辽宁沈阳中考数学试题及答案
辽宁省沈阳市2022年中考数学真题试题Word版含解析

辽宁省沈阳市2022年中考数学真题试题Word版含解析辽宁省沈阳市2022年中考数学真题试题一、选择题〔每题只有一个正确选项,此题共10小题,每题2分,共20分〕1.〔2.00分〕以下各数中是有理数的是〔〕 A.π B.0C.D.2.〔2.00分〕辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠〞××××103.〔2.00分〕如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是〔〕4646A. B. C. D.4.〔2.00分〕在平面直角坐标系中,点B的坐标是〔4,﹣1〕,点A与点B 关于x轴对称,那么点A的坐标是〔〕 A.〔4,1〕 B.〔﹣1,4〕C.〔﹣4,﹣1〕 D.〔﹣1,﹣4〕5.〔2.00分〕以下运算错误的选项是〔〕A.〔m〕=m B.a÷a=a C.x?x=x D.a+a=a6.〔2.00分〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2补角的度数是〔〕236109358437A.60° B.100°C.110°D.120°7.〔2.00分〕以下事件中,是必然事件的是〔〕 A.任意买一张电影票,座位号是2的倍数 B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯 D.明天一定会下雨8.〔2.00分〕在平面直角坐标系中,一次函数y=kx+b的图象如下图,那么k 和b的取值范围是〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.〔2.00分〕点A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,那么k的值是〔〕 A.﹣6 B.﹣ C.﹣1 D.610.〔2.00分〕如图,正方形ABCD内接于⊙O,AB=2,那么的长是〔〕A.π B.π C.2π D.π二、细心填一填〔本大题共6小题,每题3分,总分值18分,请把答案填在答題卷相应题号的横线上〕11.〔3.00分〕因式分解:3x﹣12x= .12.〔3.00分〕一组数3,4,7,4,3,4,5,6,5的众数是. 13.〔3.00分〕化简:14.〔3.00分〕不等式组﹣= .的解集是.315.〔3.00分〕如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.篱笆的总长为900m〔篱笆的厚度忽略不计〕,当AB= m时,矩形土地ABCD的面积最大.16.〔3.00分〕如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH= .三、解答题题〔17题6分,18-19题各8分,请认真读题〕 17.〔6.00分〕计算:2tan45°﹣|﹣3|+〔〕﹣〔4﹣π〕.﹣218.〔8.00分〕如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.〔1〕求证:四边形OCED是矩形;〔2〕假设CE=1,DE=2,ABCD的面积是.19.〔8.00分〕经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题〔每题8分,请认真读题〕20.〔8.00分〕九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了局部九年级学生进行调查〔每名学生必只能选择一门课程〕.将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答以下问题:〔1〕在这次调查中一共抽取了名学生,m的值是.〔2〕请根据据以上信息直在答题卡上补全条形统计图;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是度;〔4〕假设该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.〔8.00分〕某公司今年1月份的生产本钱是400万元,由于改良技术,生产本钱逐月下降,3月份的生产本钱是361万元.假设该公司2、3、4月每个月生产本钱的下降率都相同.〔1〕求每个月生产本钱的下降率;〔2〕请你预测4月份该公司的生产本钱.五、解答题〔此题10〕22.〔10.00分〕如图,BE是O的直径,点A和点D是⊙O上的两点,过点A 作⊙O的切线交BE延长线于点.〔1〕假设∠ADE=25°,求∠C的度数;〔2〕假设AB=AC,CE=2,求⊙O半径的长.六、解答题〔此题10分〕23.〔10.00分〕如图,在平面直角坐标系中,点F的坐标为〔0,10〕.点E 的坐标为〔20,0〕,直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.〔1〕求直线l1的表达式和点P的坐标;〔2〕矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF 上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.矩形ABCD以每秒t秒〔t>0〕.①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②假设矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.个单位的速度匀速移动〔点A移动到点E时止移动〕,设移动时间为七、解答题〔此题12分〕24.〔12.00分〕:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N在边BC上〔点M、点N不与所在线段端点重合〕,BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.〔1〕如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;〔2〕当∠ACB=α,其它多件不变时,∠BDE的度数是〔用含α的代数式表示〕〔3〕假设△ABC是等边三角形,AB=3于点F,请直接写出线段CF的长.,点N是BC边上的三等分点,直线ED与直线BC交八、解答题〔此题12分〕25.〔12.00分〕如图,在平面角坐标系中,抛物线C1:y=ax+bx﹣1经过点A 〔﹣2,1〕和点B〔﹣1,﹣1〕,抛物线C2:y=2x+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.〔1〕求抛物线C1的表达式;〔2〕直接用含t的代数式表示线段MN的长;〔3〕当△AMN是以MN为直角边的等腰直角三角形时,求t的值;〔4〕在〔3〕的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.22参考答案与试题解析一、选择题〔每题只有一个正确选项,此题共10小题,每题2分,共20分〕1.〔2.00分〕以下各数中是有理数的是〔〕 A.π B.0C.D.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A、π是无限不循环小数,属于无理数,故本选项错误; B、0是有理数,故本选项正确; C、D、是无理数,故本选项错误;无理数,故本选项错误;应选:B.【点评】此题考查了有理数,有限小数或无限循环小数是有理数.2.〔2.00分〕辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠〞××××10【分析】科学记数法的表示形式为a×10的形式,其中1≤×10.应选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.〔2.00分〕如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是〔〕n4n4646A. B. C. D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定那么可.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:应选:D.【点评】此题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.〔2.00分〕在平面直角坐标系中,点B的坐标是〔4,﹣1〕,点A与点B 关于x轴对称,那么点A的坐标是〔〕 A.〔4,1〕 B.〔﹣1,4〕C.〔﹣4,﹣1〕 D.〔﹣1,﹣4〕【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,∴点A的坐标是:〔4,1〕.应选:A.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.〔2.00分〕以下运算错误的选项是〔〕A.〔m〕=m B.a÷a=a C.x?x=x D.a+a=a【分析】直接利用合并同类项法那么以及单项式乘以单项式运算法那么和同底数幂的除法运算法那么化简求出即可.【解答】解:A、〔m〕=m,正确; B、a÷a=a,正确; C、x?x=x,正确; D、a+a=a+a,错误;应选:D.4343358109236236109358437【点评】此题主要考查了合并同类项法那么以及单项式乘以单项式运算法那么和同底数幂的除法运算法那么等知识,正确掌握运算法那么是解题关键.6.〔2.00分〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2补角的度数是〔〕 A.60° B.100°C.110°D.120°【分析】根据平行线的性质比拟多定义求解即可;【解答】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,应选:D.【点评】此题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握根本知识,属于中考常考题型.7.〔2.00分〕以下事件中,是必然事件的是〔〕 A.任意买一张电影票,座位号是2的倍数 B.13个人中至少有两个人生肖相同 C.车辆随机到达一个路口,遇到红灯 D.明天一定会下雨【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、“任意买一张电影票,座位号是2的倍数〞是随机事件,故此选项错误; B、“13个人中至少有两个人生肖相同〞是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯〞是随机事件,故此选项错误;D、“明天一定会下雨〞是随机事件,故此选项错误;应选:B.【点评】考查了随机事件.解决此题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.〔2.00分〕在平面直角坐标系中,一次函数y=kx+b的图象如下图,那么k 和b的取值范围是〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b 的图象经过一、二、四象限,∴k<0,b>0.应选:C.【点评】此题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b〔k ≠0〕中,当k<0,b>0时图象在一、二、四象限.9.〔2.00分〕点A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,那么k的值是〔〕 A.﹣6 B.﹣ C.﹣1 D.6【分析】根据点A的坐标,利用反比例函数图象上点的坐标特征求出k值,此题得解.【解答】解:∵A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,∴k=〔﹣3〕×2=﹣6.应选:A.【点评】此题考查了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.。
2022年辽宁省沈阳市中考数学试题(含答案解析)

14.如图,边长4的正方形ABCD内接于 ,则 的长是
______.(结果保留 )
15.如图,四边形ABCD是平行四边形,CD在x轴上,点B在
y轴上,反比例函数 的图象经过第一象限点
A,且平行四边形ABCD的面积为6,则 _____.
16.如图,将矩形纸片ABCD折叠,折痕为MN,点M,N分
为半径作弧,两弧交于点M,N,作直线MN,分别交AB,AD,AC于点E,O,F,
连接DE,DF.
(1)由作图可知,直线MN是线段AD的______.
(2)求证:四边形AEDF是菱形.
四、解答题(每小题8分,共16分)
20.某校积极落实“双减”政策,将要开设拓展课程.为让学生可以根据自己的兴趣爱好
选择最喜欢的课程,进行问卷调查,问卷设置以下四种洗项:A(综合模型)、B(摄影艺
,解得: 或 (不合题意,舍去),
综上所述,点P的坐标为 .
∵AD是 的角平分线,
∴ ,
∵AO=AO,
∴ (ASA),
∴OF=OE,
∵AO=DO,
∴四边形AEDF是平行四边形,
∵ ,
∴四边形AEDF是菱形.
20.
(1)120
(2)如图:
(3)72°
(4)320
21.
