分析与解 不带电的导体B 相对无穷远处为零电势。

相关文档
最新文档