(1)解:设AB的长为x厘米,则有 厘米,由题意得:
,
整理得: ,
解得: ,
∵ ,
∴ ,
∴ 都符合题意,
∵ 是圆 的直径,
∴ ,
∴ ,
∴ 是直角三角形,
∴ ,
∵四边形 内接于圆 ,
∴ ,
又∵ ,
∴ ,
∴ ,
∵ , ,
2004年辽宁省沈阳市中考数学试卷

2004年辽宁省沈阳市中考数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各式中属于最简二次根式的是()A.B.C.D.2.(2分)在△ABC中,∠C=90°,sin A,则cos B的值为()A.1B.C.D.3.(2分)经过点(2,﹣3)的双曲线是()A.y B.y C.y D.y4.(2分)已知AB是⊙O的弦,OC⊥AB,C为垂足,若OA=2,OC=1,则AB的长为()A.B.2C.D.25.(2分)如图,△ABC内接于⊙O,点D是CA延长线上一点,若∠BOC=120°,则∠BAD=()A.30°B.60°C.75°D.90°6.(2分)一组数据按从小到大的顺序排列为:1,2,3,x,6,9,这组数据的中位数是4.5,那么这组数据的众数为()A.4B.5C.5.5D.67.(2分)如图,已知P AC为⊙O的割线,连接PO交⊙O于B,PB=2,OP=7,P A=AC,则P A的长为()A.B.2C.D.38.(2分)某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5%B.9%C.9.5%D.10%9.(2分)小丽的家与学校的距离为d0千米,她从家到学校先以匀速v1跑步前进,后以匀速v2(v2<v1)走完余下的路程,共用t0小时.下列能大致表示小丽距学校的距离y(千米)与离家时间t(小时)之间关系的图象是()A.B.C.D.10.(2分)沈阳市某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案《我的宝贝》.图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作半圆(如图),则图中阴影部分的面积为()A.36πcm2B.72πcm2C.36cm2D.72cm2二、填空题(共10小题,每小题2分,满分20分)11.(2分)一元二次方程x2﹣2x﹣3=0的解是.12.(2分)若点P(a,b)在第四象限,则点Q(b,﹣a)在第象限.13.(2分)在Rt△ABC中,∠C=90°,tan A,AC=4,则BC=.14.(2分)一组数据4,0,1,﹣2,2的标准差是.15.(2分)已知⊙O中,的度数为70°,过点A的直线AC与⊙O相切,则弦切角∠BAC 的度数为.16.(2分)如图,已知弦AB、CD交于⊙O内一点P,AP=6,PB=8,CP:DP=1:2,则弦CD的长为.17.(2分)已知矩形ABCD的一边AB=5,另一边BC=6,以直线AB为轴旋转一周所得的圆柱的侧面积为.18.(2分)请你写出一个二次项系数为1,两实数根之和为3的一元二次方程:.19.(2分)正六边形的边长为5,则它的外接圆半径是.20.(2分)已知△ABC中,∠C=90°,AC=3,BC=4,分别以A、C为圆心作⊙A、⊙C,且⊙C与直线AB不相交,⊙A与⊙C相切.设⊙A的半径为r,那么r的取值范围是.三、解答题(共8小题,满分80分)21.(6分)阅读下列解题过程:题目:已知方程x2+3x+1=0的两个根为α、β,求的值.解:∵△=32﹣4×1×1=5>0∴α≠β(1)由一元二次方程的根与系数的关系,得α+β=﹣3,αβ=1(2)∴3(3)阅读后回答问题:上面的解题过程是否正确?若不正确,指出错在哪一步,并写出正确的解题过程.22.(8分)用换元法解方程x2﹣x1=0.23.(8分)如图二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;(2)求此抛物线的顶点坐标和对称轴;(3)观察图象,当x取何值时,y<0,y=0,y>0.24.(10分)某校课外活动小组为了了解本校初三学生的睡眠时间情况,对本校若干名初三学生的睡眠时间进行了调查,所得数据整理后,画出了如图所示的频数分布直方图(图中每个长方形包括左边分点,不包含右边分点).请回答:(1)这次被抽查的学生人数是多少?(2)被抽查的学生中,睡眠在哪个范围内的人数最多这一范围内的人数是多少?(3)如果该校学生有900名初三学生,若合理睡眠时间范围为7≤t<9,那么请你估计一下这个学校初三学生睡眠时间在此范围内的人数是多少?25.(10分)某地有一居民楼,窗户朝南,窗户的高度为h米,此地一年中的冬至这一天的正午时刻太阳光与地面的夹角最小为α,夏至这一天的正午时刻太阳光与地面的夹角最大为β(如图1),小明想为自己家的窗户设计一个直角形遮阳篷BCD,要求它既能最大限度地遮挡夏天炎热的阳光,又能最大限度地使冬天温暖的阳光射入室内.小明查阅了有关资料,获得了所在地区∠α和∠β的相应数据:∠α=24°36′,∠β=73°30′,小明又量得窗户的高AB=1.65米,若同时满足下面两个条件,(1)当太阳光与地面的夹角为α时,要想使太阳光刚好全部射入室内;(2)当太阳光与地面的夹角为β时,要想使太阳光刚好不射入室内.请你借助下面的图形(如图2),帮助小明算一算,遮阳篷BCD中,BC和CD的长各是多少?(精确到0.01米)以下数据供计算中选用sin24°36′=0.416,cos24°36′=0.909,tan24°36′=0.456,cot24°36′=2.184,sin73°30′=0.959,cos73°30′=0.284,tan73°30′=3.376,cot73°30′=0.296.26.(12分)某市的A县和B县春季育苗,急需化肥分别为90吨和60吨.该市的C县和D 县分别储存化肥100吨和50吨,全部调配给A县和B县,已知C、D两县运化肥到A、B两县的运费(元/吨)如下列表所示:(1)设C县到A县的化肥为x吨,求总运费W(元)与x(吨)的函数关系式,并写出自变量x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.27.(12分)如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点.(1)求证:AB⊥AC;(2)过点A的直线分别交⊙O1、⊙O2于点D、E,且DE是连心线时,直线DB与直线EC交于点F.请在图中画出图形,并判断DF与EF是否互相垂直,请证明;若不垂直,请说明理由;(3)在(2)的其他条件不变的情况下,将直线DE绕点A旋转(DE不与点A、B、C 重合),请另画出图形,并判断DF与EF是否互相垂直?若垂直,请证明;若不垂直,请说明理由.28.(14分)如图,直线l:y x与x轴、y轴分别交于点B、C,以点A(1,0)为圆心,以AB的长为半径作⊙A,分别交x轴、y轴正半轴于点D、E,直线l与⊙A交于点F,分别过点B、F作⊙A的切线交于点M.(1)直接写出点B、C的坐标;(2)求直线MF的解析式;(3)若点P是上任意一点(不与B、F重合).连接BP、FP.过点M作MN∥PF,交直线l于点N.设PB=a,MN=b,求b与a的函数关系式,并写出自变量a的取值范围;(4)若将(3)中的条件点P是上任意一点,改为点P是⊙A上任意一点,其它条件不变.当点P在⊙A上的什么位置时,△BMN为直角三角形,并写出此时点N的坐标.(第(4)问直接写出结果,不要求证明或计算过程)2004年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各式中属于最简二次根式的是()A.B.C.D.【解答】解:A、符合最简二次根式的条件;故本选项正确;B、±x,被开方数里含有能开得尽方的因式x2;故本选项错误;C、 2 ;被开方数里含有能开得尽方的因数4;故本选项错误;D、;被开方数里含有分母;故本选项错误.故选:A.2.(2分)在△ABC中,∠C=90°,sin A,则cos B的值为()A.1B.C.D.【解答】解:∵△ABC中,∠C=90°,sin A,∴∠A=60°,∠B=90°﹣∠A=30°.cos B=cos30°.故选:B.3.(2分)经过点(2,﹣3)的双曲线是()A.y B.y C.y D.y【解答】解:设反比例函数的解析式为y(k≠0),把点(2,﹣3)代入,得﹣3,k=﹣6,故反比例函数的解析式为y.故选:A.4.(2分)已知AB是⊙O的弦,OC⊥AB,C为垂足,若OA=2,OC=1,则AB的长为()A.B.2C.D.2【解答】解:如图,AC,∴AB=2AC=2.故选:D.5.(2分)如图,△ABC内接于⊙O,点D是CA延长线上一点,若∠BOC=120°,则∠BAD=()A.30°B.60°C.75°D.90°【解答】解:如图,设点E是优弧BC上的一点,连接BE、CE.由圆周角定理知,∠E∠O=60°,∵四边形ABEC内接于⊙O,∴∠BAD=∠E=60°.故选:B.6.(2分)一组数据按从小到大的顺序排列为:1,2,3,x,6,9,这组数据的中位数是4.5,那么这组数据的众数为()A.4B.5C.5.5D.6【解答】解:据题意得,处于这组数据中间位置的那两个数是3、x.那么由中位数的定义可知,这组数据的中位数是 4.5,所以x=6故众数是6.故选:D.7.(2分)如图,已知P AC为⊙O的割线,连接PO交⊙O于B,PB=2,OP=7,P A=AC,则P A的长为()A.B.2C.D.3【解答】解:设P A=x,延长PO交圆于D,∵P A•PC=PB•PD,PB=2,OP=7,P A=AC,∴x•2x=24,∴x=2.故选:B.8.(2分)某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5%B.9%C.9.5%D.10%【解答】解:设平均每次降价的百分率是x,则100×(1﹣x)2=81,解之得x=0.1或1.9(不合题意,舍去).则x=0.1=10%答:平均每次降价的百分率是10%.故选:D.9.(2分)小丽的家与学校的距离为d0千米,她从家到学校先以匀速v1跑步前进,后以匀速v2(v2<v1)走完余下的路程,共用t0小时.下列能大致表示小丽距学校的距离y(千米)与离家时间t(小时)之间关系的图象是()A.B.C.D.【解答】解:根据题意:她从家到学校先以匀速v1跑步前进,后以匀速v2(v2<v1)走完余下的路程,即距离y先减小的快,再变的较慢,最后为0.故选:D.10.(2分)沈阳市某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案《我的宝贝》.图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作半圆(如图),则图中阴影部分的面积为()A.36πcm2B.72πcm2C.36cm2D.72cm2【解答】解:因为斜边长为12cm,则两直角边均为6cm,则两个小半圆的面积均为:π(3)2=9πcm2,以斜边为直径的半圆的面积是π()2=18πcm2,三角形的面积是36cm2,因而阴影部分的面积=9π+9π+36﹣18π=36cm2.故选:C.二、填空题(共10小题,每小题2分,满分20分)11.(2分)一元二次方程x2﹣2x﹣3=0的解是x1=3,x2=﹣1.【解答】解:原方程可化为:(x﹣3)(x+1)=0,∴x﹣3=0或x+1=0,∴x1=3,x2=﹣1.12.(2分)若点P(a,b)在第四象限,则点Q(b,﹣a)在第三象限.【解答】解:若点P(a,b)在第四象限,则a>0,b<0,因此点Q(b,﹣a)在第三象限.故答案填:三.13.(2分)在Rt△ABC中,∠C=90°,tan A,AC=4,则BC=.【解答】解:在Rt△ABC中,∠C=90°,∵AB为斜边,∴BC=AC•tan A=4.14.(2分)一组数据4,0,1,﹣2,2的标准差是2.【解答】解:数据4,0,1,﹣2,2的平均数为[4+0+1﹣2+2]=1方差为S2[(4﹣1)2+(0﹣1)2+(1﹣1)2+(﹣2﹣1)2+(2﹣1)2]=4∴标准差为2.故填2.15.(2分)已知⊙O中,的度数为70°,过点A的直线AC与⊙O相切,则弦切角∠BAC 的度数为35°或145°.【解答】解:如图;的度数为70°,EF与⊙O相切,切点为A;∵的度数为70°,∴∠ADB=35°.∵EF是⊙O的切线,∴∠F AB=∠ADB=35°,∴∠DAE=180°﹣∠F AB=145°.①当∠BAC=∠BAF时,∠BAC=35°;②当∠BAC=∠BAE时,∠BAE=145°;因此弦切角∠BAC的度数为35°或145°.16.(2分)如图,已知弦AB、CD交于⊙O内一点P,AP=6,PB=8,CP:DP=1:2,则弦CD的长为.【解答】解:∵CP:DP=1:2∴DP=2CP∵P A•PB=PC•PD∴6×8=PC×2PC解得PC=2(舍去负值)∴CD=PC+PD=3PC=6.17.(2分)已知矩形ABCD的一边AB=5,另一边BC=6,以直线AB为轴旋转一周所得的圆柱的侧面积为60π.【解答】解:根据圆柱的侧面积公式可得:π×2×6×5=60π.18.(2分)请你写出一个二次项系数为1,两实数根之和为3的一元二次方程:x2﹣3x﹣1=0.【解答】解:如x2﹣3x﹣1=0(答案不惟一,只要符合a=1,b=3,c即可).19.(2分)正六边形的边长为5,则它的外接圆半径是5.【解答】解:正6边形的中心角为360°÷6=60°.那么外接圆的半径和正六边形的边长将组成一个等边三角形.∴它的外接圆半径是5.20.(2分)已知△ABC中,∠C=90°,AC=3,BC=4,分别以A、C为圆心作⊙A、⊙C,且⊙C与直线AB不相交,⊙A与⊙C相切.设⊙A的半径为r,那么r的取值范围是0.6≤r<3或3<r≤5.4.【解答】解:根据勾股定理,得:AB=5,根据题意,知⊙C与直线AB相切或相离,相切时,⊙C的半径即是AB上的高,即为2.4,所以⊙C的半径的取值范围是小于或等于2.4;又⊙A与⊙C相切,则可能内切,也可能外切,当两圆外切时,则0.6≤r<3,当两圆内切时,则3<r≤5.4.∴0.6≤r<3或3<r≤5.4.三、解答题(共8小题,满分80分)21.(6分)阅读下列解题过程:题目:已知方程x2+3x+1=0的两个根为α、β,求的值.解:∵△=32﹣4×1×1=5>0∴α≠β(1)由一元二次方程的根与系数的关系,得α+β=﹣3,αβ=1(2)∴3(3)阅读后回答问题:上面的解题过程是否正确?若不正确,指出错在哪一步,并写出正确的解题过程.【解答】解:不正确.第(3)步错.正确的解题过程是:∵△=32﹣4×1×1=5>0,∴α≠β,由一元二次方程的根与系数的关系,得α+β=﹣3<0,αβ=1>0,∴α<0,β<0,∴3.22.(8分)用换元法解方程x2﹣x1=0.【解答】解:设x2﹣x=y,原方程可变形为:y1=0,方程两边都乘以y,得y2+y﹣6=0,解得y1=2,y2=﹣3.当y=2时,x2﹣x=2∴x1=﹣1,x2=2;当y=﹣3时,x2﹣x=﹣3,∵△<0,∴此方程无实数根.检验:把x1=﹣1,x2=2分别代入原方程的分母,分母不等于0,∴原方程的根是x1=﹣1,x2=2.23.(8分)如图二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;(2)求此抛物线的顶点坐标和对称轴;(3)观察图象,当x取何值时,y<0,y=0,y>0.【解答】解:(1)A(﹣1,0),B(0,﹣3),C(4,5),设解析式为y=ax2+bx+c,代入可得:,解得:.故解析式为:y=x2﹣2x﹣3;(2)y=x2﹣2x﹣3=(x﹣1)2﹣4,故顶点坐标为:(1,﹣4),对称轴为直线x=1;(3)观察图象可得:当x<﹣1或x>3时,y>0,当x=﹣1或x=3时,y=0,当﹣1<x<3时,y<0.24.(10分)某校课外活动小组为了了解本校初三学生的睡眠时间情况,对本校若干名初三学生的睡眠时间进行了调查,所得数据整理后,画出了如图所示的频数分布直方图(图中每个长方形包括左边分点,不包含右边分点).请回答:(1)这次被抽查的学生人数是多少?(2)被抽查的学生中,睡眠在哪个范围内的人数最多这一范围内的人数是多少?(3)如果该校学生有900名初三学生,若合理睡眠时间范围为7≤t<9,那么请你估计一下这个学校初三学生睡眠时间在此范围内的人数是多少?【解答】解:(1)总人数是2+4+12+14+12+6=50人;(2)被抽查的学生睡眠时间在6≤t<7(或从左至右数第四小组)的人数最多.这一范围内的人数是14人;(3)∵第五组、第六组的频数的和是12+6=18这两组的频率是0.36,∴0.36×900=324(人),∴估计这个学校初三学生中睡眠时间在7≤t<9的人数约为324人.25.(10分)某地有一居民楼,窗户朝南,窗户的高度为h米,此地一年中的冬至这一天的正午时刻太阳光与地面的夹角最小为α,夏至这一天的正午时刻太阳光与地面的夹角最大为β(如图1),小明想为自己家的窗户设计一个直角形遮阳篷BCD,要求它既能最大限度地遮挡夏天炎热的阳光,又能最大限度地使冬天温暖的阳光射入室内.小明查阅了有关资料,获得了所在地区∠α和∠β的相应数据:∠α=24°36′,∠β=73°30′,小明又量得窗户的高AB=1.65米,若同时满足下面两个条件,(1)当太阳光与地面的夹角为α时,要想使太阳光刚好全部射入室内;(2)当太阳光与地面的夹角为β时,要想使太阳光刚好不射入室内.请你借助下面的图形(如图2),帮助小明算一算,遮阳篷BCD中,BC和CD的长各是多少?(精确到0.01米)以下数据供计算中选用sin24°36′=0.416,cos24°36′=0.909,tan24°36′=0.456,cot24°36′=2.184,sin73°30′=0.959,cos73°30′=0.284,tan73°30′=3.376,cot73°30′=0.296.【解答】解:在Rt△BCD中,tan∠CDB,∠CDB=∠α,∴BC=CD•tan∠CDB=CD•tanα,在Rt△ACD中,tan∠CDA,∠CDA=∠β,∴AC=CD•tan∠CDA=CD•tanβ,∵AB=AC﹣BC=CD•tanβ﹣CD•tanα=CD(tanβ﹣tanα),∴CD0.57米,∴BC=CD•tan∠CDB≈0.57×0.456≈0.26(米).答:BC的长约为0.26米,CD的长约为0.57米.26.(12分)某市的A县和B县春季育苗,急需化肥分别为90吨和60吨.该市的C县和D 县分别储存化肥100吨和50吨,全部调配给A县和B县,已知C、D两县运化肥到A、B两县的运费(元/吨)如下列表所示:(1)设C县到A县的化肥为x吨,求总运费W(元)与x(吨)的函数关系式,并写出自变量x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.【解答】解:(1)由C县运往A县的化肥为x吨,则C县运往B县的化肥为(100﹣x)吨,D县运往B县的化肥为(x﹣40)吨依题意W=35x+40(90﹣x)+30(100﹣x)+45(x﹣40)=10x+4800,40≤x≤90;∴W=10x+4800(40≤x≤90);(2)∵10>0,∴W随着x的增大而增大,当x=40时,W最小=10×40+4800=5200(元),即运费最低时,x=40,∴100﹣x=60,90﹣x=50,x﹣40=0,运送方案为C县的100吨化肥40吨运往A县,60吨运往B县,D县的50吨化肥全部运往A县.27.(12分)如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点.(1)求证:AB⊥AC;(2)过点A的直线分别交⊙O1、⊙O2于点D、E,且DE是连心线时,直线DB与直线EC交于点F.请在图中画出图形,并判断DF与EF是否互相垂直,请证明;若不垂直,请说明理由;(3)在(2)的其他条件不变的情况下,将直线DE绕点A旋转(DE不与点A、B、C 重合),请另画出图形,并判断DF与EF是否互相垂直?若垂直,请证明;若不垂直,请说明理由.【解答】(1)证明:如图1,过点A作⊙O1和⊙O2的内公切线交BC于点O,∵OB、OA是⊙O1的切线,∴OB=OA.同理OC=OA.∴OB=OC=OA.∴△ABC是直角三角形.∴AB⊥AC.(2)解:DF⊥EF.理由如下:如图1,∵⊙O1和⊙O2外切于点A,∴∠ABC=∠FDA,∠ACB=∠FEA,由(1)得∠ABC+∠ACB=90°,∴∠FDA+∠FEA=90°,∴∠DFE=90°,即DF⊥EF;(3)解:DF⊥EF.理由如下:第一种情况:如图2,∵⊙O1和⊙O2外切于点A,∴∠ABC=∠FDA,∠ACB=∠FEA.由(1)得∠ABC+∠ACB=90°,∴∠FDA+∠FEA=90°.∴∠DFE=90°,即DF⊥EF.第二种情况:如图3,∵∠ACB=∠FEA,∠CBD=∠BAD,∠EDF=∠DBA+∠DAB,∴∠EDF=∠ABC.∵∠ABC+∠ACB=90°,∴∠EDF+∠AEC=90°.∴∠DFE=90°,即EF⊥DF.28.(14分)如图,直线l:y x与x轴、y轴分别交于点B、C,以点A(1,0)为圆心,以AB的长为半径作⊙A,分别交x轴、y轴正半轴于点D、E,直线l与⊙A交于点F,分别过点B、F作⊙A的切线交于点M.(1)直接写出点B、C的坐标;(2)求直线MF的解析式;(3)若点P是上任意一点(不与B、F重合).连接BP、FP.过点M作MN∥PF,交直线l于点N.设PB=a,MN=b,求b与a的函数关系式,并写出自变量a的取值范围;(4)若将(3)中的条件点P是上任意一点,改为点P是⊙A上任意一点,其它条件不变.当点P在⊙A上的什么位置时,△BMN为直角三角形,并写出此时点N的坐标.(第(4)问直接写出结果,不要求证明或计算过程)【解答】解:(1)B(﹣1,0),C(0,);(2)作AH⊥BF于H,FG⊥BD于G,tan∠CBO,∴∠CBO=30°∴HA AB=1,∴BH,BF=2BH=2,∴FG BF,BC=3OG=2,∴F(2,),∵∠MBF=60°,BM=MF,∴MB=MF=BF=2,∴M(﹣1,2),设直线MF的解析式为y=kx+b,∴,∴,∴y x;(3)∵MN∥PF,∴∠NMF=∠PFM,∵∠PFM=∠PBF,∴∠PBF=∠FMN,∵∠MNF=∠BFP,∴△PBF∽△FMN,∴,∴,∴ab=12,∴b,0<a<2;(4)当点P与点E或与点D重合时,△BMN为直角三角形,此时点N的坐为(5,2),(,).。
辽宁2022年沈阳中考数学试卷试题真题精校版(含答案详解)

沈阳市2022年初中学业水平考试数学试题试题满分120分,考试时间120分钟.注意事项:1.答题前,考生须用0.5mm 黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号;2.考生须在答题卡上作答,不能在本试题卷上作答,答在本试题卷上无效;3.考试结束,将本试题卷和答题卡一并交回;4.本试题卷包括八道大题,25道小题,共6页.如缺页、印刷不清,考生须声明.一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.计算()53+-正确的是()A .2B .2-C .8D .8-2.如图是由4个相同的小立方块搭成的几何体,这个几何体的主视图是()A .B .C .D .3.下列计算结果正确的是()A .()336a a =B .632a a a ÷=C .()248ab ab =D .()2222a b a ab b +=++4.在平面直角坐标系中,点()2,3A 关于y 轴对称的点的坐标是()A .()2,3--B .()2,3-C .()2,3-D .()3,2--5.调查某少年足球队全体队员的年龄,得到数据结果如下表:年龄/岁1112131415人数34722则该足球队队员年龄的众数是()A .15岁B .14岁C .13岁D .7人6.不等式213x +>的解集在数轴上表示正确的是()A .B .C .D .7.如图,在Rt ABC 中,30A ∠=︒,点D 、E 分别是直角边AC 、BC 的中点,连接DE ,则CED ∠度数是()A .70°B .60°C .30°D .20°8.在平面直角坐标系中,一次函数1y x =-+的图象是()A .B .C .D .9.下列说法正确的是()A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,22.5S =甲,28.7S =乙,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件10.如图,一条河两岸互相平行,为测得此河的宽度PT (PT 与河岸PQ 垂直),测P 、Q 两点距离为m 米,PQT α∠=,则河宽PT 的长度是()A .sin m αB .cos m αC .tan m αD .tan m α二、填空题(每小题3分,共18分)11.分解因式:269ay ay a ++=______.12.二元一次方程组252x y y x +=⎧⎨=⎩的解是______.13.化简:21111x x x-⎛⎫-⋅= ⎪+⎝⎭______.14.如图,边长为4的正方形ABCD 内接于O ,则 AB 的长是________(结果保留π)15.如图四边形ABCD 是平行四边形,CD 在x 轴上,点B 在y 轴上,反比例函数()0ky x x=>的图象经过第一象限点A ,且平行四边形ABCD 的面积为6,则k =______.16.如图,将矩形纸片ABCD 折叠,折痕为MN ,点M ,N 分别在边AD ,BC 上,点C ,D 的对应点分别在E ,F 且点F 在矩形内部,MF 的延长线交BC 与点G ,EF 交边BC 于点H .2EN =,4AB =,当点H 为GN 三等分点时,MD 的长为______.三、解答题:17213tan 3022-⎛⎫︒+ ⎪⎝⎭.18.为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是________;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.19.如图,在ABC 中,AD 是ABC 的角平分线,分别以点A ,D 为圆心,大于12AD 的长为半径作弧,两弧交于点M ,N ,作直线MN ,分别交AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的______.(2)求证:四边形AEDF 是菱形.20.某校积极落实“双减”政策,将要开设拓展课程,为让学生可以根据自己的兴趣爱好选择最喜欢的课程,进行问卷调查,问卷设置以下四种选项:A(综合模型)、B(摄影艺术)、C (音乐鉴赏)、D(劳动实践),随机抽取了部分学生进行调查,每名学生必须且只能选择其中最喜欢的一种课程,并将调查结果整理绘制成如下不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为________名;(2)直接在答题卡中补全条形统计图;(3)求拓展课程D(劳动实践)所对应的扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校800名学生中,有多少名学生最喜欢C(音乐鉴赏)拓展课程.21.如图,用一根长60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1)若所围成矩形框架ABCD 的面积为144平方厘米,则AB 的长为多少厘米?(2)矩形框架ABCD 面积最大值为______平方厘米.22.如图,四边形ABCD 内接于圆O ,AD 是圆O 的直径,AD ,BC 的延长线交于点E ,延长CB 交PA 于点P ,90BAP DCE ∠+∠=︒.(1)求证:PA 是圆O 的切线;(2)连接AC ,1sin 3BAC ∠=,2BC =,AD 的长为______.23.如图,在平面直角坐标系中,一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点()0,9B ,与直线OC 交于点()8,3C .(1)求直线AB 的函数表达式;(2)过点C 作CD x ⊥轴于点D ,将ACD 沿射线CB 平移得到的三角形记为A C D '''△,点A ,C ,D 的对应点分别为A ',C ',D ¢,若A C D '''△与BOC 重叠部分的面积为S ,平移的距离CC m '=,当点A '与点B 重合时停止运动.①若直线C D ''交直线OC 于点E ,则线段C E '的长为________(用含有m 的代数式表示);②当1003m <<时,S 与m 的关系式为________;③当245S =时,m 的值为________.24.(1)如图1,AOB 和COD △是等腰直角三角形,90AOB COD ∠=∠=︒,点C 在OA 上,点D 在线段BO 延长线上,连接AD ,BC .线段AD 与BC 的数量关系为______;(2)如图2,将图1中的COD △绕点O 顺时针旋转α(090α︒<<︒)第一问的结论是否仍然成立;如果成立,证明你的结论,若不成立,说明理由.(3)如图3,若8AB =,点C 是线段AB 外一动点,AC =BC ,①若将CB 绕点C 逆时针旋转90︒得到CD ,连接AD ,则AD 的最大值______;②若以BC 为斜边作Rt BCD ,(B 、C 、D 三点按顺时针排列),90CDB ∠=︒,连接AD ,当30CBD DAB ∠=∠=︒时,直接写出AD 的值.25.如图,平面直角坐标系中,O 是坐标原点,抛物线23y ax bx =+-经过点()6,0B 和点()4,3D -与x 轴另一个交点A .抛物线与y 轴交于点C ,作直线AD .(1)①求抛物线的函数表达式②并直接写出直线AD 的函数表达式.(2)点E 是直线AD 下方抛物线上一点,连接BE 交AD 于点F ,连接BD ,DE ,BDF V 的面积记为1S ,DEF 的面积记为2S ,当122S S =时,求点E 的坐标;(3)点G 为抛物线的顶点,将抛物线图象中x 轴下方部分沿x 轴向上翻折,与抛物线剩下部分组成新的曲线为1C ,点C 的对应点C ',点G 的对应点G ',将曲线1C ,沿y 轴向下平移n 个单位长度(06n <<).曲线1C 与直线BC 的公共点中,选两个公共点作点P 和点Q ,若四''是平行四边形,直接写出P的坐标.边形C G QP1.A 【分析】根据有理数的加法运算即可求解.【详解】解:()53+-2=.故选:A .【点睛】本题考查了有理数的加法,掌握有理数的加法法则是解题的关键.2.D 【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看易得上面第一层有1个正方形,第二层左边和右边都有一个正方形,如图所示:故选:D .【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.D 【分析】分别利用幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式分别求出即可.【详解】A .()339a a =,故此选项计算错误,不符合题意;B .633a a a ÷=,故此选项计算错误,不符合题意;C .()2428ab a b =,故此选项计算错误,不符合题意;D .()2222a b a ab b +=++,故此选项计算正确,符合题意;故选:D .【点睛】本题考查幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式,熟练掌握相关计算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相除,底数不变,指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222a b a ab b-=-+都叫做完全平方公式,为了区别,我们把前者()2()2a b a ab b+=++与222叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.4.B【分析】根据“关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数”即可解答.【详解】解:点A(2,3)关于y轴对称的点的坐标是(-2,3).故选B.【点睛】本题考查了关于坐标轴对称的点的坐标特征,对称点的坐标规律:①关于x轴对称的点,横坐标相同,纵坐标互为相反数;②关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5.C【分析】根据众数的定义即一组数据中出现次数最多的数据,即可得出答案.【详解】解:∵年龄是13岁的人数最多,有7个人,∴这些队员年龄的众数是13;故选:C.【点睛】本题考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数据.6.B【分析】先解不等式,将不等式的解集表示在数轴上即可.【详解】解:213x +>移项合并得:22x >,系数化1得:1x >,表示在数轴上为∶故选:B .【点睛】本题考查一元一次不等式的解法,并把解集表示在数轴上,正确解出不等式是解答本题的关键.7.B【分析】因为点D 、E 分别是直角边AC 、BC 的中点,所以DE 是Rt ABC 的中位线,三角形的中位线平行于第三边,进而得到B CED ∠=∠,求出B ∠的度数,即为CED ∠的度数.【详解】解:∵点D 、E 分别是直角边AC 、BC 的中点,∴DE 是Rt ABC 的中位线,∴DE AB ∥,∴B CED ∠=∠,∵30A ∠=︒,90C ∠=︒,∴903060B ∠=-=°°°,∴60CED ∠=︒,故选:B .【点睛】本题考查三角形中位线的性质以及三角形内角和,由三角形中位线定义,找到平行线是解答本题的关键.8.C【分析】根据一次函数的图象与性质即可得.【详解】解:一次函数1y x =-+的一次项系数为−1<0,常数项为10>,∴函数图象经过一、二、四象限故选:C .【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题关键.9.A【分析】根据全面调查和抽样调查的意义、概率的意义、方差的意义、事件可能性的大小分别进行判断即可.【详解】解:A .要了解一批灯泡的使用寿命,采用普查的方式不合适,破坏性较强,应采用抽样调查,故此选项正确,符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票不一定一定会中奖,故选项错误,不符合题意;C .若甲、乙两组数据的平均数相同,2 2.5S =甲,28.7S =乙,则2S 甲<2S 乙,则甲组数据较稳定,故选项错误,不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,故选项错误,不符合题意.故选:A .【点睛】此题主要考查了全面调查和抽样调查的意义、概率的意义、方差的意义、事件可能性的大小,关键是熟练掌握各知识点.10.C【分析】结合图形利用正切函数求解即可.【详解】解:根据题意可得:tan PT PQα=,∴·tan tan PT PQ m αα==,故选C .【点睛】题目主要考查解直角三角形的实际应用,理解题意,利用正切函数解直角三角形是解题关键.11.()23a y +【分析】先提取公因式,然后再利用完全平方公式进行因式分解即可.【详解】解:269ay ay a++=()269a y y ++()23a y =+;故答案为:()23a y +.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.12.12x y =⎧⎨=⎩##21y x =⎧⎨=⎩【分析】利用代入消元法进行求解方程组的解即可.【详解】解:252x y y x +=⎧⎨=⎩①②把②代入①得:55=x ,解得:1x =,把1x =代入②得:2y =;∴原方程组的解为12x y =⎧⎨=⎩;故答案为12x y =⎧⎨=⎩.【点睛】本题主要考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是解题的关键.13.1x -##1x-+【分析】根据分式的混合运算可直接进行求解.【详解】解:原式=()()1111x x x x x x+-⋅=-+;故答案为1x -.【点睛】本题主要考查分式的运算,熟练掌握分式的加减乘除运算是解题的关键.14【分析】连接OA 、OB ,可证∠AOB =90°,根据勾股定理求出AO ,根据弧长公式求出即可.【详解】解:连接OA 、OB .∵正方形ABCD 内接于⊙O ,∴AB =BC =DC =AD =4,AO =BO ,∴ AB BC CD AD ===,∴∠AOB =14×360°=90°,在Rt △AOB 中,由勾股定理得:AO 2+BO 2=2AO 2=42=16,解得:AO =∴ AB =,.【点睛】本题考查了弧长公式和正方形的性质,能求出∠AOB 的度数和OA 的长是解此题的关键.15.6【分析】过点A 作AE ⊥CD 于点E ,然后平行四边形的性质可知△AED ≌△BOC ,进而可得矩形ABOE 的面积与平行四边形ABCD 的面积相等,最后根据反比例函数k 的几何意义可求解.【详解】解:过点A 作AE ⊥CD 于点E ,如图所示:∴90AED BOC ∠=∠=︒,∵四边形ABCD 是平行四边形,∴,//BC AD BC AD =,∴ADE BCO ∠=∠,∴△AED ≌△BOC (AAS ),∵平行四边形ABCD 的面积为6,∴6ABCD ABOE S S == 矩形,∴6k =;故答案为6.【点睛】本题主要考查平行四边形的性质及反比例函数k 的几何意义,熟练掌握平行四边形的性质及反比例函数k 的几何意义是解题的关键.16.4或4【分析】由折叠得,∠DMN =∠GMN ,EF =CD ==4,CN =EN =2,∠EFM =∠D =90°,证明GHE NHE ∆∆ 得NH HE NE GH HF GF==,再分两种情况讨论求解即可.【详解】解:∵四边形ABCD 是矩形,∴AD //BC ,CD =AB =4,∠D =∠C =90°,∴∠DMN =∠GNM ,由折叠得,∠DMN =∠GMN ,EF =CD ==4,CN =EN =2,∠EFM =∠D =90°,∴∠GMN =∠GNM ,∠GFH =∠NEH ,∴GM =GN ,又∠GHE =∠NHE ,∴GHE NHE ∆∆ ,∴NH HE NE GH HF GF==,∵点H 是GN 的三等分点,则有两种情况:①若12NH GH =时,则有:12HE NE HF GF ==∴EH =1428,3333EF FH EF ===,GF =2NE =4,由勾股定理得,NH =,∴GH =2NH∴GM =GN =GH +NH =∴MD =MF =GM -GF =4;②若2NH GH =时,则有:2HE NE HF GF==∴EH =2814,3333EF FH EF ===,GF =12NE =1,由勾股定理得,103NH =,∴GH =12NH =53∴GM =GN =GH +NH =5;∴MD =MF =GM -GF =514-=综上,MD 的值为4或4.【点睛】本题主要考查了矩形的性质,折叠的性质,等腰三角形的判定与性质以及相似三角形的判定与性质等知识,进行分类讨论是解答本题的关键.17.6【分析】根据二次根式的性质,特殊角的三角函数值,负整数指数幂,化简绝对值进行计算即可求解.【详解】解:原式=3423⨯+-42+6=.【点睛】本题考查了实数的混合运算,掌握二次根式的性质,特殊角的三角函数值,负整数指数幂,化简绝对值是解题的关键.18.(1)1 4(2)1 6【分析】(1)直接由概率公式求解即可;(2)画树状图,共有12种等可能的结果,其中两张卡片上的数字是2和3的结果有2种,再由概率公式求解即可.(1)解:随机抽取一张卡片,卡片上的数字是4的概率为1 4,故答案为:1 4;(2)解:画树状图如下:共有12种等可能的结果,其中两张卡片上的数字是2和3的结果有2种,∴两张卡片上的数字是2和3的概率为21 126=.【点睛】此题考查的是用树状图或列表法求概率.树状图或列表法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.熟练掌握树状图或列表法是解决这类题的关键.19.(1)垂直平分线(2)见详解【分析】(1)根据线段垂直平分线的尺规作图可直接得出答案;(2)由题意易得90,,AOF AOE FAO EAO AF DF ∠=∠=︒∠=∠=,然后可证AOF AOE ≌,则有OF =OE ,进而问题可求证.(1)解:由题意得:直线MN 是线段AD 的垂直平分线;故答案为:垂直平分线;(2)证明:∵直线MN 是线段AD 的垂直平分线,∴90,,AOF AOE AO DO AF DF ∠=∠=︒==,∵AD 是ABC 的角平分线,∴FAO EAO ∠=∠,∵AO =AO ,∴AOF AOE ≌(ASA ),∴OF =OE ,∵AO =DO ,∴四边形AEDF 是平行四边形,∵AF DF =,∴四边形AEDF 是菱形.【点睛】本题主要考查线段垂直平分线的尺规作图、全等三角形的性质与判定及菱形的判定,熟练掌握线段垂直平分线的尺规作图、全等三角形的性质与判定及菱形的判定是解题的关键.20.(1)120(2)见解析(3)72︒(4)320名【分析】(1)先求出B 的人数,再将各项人数相加即可.(2)见解析(3)根据D 的百分比乘以圆心角即可.(4)求出C 所占的百分比,乘以800.(1)解:根据扇形统计图中,B 是A 的3倍故喜欢B 的学生数为31236⨯=(名)统计调查的总人数有:12+36+48+24=120(名).(2)(3)由条形统计图可知:D 的人数是A 的2倍,故D 占总人数的20%所以D 所占圆心角为20%36072⨯︒=︒答:课程D 所对应的扇形的圆心角的度数为72︒.(4)若有800名学生,则喜欢C 的学生数有:48800320120⨯=(名)答:有320名学生最喜欢C 拓展课程.【点睛】本题考查扇形统计图与条形统计图相关内容,注意从图中获取信息,分析图中数据之间的数量关系是解题的关键.21.(1)AB 的长为8厘米或12厘米.(2)150【分析】(1)设AB 的长为x 厘米,则有6032x AD -=厘米,然后根据题意可得方程6031442x x -⋅=,进而求解即可;(2)由(1)可设矩形框架ABCD 的面积为S ,则有()260331015022x S x x -=⋅=--+,然后根据二次函数的性质可进行求解.(1)解:设AB 的长为x 厘米,则有6032x AD -=厘米,由题意得:6031442x x -⋅=,整理得:220960x x -+=,解得:128,12x x ==,∵60302x ->,∴020x <<,∴128,12x x ==都符合题意,答:AB 的长为8厘米或12厘米.(2)解:由(1)可设矩形框架ABCD 的面积为S 平方厘米,则有:()22603333010150222x S x x x x -=⋅=-+=--+,∵302-<,且020x <<,∴当10x =时,S 有最大值,即为150S =;故答案为:150.【点睛】本题主要考查一元二次方程及二次函数的应用,解题的关键是找准题干中的等量关系.22.(1)证明见解析(2)6【分析】(1)根据圆内接四边形的性质和90BAP DCE ∠+∠=︒,可得出90PAD ∠=︒,再根据AD 是圆O 的直径,由切线的判定可得证;(2)延长DC 交AB 的延长线于点F ,由AD 是圆O 的直径,可说明ACF △是直角三角形,从而得到1sin 3CF BAC AF ∠==,再证明FCB FAD △∽△,得到CB CF AD AF =,代入数据即可得到答案.(1)证明:∵四边形ABCD 内接于圆O ,∴BAD DCE ∠=∠,∵90BAP DCE ∠+∠=︒,∴90BAP BAD ∠+∠=︒,∴90PAD ∠=︒,∴PA AD ⊥,∵AD 是圆O 的直径,∴PA 是圆O 的切线.(2)解:延长DC 交AB 的延长线于点F ,∵AD 是圆O 的直径,∴=90ACD ∠︒,∴18090ACF ACD ∠=︒-∠=︒,∴ACF △是直角三角形,∴sin CF BAC AF ∠=,∵四边形ABCD 内接于圆O ,∴FCB FAD =∠∠,又∵F F ∠=∠,∴FCB FAD △∽△,∴CB CF AD AF=,∵1sin 3BAC ∠=,2BC =,∴213CF AD AF ==,∴6AD =.故答案为:6.【点睛】本题考查了切线的判定,圆内接四边形的性质,圆周角定理推论,相似三角形的判定和性质,三角函数等知识.通过作辅助线构造相似三角形是解题的关键.23.(1)y =﹣34x +9;(2)①910m ;②925m 215﹣【分析】(1)将点B (0,9),C (8,3)的坐标代入直线解析式,求解即可;(2)①过点C 作CF ⊥C ′D ′,易得△CFC ′∽△AOB ,可用m 表达CF 和C ′F 的长度,进而可表达点C ′,D ′的坐标,由点C 的坐标可得出直线OC 的解析式,代入可得点E 的坐标;②根据题意可知,当0<m <103时,点D ′未到直线OC ,利用三角形面积公式可得出本题结果;③分情况讨论,分别求出当0<m <103时,当103<m <5时,当5<m <10时,当10<m <15时,S 与m 的关系式,分别令S =245,建立方程,求出m 即可.(1)解:将点B (0,9),C (8,3)的坐标代入直线y =kx +b ,∴983b k b =⎧⎨+=⎩,解得349k b ⎧=-⎪⎨⎪=⎩.∴直线AB 的函数表达式为:y =﹣34x +9;(2)①由(1)知直线AB 的函数表达式为:y =﹣34x +9,令y =0,则x =12,∴A (12,0),∴OA =12,OB =9,∴AB =15;如图1,过点C 作CF ⊥C ′D ′于点F,∴CF ∥OA ,∴∠OAB =∠FCC ′,∵∠C ′FC =∠BOA =90°,∴△CFC ′∽△AOB ,∴OB :OA :AB =C ′F :CF :CC ′=9:12:15,∵CC ′=m ,∴CF =45m ,C ′F =35m ,∴C ′(8﹣45m ,3+35m ),A ′(12﹣45m ,35m ),D ′(8﹣45m ,35m ),∵C (8,3),∴直线OC 的解析式为:y =38x ,∴E (8﹣45m ,3﹣310m ).∴C ′E =3+35m ﹣(3﹣310m )=910m .故答案为:910m .②当点D ′落在直线OC 上时,有35m =38(8﹣45m ),解得m =103,∴当0<m <103时,点D ′未到直线OC ,此时S =12C ′E •CF =12•910m •45m =925m 2;故答案为:925m 2.③分情况讨论,当0<m <103时,由②可知,S =925m 2;令S =925m 2=245,解得m =3>103(舍)或m =﹣3(舍);当103≤m <5时,如图2,设线段A ′D ′与直线OC 交于点M ,∴M (85m ,35m ),∴D ′E =35m ﹣(3﹣310m )=910m ﹣3,D ′M =85m ﹣(8﹣45m )=125m ﹣8;∴S =925m 2﹣12•(910m ﹣3)•(125m ﹣8)=﹣1825m 2+365m ﹣12,令﹣1825m 2+365m ﹣12=245;整理得,3m 2﹣30m +70=0,解得m 或m 5(舍);当5≤m <10时,如图3,S =S △A ′C ′D ′=12×4×3=6≠245,不符合题意;当10≤m <15时,如图4,此时A ′B =15﹣m ,∴BN =35(15﹣m ),A ′N =45(15﹣m ),∴S =12•35(15﹣m )•45(15﹣m )=625(15﹣m )2,令625(15﹣m )2=245,解得m =15+215(舍)或m =15﹣故答案为:153-或15﹣【点睛】本题属于一次函数综合题,涉及待定系数法求函数解析式、三角形的面积、相似三角形的性质与判定、一元二次方程、分类讨论思想等知识,根据△A ′C ′D ′的运动,进行正确的分类讨论是解题关键.24.(1)AD BC =;(2)结论仍成立,理由见详解;(3)①2AD =.【分析】(1)由题意易得AO BO =,OD OC =,90AOD BOC ∠=∠=︒,然后可证AOD BOC ≌△△,进而问题可求解;(2)由题意易得AO BO =,OD OC =,然后可证AOD BOC ≌△△,进而问题可求证;(3)①根据题意作出图形,然后根据三角不等关系可得AC CD AD +≥,则当A 、C 、D 三点共线时取最大,进而问题可求解;②过点C 作CE AB ⊥于点E ,连接DE ,过点B 作BF DE ⊥于点F ,然后可得点C 、D 、B 、E 四点共圆,则有60DEB DCB ∠=∠=︒,设2BC x =,BE y =,则8AE y =-,CD x =,BD =,进而根据勾股定理可进行方程求解.【详解】解:(1)AD BC =,理由如下:∵AOB 和COD △是等腰直角三角形,90AOB COD ∠=∠=︒,∴AO BO =,OD OC =,90AOD BOC ∠=∠=︒,∴()SAS AOD BOC ≌△△,AD BC ∴=,故答案为:AD BC =;(2)结论仍成立,理由如下:∵AOB 和COD △是等腰直角三角形,90AOB COD ∠=∠=︒,∴AO BO =,OD OC =,∴AOC COD BOA AOC ∠+∠=∠+∠,即AOD BOC ∠=∠,∴()SAS AOD BOC ≌△△,AD BC ∴=;(3)①如图,由题意得:BC CD =,90BCD ∠=︒,根据三角不等关系可知:AC CD AD +≥,∴当A 、C 、D 三点共线时取最大,∴90ACB BCD ∠=∠=︒,∵8AB =,AC =∴BC =AD ∴的最大值为;②过点C 作CE AB ⊥于点E ,连接DE ,过点B 作BF DE ⊥于点F ,如图所示:∴90AEB CDB ∠=∠=︒,∴点C 、D 、B 、E 四点共圆,∵30CBD DAB ∠=∠=︒,∴60BCD ∠=︒,∴60DEB BCD ∠=∠=︒,∴30ADE DEB DAB ∠=∠-∠=︒,9030EBF DEB ∠=︒-∠=︒,∴D AE AD E ∠=∠,∴AE DE =,设2BC x =,BE y =,则8AE y =-,CD x =,BD ,∴1122EF BE y ==,8DE AE y ==-,∴382DF DE EF y =-=-,BF y ===,∴在Rt AEC △和Rt BEC △中,由勾股定理得:()2224278x y y -=--,整理得:241637x y =-①;在Rt BFD 中,由勾股定理得:222338324y y x ⎛⎫-+= ⎪⎝⎭,整理得:22642433y y x -+=②,联立①②得:2121443670y y -+=,解得:166y =-,266y =+(不符合题意,舍去),∴86266AE ⎛⎫=--=+ ⎪ ⎪⎝⎭,过点E 作EM AD ⊥于点M ,∴11212EM AE ==+,12AM AD =,∴4AM ==,∴2AD AE ==【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的性质、四点共圆及含30度直角三角形的性质,熟练掌握全等三角形的性质与判定、等腰直角三角形的性质、四点共圆及含30度直角三角形的性质是解题的关键.25.(1)①2134y x x =--;②112y x =--(2)(2,-4)或(0,-3)(3)()或512⎛⎫-- ⎪ ⎪⎝⎭【分析】(1)①利用待定系数解答,即可求解;②利用待定系数解答,即可求解;(2)过点E 作EG ⊥x 轴交AD 于点G ,过点B 作BH ⊥x 轴交AD 于点H ,设点21,34E m m m ⎛⎫-- ⎪⎝⎭,则点1,12G m m ⎛⎫-- ⎪⎝⎭,可得211242EG m m =-++,然后根据△EFG ∽△BFH ,即可求解;(3)先求出向上翻折部分的图象解析式为()21244y x =--+,可得向上翻折部分平移后的函数解析式为()21244y x n =--+-,平移后抛物线剩下部分的解析式为()21244y x n =---,分别求出直线BC 和直线C G ''的解析式为,可得BC ∥C ′G ′,再根据平行四边形的性质可得点12,22Q s s ⎛⎫+- ⎪⎝⎭,然后分三种情况讨论:当点P ,Q 均在向上翻折部分平移后的图象上时;当点P 在向上翻折部分平移后的图象上,点Q 在平移后抛物线剩下部分的图象上时;当点P 在平移后抛物线剩下部分的图象上,点Q 在向上翻折部分平移后的图象上时,即可求解.(1)解:①把点()6,0B 和点()4,3D -代入得:3663016433a b a b +-=⎧⎨+-=-⎩,解得:141a b ⎧=⎪⎨⎪=-⎩,∴抛物线解析式为2134y x x =--;②令y =0,则21304x x --=,解得:122,6x x =-=,∴点A (-2,0),设直线AD 的解析式为()10y kx b k =+≠,∴把点()4,3D -和点A (-2,0)代入得:114320k b k b +=-⎧⎨-+=⎩,解得:1121k b ⎧=-⎪⎨⎪=-⎩,∴直线AD 的解析式为112y x =--;(2)解:如图,过点E 作EG ⊥x 轴交AD 于点G ,过点B 作BH ⊥x 轴交AD 于点H ,当x =6时,16142y =-⨯-=-,∴点H (6,-4),即BH =4,设点21,34E m m m ⎛⎫-- ⎪⎝⎭,则点1,12G m m ⎛⎫-- ⎪⎝⎭,∴2211111322442EG m m m m m ⎛⎫⎛⎫=-----=-++ ⎪ ⎪⎝⎭⎝⎭,∵BDF V 的面积记为1S ,DEF 的面积记为2S ,且122S S =,∴BF =2EF ,∵EG ⊥x ,BH ⊥x 轴,∴△EFG ∽△BFH ,∴12EG EF BH BF ==,∴211214242m m -++=,解得:2m =或0,∴点E 的坐标为(2,-4)或(0,-3);(3)解:()221132444y x x x =--=--,∴点G 的坐标为(2,-4),当x =0时,y =-3,即点C (0,-3),∴点()()0,3,2,4C G '',∴向上翻折部分的图象解析式为()21244y x =--+,∴向上翻折部分平移后的函数解析式为()21244y x n =--+-,平移后抛物线剩下部分的解析式为()21244y x n =---,设直线BC 的解析式为()2220y k x b k =+≠,把点B (6,0),C (0,-3)代入得:222603k b b +=⎧⎨=-⎩,解得:22123k b ⎧=⎪⎨⎪=-⎩,∴直线BC 的解析式为132y x =-,同理直线C G ''的解析式为132y x =+,∴BC ∥C ′G ′,设点P 的坐标为1,32s s ⎛⎫- ⎪⎝⎭,∵点()()0,3,2,4C G '',∴点C ′向右平移2个单位,再向上平移1个单位得到点G ′,∵四边形C G QP ''是平行四边形,∴点12,22Q s s ⎛⎫+- ⎪⎝⎭,当点P ,Q 均在向上翻折部分平移后的图象上时,()()22112434211224242s n s s n s ⎧--+-=-⎪⎪⎨⎪-+-+-=-⎪⎩,解得:06s n =⎧⎨=⎩(不合题意,舍去),当点P 在向上翻折部分平移后的图象上,点Q 在平移后抛物线剩下部分的图象上时,()()22112434211224242s n s s n s ⎧--+-=-⎪⎪⎨⎪+---=-⎪⎩,解得:10s n ⎧=+⎪⎨=⎪⎩或10s n ⎧=-⎪⎨=⎪⎩,当点P 在平移后抛物线剩下部分的图象上,点Q 在向上翻折部分平移后的图象上时,()()22112434211224242s n s n s ⎧---=-⎪⎪⎨⎪-+-+-=-⎪⎩,解得:1s n ⎧=-⎪⎨=⎪⎩1s n ⎧=+⎪⎨=⎪⎩,综上所述,点P 的坐标为综上所述,点P 的坐标为()或(1).答案第23页,共23页【点睛】本题主要考查了二次函数的综合题,熟练掌握二次函数的图象和性质,平行四边形的性质,相似三角形的判定和性质,并利用数形结合思想解答是解题的关键.。
2023年辽宁省各市中考数学试题真题汇编——函数(含答案)

函数(真题汇编)2023年辽宁省各市中考数学试题全解析版一.选择题(共8小题);1.(2023•沈阳)已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 2.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限3.(2023•大连)已知蓄电池两端电压U为定值,电流I与R成反比例函数关系.当I=4A时,R=10Ω,则当I=5A时R的值为( )A.6ΩB.8ΩC.10ΩD.12Ω4.(2023•大连)已知抛物线y=x2﹣2x﹣1,则当0≤x≤3时,函数的最大值为( )A.﹣2B.﹣1C.0D.25.(2023•锦州)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,在△DEF中,DE=DF=5,EF=8,BC与EF在同一条直线上,点C与点E重合.△ABC以每秒1个单位长度的速度沿线段EF所在直线向右匀速运动,当点B运动到点F时,△ABC停止运动.设运动时间为t秒,△ABC与△DEF重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.6.(2023•营口)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.下列说法:①abc<0;②抛物线的对称轴为直线x=﹣1;③当﹣3<x<0时,ax2+bx+c>0;④当x>1时,y随x的增大而增大;⑤am2+bm≤a﹣b(m为任意实数),其中正确的个数是( )A.1个B.2个C.3个D.4个7.(2023•辽宁)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x 之间函数关系的图象是( )A.B.C.D.8.(2023•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=3cm.动点P从点A出发,以1cm/s的速度沿射线AB匀速运动,到点B停止运动,同时动点Q从点A出发,以cm/s的速度沿射线AC匀速运动.当点P停止运动时,点Q也随之停止运动.在PQ的右侧以PQ为边作菱形PQMN,点N在射线AB上.设点P的运动时间为x(s),菱形PQMN与△ABC的重叠部分的面积为y(cm2),则能大致反映y与x之间函数关系的图象是( )A.B.C.D.二.填空题(共7小题)9.(2023•锦州)如图,在平面直角坐标系中,△AOC的边OA在y轴上,点C在第一象限内,点B=(.(2023•锦州)如图,在平A4B4B5C4,…都是平行四边形,顶点C4,…都在正比例函数y=x2A4C3,…,连接A1B2,A2B3,.(2023•辽宁)如图,在平面直角坐标系中,点A的坐标为(0,2),将线段AO转120°,得到线段AB,连接OB,点B恰好落在反比例函数y=(x>0)的图象上,则值是 ..(2023•沈阳)若点=的图象上,则y2.(用“<”“>”或“=”填空).(2023•大连)如图,在数轴上,且A在OC上方.连接AB.(2023•辽宁)如图,矩形=(B,D,对角线CA的延长线经过原点三.解答题(共13小题).(2023•辽宁)电商平台销售某款儿童组装玩具,进价为每件的销售量y(件)与每件玩具售价.(2023•大连)如图1,在平面直角坐标系为线段OB上一动点(不与点B重合)的重叠面积为S,S关于t的函数图象如图(1)OB的长为 ;△OAB(2)求S关于t的函数解析式,并直接写出自变量21.(2023•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(4,0),与y轴交于点C (0,4),点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.22.(2023•锦州)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣1,0)和B,交y轴于点C(0,3),顶点为D.(1)求抛物线的表达式;(2)若点E在第一象限内对称轴右侧的抛物线上,四边形ODEB的面积为7,求点E的坐标;(3)在(2)的条件下,若点F是对称轴上一点,点H是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G,使以点E,F,G,H为顶点的四边形是菱形,且∠EFG=60°,如果存在,请直接写出点G的坐标;如果不存在,请说明理由.23.(2023•沈阳)如图,在平面直角坐标系中,一次函数y=kx+b的图象交x轴于点A(8,0),交的一个动点(点M不与点C重合),过点M作x轴的垂线交直线CD于点N.设点M的横坐标为m.(1)求a的值和直线AB的函数表达式;(2)以线段MN,MC为邻边作▱MNQC,直线QC与x轴交于点E.①当0≤m<时,设线段EQ的长度为l,求l与m之间的关系式;②连接OQ,AQ,当△AOQ的面积为3时,请直接写出m的值.24.(2023•营口)如图,点A在反比例函数y=(x>0)的图象上,AB⊥y轴于点B,tan∠AOB=,AB=2.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,连接AC并延长交x轴于点D,且∠ADO=45°,求点C的坐标.25.(2023•辽宁)抛物线y=ax2+x+c与x轴交于点A和点B(3,0),与y轴交于点C(0,4),点P为第一象限内抛物线上的动点,过点P作PE⊥x轴于点E,交BC于点F.(1)求抛物线的解析式;(2)如图1,当△BEF的周长是线段PF长度的2倍时,求点P的坐标;(3)如图2,当点P运动到抛物线顶点时,点Q是y轴上的动点,连接BQ,过点B作直线l⊥BQ,连接QF并延长交直线l于点M,当BQ=BM时,请直接写出点Q的坐标.26.(2023•沈阳)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,2),与x轴的交点为点B(,0)和点C.(1)求这个二次函数的表达式;(2)点E,G在y轴正半轴上,OG=2OE,点D在线段OC上,OD=OE.以线段OD,OE 为邻边作矩形ODFE,连接GD,设OE=a.①连接FC,当△GOD与△FDC相似时,求a的值;②当点D与点C重合时,将线段GD绕点G按逆时针方向旋转60°后得到线段GH,连接FH,FG,将△GFH绕点F按顺时针方向旋转α(0°<α≤180°)后得到△G′FH′,点G,H的对应点分别为G′、H′,连接DE.当△G′FH′的边与线段DE垂直时,请直接写出点H′的横坐标.27.(2023•大连)如图,在平面直角坐标系中,抛物线C1:y=x2上有两点A、B,其中点A的横坐标为﹣2,点B的横坐标为1,抛物线C2:y=﹣x2+bx+c过点A、B.过A作AC∥x轴交抛物线C1另一点为点C.以AC、AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式;(2)将矩形ACDE向左平移m个单位,向下平移n个单位得到矩形A′C′D′E′,点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式,并直接写出自变量m的取值范围;②直线A′E′交抛物线C1于点P,交抛物线C2于点Q.当点E′为线段PQ的中点时,求m的值;③抛物线C2与边E′D′、A′C′分别相交于点M、N,点M、N在抛物线C2的对称轴同侧,当MN=时,求点C′的坐标.28.(2023•营口)如图,抛物线y=ax2+bx﹣1(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C,抛物线的对称轴交x轴于点D(3,0),过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当=时,求点P 的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.函数(真题汇编)2023年辽宁省各市中考数学试题全解析版参考答案与试题解析一.选择题(共8小题)1.(2023•沈阳)已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【答案】B【解答】解:由图可知该一次函数图象经过第一、三、四象限,则k>0,b<0.故答案为B.2.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵y=﹣(x+1)2+2,∴顶点坐标为(﹣1,2),∴顶点在第二象限.故选:B.3.(2023•大连)已知蓄电池两端电压U为定值,电流I与R成反比例函数关系.当I=4A时,R=10Ω,则当I=5A时R的值为( )A.6ΩB.8ΩC.10ΩD.12Ω【答案】B【解答】解:设I=,则U=IR=40,∴R===8,故选:B.4.(2023•大连)已知抛物线y=x2﹣2x﹣1,则当0≤x≤3时,函数的最大值为( )A.﹣2B.﹣1C.0D.2【答案】D【解答】解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2,∴对称轴为直线x=1,∵a=1>0,∴抛物线的开口向上,∴当0≤x<1时,y随x的增大而减小,∴当x=0时,y=﹣1,当1≤x≤3时,y随x的增大而增大,∴当x=3时,y=9﹣6﹣1=2,∴当0≤x≤3时,函数的最大值为2,故选:D.5.(2023•锦州)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,在△DEF中,DE=DF=5,EF=8,BC与EF在同一条直线上,点C与点E重合.△ABC以每秒1个单位长度的速度沿线段EF所在直线向右匀速运动,当点B运动到点F时,△ABC停止运动.设运动时间为t秒,△ABC与△DEF重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.【答案】A【解答】解:过点D作DH⊥CB于H,∵DE=DF=5,EF=8,∴EH=FH=EF=4,∴DH==3,当0≤t<4时,如图,重叠部分为△EPQ,此时EQ=t,PQ∥DH,∴△EPQ∽△EDH,∴,即,∴PQ=t,∴S==2,当4≤t<8时,如图,重叠部分为四边形POC′B′,此时BB′=CC′=t,PB∥DE.∴B′F=BC+CF﹣BB′=12﹣t,FC=8﹣t,∵PB∥DE,∴△PBF∽△DCF,∴,又S△DCF=,∴,∵DH⊥BC.∠AB′C′=90°,∴AC′∥DH,∴△C′QF∽△HFD.∴,即,∴,∴S=S△PB′F﹣S△C′QF==,当8≤t≤12时如图,重叠部分为四边形△PFB′,此时BB′=CC′=t,PB′∥DE.∴B′F=BC+CF﹣BB′=12﹣t,∵PB′∥DE.∴△PB′F∽△DCF,∴,即,∴,S=S△PB′F=,综上,∴符合题意的函数图象是选项A.故选:A.6.(2023•营口)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.下列说法:①abc<0;②抛物线的对称轴为直线x=﹣1;③当﹣3<x<0时,ax2+bx+c>0;④当x>1时,y随x的增大而增大;⑤am2+bm≤a﹣b(m为任意实数),其中正确的个数是( )A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向下,∴a<0,∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),∴对称轴为直线x==﹣1,故②正确;∴﹣=﹣1,∴b=2a<0,∵与y轴的交点在正半轴上,∴c>0,∴abc>0,故①错误;由图象可知,当﹣3<x<0时,y>0,∴当﹣3<x<0时,ax2+bx+c>0,故③正确;由图象可知,当x>1时,y随x的增大而减小,故④错误;∵抛物线的对称轴为直线x=﹣1,∴当x=﹣1时,函数有最大值,∴当m为任意实数时,am2+bm+c≤a﹣b+c,∴am2+bm≤a﹣b,故⑤正确;综上所述,结论正确的是②③⑤共3个.故选:C.7.(2023•辽宁)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x 之间函数关系的图象是( )A.B.C.D.【答案】A【解答】解:∵∠MAN=60°,AC=AB=6,∴△ABC是边长为6的正三角形,∵AD平分∠MAN,∴∠MAD=∠NAD=30°,AD⊥BC,CD=DB=3,①当矩形EFHG全部在△ABC之中,即由图1到图2,此时0<x≤3,∵EG∥AC,∴∠NAD=∠AGE=30°,∴AE=EG=x,在Rt△AEF中,AE=x,∠EAF=60°,∴EF=AE=x,∴S=x2;②图3时,AE+AF=AC,即x+x=6,解得x=4,由图2到图3,此时3<x≤4,如图4,由题意可知△EQB是正三角形,∴EQ=EB=BQ=6﹣x,∴GQ=x﹣(6﹣x)=2x﹣6,∴S=S矩形EFHG﹣S△PQG=x2﹣×(2x﹣6)2=﹣x2+12x﹣18,③图6时,x=6,由图3到图6,此时4<x≤6,如图5,由题意可知△EKB是正三角形,∴EK=EB=BK=6﹣x,FC=AC﹣AF=6﹣x,EF=x,∴S=S梯形EFCK=(6﹣x+6﹣x)×x=﹣x2+3x,综上所述,S与x的函数关系式为S=,因此三段函数的都是二次函数关系,其中第1段是开口向上,第2段、第3段是开口向下的抛物线,故选:A.8.(2023•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=3cm.动点P从点A出发,以1cm/s的速度沿射线AB匀速运动,到点B停止运动,同时动点Q从点A出发,以cm/s的速度沿射线AC匀速运动.当点P停止运动时,点Q也随之停止运动.在PQ的右侧以PQ为边作菱形PQMN,点N在射线AB上.设点P的运动时间为x(s),菱形PQMN与△ABC的重叠部分的面积为y(cm2),则能大致反映y与x之间函数关系的图象是( )A.B.C.D.【答案】A【解答】解:作PD⊥AC于点D,作QE⊥AB于点E,由题意得AP=x,AQ=x,∴AD=AP•cos30°=x,∴AD=DQ=AQ,∴PD是线段AQ的垂直平分线,∴∠PQA=∠A=30°,∴∠QPE=60°,PQ=AP=x,∴QE=AQ=x,PQ=PN=MN=QM=x,当点M运动到直线BC上时,此时,△BMN是等边三角形,∴AP=PN=BN=AB=1,x=1;当点Q、N运动到与点C,B重合时,∴AP=PN=AB=,x=;当点P运动到与点B重合时,∴AP=AB=3,x=3;∴当0<x≤1时,y=x•x=x2,≤时,如图,作则BN=FN=FB=3﹣2x,FM=MS=FS=(∴y=x2﹣(3x﹣3)•(3x﹣3)=﹣x+x﹣,当<x<3时,如图,作HI⊥AB于点则BP=PH=HB=3﹣x,HI=(3﹣x),∴y=•(3﹣x)•(3﹣x)=x2﹣x+,综上,y与x之间函数关系的图象分为三段,当0<x≤时,是开口向下的一段抛物线,当<x<3时,是开口向上的一段抛物线,=(【答案】4.【解答】解:过点C作CD⊥y轴于点D,如图:设点C的坐标为(a,b),点A的坐标为(0,c),∴CD=a,OA=c,∵△AOC的面积是6,∴,∴ac=12,∵点C(a,b)在反比例函数(x>0)的图象上,∴k=ab,∵点B为AC的中点,∴点,∵点B在反比例函数(x>0)的图象上,∴,即:4k=a(b+c),∴4k=ab+ac,将ab=k,ac=12代入上式得:k=4.故答案为:4.10.(2023•锦州)如图,在平面直角坐标系中,四边形A1B1B2C1,A2B2B3C2,A3B3B4C3,A4B4B5C4,…都是平行四边形,顶点B1,B2,B3,B4,B5…都在x轴上,顶点C1,C2,C3,C4,…都在正比例函数y=x(x≥0)的图象上,且B2C1=2A2C1,B3C2=2A3C2,B4C3=2A4C3,…,连接A1B2,A2B3,A3B4,A4B5,…,分别交射线OC1于点O1,O2,O3,O4,…,连接O1A2,O2A3,O3A4,…,得到△O1A2B2,△O2A3B3,△O3A4A4,…若B1(2,0),B2(3, .【答案】.【解答】解:∵B2(3,0),A1(3,1)∴O1(3,),A1B2⊥x轴,同理可得:A2B3⊥x轴,A3B4⊥x轴,∴,∴,=,∴=O=,:=(∴=()=()=,故答案为:.=( .【答案】.【解答】解:过点B由旋转的性质得,AO∵点A的坐标为(0,∴,由勾股定理得,的坐标为,恰好落在反比例函数(∴,故答案为:.=的图象上,则则,则,【答案】15.【解答】解:设AB为xm1+ .1+,===,=,1+,1+.1+,=(【答案】6.【解答】解:如图,延长∵矩形ABCD的面积是由几何意义得,=三.解答题(共13小题)16.(2023•辽宁)电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中100≤x≤160,且x为整数),当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?【答案】见试题解答内容【解答】解:(1)设y与x之间的函数关系式为y=kx+b,∵当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件,∴,解得,即y与x之间的函数关系式为y=﹣2x+320;(2)设利润为w元,由题意可得:w=(x﹣100)(﹣2x+320)=﹣2(x﹣130)2+1800,∴当x=130时,w取得最大值,此时w=1800,答:当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.17.(2023•营口)某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同,当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销,该超市决定降价销售,经市场调查发现,这种洗衣液的售价每降价1元,每周的销量可增加100瓶,规定这种消毒洗衣液每瓶的售价不低于进价.(1)求今年这款消毒洗衣液每瓶进价是多少元;根据题意得:=,)代入得,解得,∴y=﹣x+140;(2)∵规定销售单价不低于进价,且不高于进价的2倍,∴40≤x≤80,设每月出售这种护眼灯所获的利润为w元,根据题意得,w=(x﹣40)y=(x﹣40)(﹣x+140)=﹣x2+180x﹣5600=﹣(x﹣90)2+2500,∴当护眼灯销售单价定为80元时,商店每月出售这种护眼灯所获的利润最大,最大月利润为2400元.19.(2023•锦州)端午节前夕,某批发部购入一批进价为8元/袋的粽子,销售过程中发现:日销量y(袋)与售价x(元/袋)满足如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)每袋粽子的售价定为多少元时,所获日销售利润最大,最大日销售利润是多少元?【答案】(1)y与x的函数关系式为y=﹣40x+680;(2)当粽子的售价定为12.5元/袋时,日销售利润最大,最大日销售利润是810元.【解答】解:(1)设y与x的函数关系式为y=kx+b,把x=10,y=280和x=14,y=120别代入解析式,得,解得,∴y与x的函数关系式为y=﹣40x+680;(2)设这种粽子日销售利润为w元,则w=(x﹣8)(﹣40x+680)=40x2+1000x﹣5440=40(x﹣)2+810,∵﹣40<0,抛物线开口向下, ;【答案】(1)4,;(2)S=.【解答】解:(1)t=0时,P与O重合,此时S=S△ABO=,t=4时,S=0,P与B重合,∴OB=4,B(4,0),,;=OB,即×=,=,∴A(,);当0≤t≤时,设OA交PD于E,如图:∵∠AOB=45°,PD⊥OB,∴△PEO是等腰直角三角形,∴PE=PO=t,∴S△POE=t2,∴S=﹣S△POE=﹣t2;当<t<4时,如图:由A(,),B(4,0)得直线AB解析式为y=﹣x+2,当x=0时,y=2,∴C(0,2),∴OC=2,∵tan∠CBO====,∴DP=PB=(4﹣t)=2﹣t,∴S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=(4﹣t)2=t2﹣2t+4;综上所述,S=.21.(2023•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(4,0),与y轴交于点C (0,4),点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.【答案】(1)见解答.(2)EH=4,(3)点N的坐标为(4,4)或(﹣,)或(,)或(,).【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点B(4,0)和C(0,4),∴解得,∴抛物线的解析式为y=﹣x2+x+4;(2)∵点B(4,0)和C(0,4).设直线BC的解析式为v=kx+4,则0=4k+4,解得k=﹣1.直线BC的解析式为y=﹣x+4,设E(x,﹣x2+x+4),且0<x<4,则F(x,﹣x+4),GH﹣EF=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴解析式的对称轴为﹣,∴H(2﹣x,﹣x2+x+4),∴GF﹣EH=x﹣(4﹣x)=2x﹣2,依题意得2(﹣x2+2x+2x﹣2)=11.解得x=5(舍去)或x=3.∴EH=4,(3)令y=0,则﹣x2+x+4=0,解得x=﹣2或x=4.∴A(﹣2,0).同理,直线AC的解析式为y=2x+4,∵四边形OENM是正方形,∴OE=OM,∠EOM=90°,分别过点M、E作y轴的垂线,垂足分别为P、Q,如图,∠OPM=∠EQO=90°,∠OMP=90°﹣∠MOP=∠EOQ.∴△OMP≌ΔEOQ(AAS).∴PM=OQ,PO=EQ.设E(m,﹣m2+m+4),∴PM=OQ=﹣m,PO﹣EQ=﹣m2+m+4.则M(m2﹣m+4,m),∵点M在直线AC上,∴m=2(﹣m﹣4)+4.解得m=4或m=﹣1当m=4时,M(0,4),E(4,0),即点M与点C重合,点E与点B重合时,四边形OENM是正方形,此时N(4,4):当m=﹣1时,M(﹣,﹣1),E(﹣1,),点O向左平移个单位,再向下平移1个单位,得到点M,则点E向左平移个单位,再向下平移1个单位,得到点N,N(﹣1﹣,﹣1),即N(﹣,).当OM沿着点O逆时针旋转90°得到OE,如图:设M(a,b),则点E(b,﹣a),∵点M在y=2x+4,∴b=2a+4,则点M(a,2a+4),此时点E(2a+4,﹣a),点E在y=﹣x2+x+4的图象上,∴,解得a=0或﹣,∴M1(0,4),E1(4,0),M2(﹣,﹣1),E2(﹣1,),当点E为点M绕点O逆时针旋转90°时,点E(﹣b,a),M(a,2a+4),E(﹣2a﹣4,a),点E在y=﹣x2+x+4的图象上,∴﹣(﹣2a﹣4)2﹣2a﹣4+4=a,解得a=,∴M1(,),E1(,),M2(,),E2(,),∴点N的坐标为(,)或(,),综上,点N的坐标为(4,4)或(﹣,)或(,)或(,).22.(2023•锦州)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣1,0)和B,交y轴于点C(0,3),顶点为D.(1)求抛物线的表达式;(2)若点E在第一象限内对称轴右侧的抛物线上,四边形ODEB的面积为7,求点E的坐标;(3)在(2)的条件下,若点F是对称轴上一点,点H是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G,使以点E,F,G,H为顶点的四边形是菱形,且∠EFG=60°,如果存在,请直接写出点G的坐标;如果不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)E(2,3);(3)存在,G的坐标为(,)或(,).【解答】解:(1)∵抛物线y=﹣x2+bx+c过点A(﹣1,0)和点C(0,3),∴,∴,∴抛物线的表达式y=﹣x2+2x+3.(2)设抛物线的对称轴与x轴交于点M,过点E作EN⊥x轴于点N,设E(x,﹣x2+2x+3),∴BN=3﹣x,MN=x﹣1,∴S四边形ODEB=S△ODM+S梯形DMNE+S△ENB=×1×4+(4﹣x2+4x+3)(x﹣1)+(﹣x2+2x+3)(3﹣x)=﹣x2+4x+3,∵四边形ODEB的面积为7,∴﹣x2+4x+3=7,∴x2﹣4x+4=0,∴x1=x2=2,∴E(2,3).(3)存在点G,使以点E,F,G,H为顶点的四边形是菱形,且∠EFG=60°,满足条件G的坐标为(,)或(,).理由如下:如图,连接CG,DG,∵四边形EFGH是菱形,且∠EFG=60°,∴△EFG是等边三角形,∴△DCE是等边三角形,∴△CEG≌△DEF,∴∠ECG=∠EDF=30°,∴直线CG的表达式为y=﹣x+3,∴,∴G(,);如图,连接CG、DG、CF,∵四边形EFGH是菱形,且∠EFG=60°,∴△EFG是等边三角形,∴△DCE是等边三角形,∴△DGE≌△CFE,∴DG=CF,∴CF=FE,GE=FE,∴DG=GE,∴△CDG≌△CEG,∴∠DCG=∠ECG=30°,∴直线CG的表达式为y=x+3,∴,∴G(,),综上,G(,)或(,).23.(2023•沈阳)如图,在平面直角坐标系中,一次函数y=kx+b的图象交x轴于点A(8,0),交y轴于点B.直线y=x﹣与y轴交于点D,与直线AB交于点C(6,a).点M是线段BC上的一个动点(点M不与点C重合),过点M作x轴的垂线交直线CD于点N.设点M的横坐标为m.(1)求a的值和直线AB的函数表达式;(2)以线段MN,MC为邻边作▱MNQC,直线QC与x轴交于点E.①当0≤m<时,设线段EQ的长度为l,求l与m之间的关系式;②连接OQ,AQ,当△AOQ的面积为3时,请直接写出m的值.【答案】(1)a的值为,直线AB解析式为y=﹣x+6;(2)①l=;②或.【解答】解:(1)∵点C(6,a)在直线y=x﹣上,∴a==,∵一次函数y=kx+b的图象过点A(8,0)和点C(6,),∴,解得,∴直线AB的解析式为y=﹣x+6;(2)①∵M点在直线y=﹣x+6上,且M的横坐标为m,∴M的纵坐标为:﹣m+6,∵N点在直线y=x﹣上,且N点的横坐标为m,∴N点的纵坐标为:m﹣,∴|MN|=﹣m+6﹣m+=﹣,∵点C(6,),线段EQ的长度为l,∴|CQ|=1+,∵|MN|=|CQ|,∴﹣=1+,即l=;②∵△AOQ的面积为3,∴OA•EQ=3,即,解得EQ=,由①知,EQ=6﹣,∴|6﹣|=,解得m=或,即m的值为或.24.(2023•营口)如图,点A在反比例函数y=(x>0)的图象上,AB⊥y轴于点B,tan∠AOB=,AB=2.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,连接AC并延长交x轴于点D,且∠ADO=45°,求点C 的坐标.【答案】(1)反比例函数的解析式为y=;(2)C(4,2).【解答】解:(1)∵AB⊥y轴于点B,∴∠OBA=90°,在Rt△OBA中,AB=2,tan∠AOB=,∴OB=4,∴A(2,4),∵点A在反比例函数y=(x>0)的图象上,∴k=4×2=8;∴反比例函数的解析式为y=;(2)如图,过A作AF⊥x轴于F,∴∠AFD=90°,∵∠ADO=45°,∴∠FAD=90°﹣∠CDE=45°,∴AF=DF=OB=4,∵OF=AB=2,∴OD=6,∴D(6,0),设直线AC的解析式为y=ax+b,∵点A(2,4),D(6,0)在直线AC上,∴,∴,∴直线AC的解析式为y=﹣x+6①,由(1)知,反比例函数的解析式为y=②,联立①②解得,或,∴C(4,2).25.(2023•辽宁)抛物线y=ax2+x+c与x轴交于点A和点B(3,0),与y轴交于点C(0,4),点P为第一象限内抛物线上的动点,过点P作PE⊥x轴于点E,交BC于点F.(1)求抛物线的解析式;(2)如图1,当△BEF的周长是线段PF长度的2倍时,求点P的坐标;(3)如图2,当点P运动到抛物线顶点时,点Q是y轴上的动点,连接BQ,过点B作直线l⊥BQ,连接QF并延长交直线l于点M,当BQ=BM时,请直接写出点Q的坐标.【答案】(1)y=﹣x2+x+4;(2)P(,5);(3)Q(0,+)或(0,﹣).【解答】解:(1)将点B(3,0),点C(0,4)代入y=ax2+x+c,∴,解得,∴抛物线的解析式为y=﹣x2+x+4;(2)∵点B(3,0),点C(0,4),∴OB=3,OC=4,∴tan∠OBC=,∴BE=EF,BF=EF,∴△BEF的周长=3EF,∵△BEF的周长是线段PF长度的2倍,∴3EF=2PF,设直线BC的解析式为y=kx+4,∴3k+4=0,解得k=﹣,∴直线BC的解析式为y=﹣x+4,设P(t,﹣t2+t+4),则F(t,﹣t+4),E(t,0),∴EF=﹣t+4,PF=﹣t2+t+4+t﹣4=﹣t2+4t,∴3(﹣t+4)=2(﹣t2+4t),解得t=3(舍)或t=,∴P(,5);(3)∵y=﹣x2+x+4=﹣(x﹣1)2+,∴P(1,),∵FP⊥x轴,∴F(1,),设Q(0,n),过点M作MN⊥x轴交于点N,∵∠QBM=90°,∴∠QBO+∠MBN=90°,∵∠QBO+∠OQB=90°,∴∠MBN=∠OQB,∵BQ=BM,∴△BQO≌△MBN(AAS),∴QO=BN,MN=OB,∴M(3+n,3),设直线QM的解析式为y=k'x+n,∴k'(3+n)+n=3,解得k'=,∴直线QM的解析式为y=x+n,将点F代入,+n=,解得n=+或n=﹣,∴Q(0,+)或(0,﹣).26.(2023•沈阳)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,2),与x轴的交点为点B(,0)和点C.(1)求这个二次函数的表达式;(2)点E,G在y轴正半轴上,OG=2OE,点D在线段OC上,OD=OE.以线段OD,OE 为邻边作矩形ODFE,连接GD,设OE=a.①连接FC,当△GOD与△FDC相似时,求a的值;②当点D与点C重合时,将线段GD绕点G按逆时针方向旋转60°后得到线段GH,连接FH,F G,将△GFH绕点F按顺时针方向旋转α(0°<α≤180°)后得到△G′FH′,点G,H的对应点分别为G′、H′,连接DE.当△G′FH′的边与线段DE垂直时,请直接写出点H′的横坐标.【答案】(1)y=﹣x+2;(2)①或;②当△G′FH′的边与线段DE垂直时,点H ′的横坐标为2+3或2+或.【解答】解:(1)∵二次函数y=x2+bx+c的图象经过点A(0,2),与x轴的交点为点B (,0),∴,解得:,∴此抛物线的解析式为y=﹣x+2;(2)①令y=0,则﹣x+2=0,解得:x=或x=2,∴C(2,0),∴OC=2.∵OE=a,OG=2OE,OD=OE,∴OG=2a,OD=a.∵四边形ODFE为矩形,∴EF=OD=a,FD=OE=a,∴E(0,a),D(a,0),F(a,a),G(0,2a),∴CD=OC﹣OD=2﹣a.Ⅰ.当△GOD∽△FDC时,∴,∴,∴a=;Ⅱ.当△GOD∽△CDF时,∴,∴,∴a=.综上,当△GOD与△FDC相似时,a的值为或;②∵点D与点C重合,∴OD=OC=2.∴OE=2,OG=2OE=4,EF=OD=2,DF=OE=2,∴EG=OE=2.∴EG=DF=2,∵EG∥DF,∴四边形GEDF为平行四边形,∴FG=DE===4,∴∠GFE=30°,∴∠EGF=60°,∵∠DGH=60°,∴∠EGF=∠DGH,∴∠OGD=∠FGH.在△GOD和△GFH中,,∴△GOD≌△GFH(SAS),∴FH=OD=2,∠GOD=∠GFH=90°.∴GH===2.Ⅰ.当G′F所在直线与DE垂直时,如图,∵∠GFH=90°,GF∥DE,∴∠G′FH′=90°,∴G,F,H′三点在一条直线上,∴GH′=GF+FH′=FG+FH=4+2.过点H′作H′K⊥y轴于点K,则H′K∥FE,∴∠KH′G=∠EFG=30°,∴H′K=H′G•cos30°=×(4+2)=2+3,∴此时点H′的横坐标为2+3;Ⅱ.当G′H′所在直线与DE垂直时,如图,∵GF∥DE,∴G′H′⊥GF,设GF的延长线交G′H′于点M,过点M作MP⊥EF,交EF的延长线于点P,过点H′作H′N⊥MP,交PM的延长线于点N,则H′N∥PF∥x轴,∠PFM=∠EFG=30°.∵G′H′•FM=FH′•FG′,∴4×2=2FM,∴FM=.∴FP=FM•cos30°==,∴PE=PF+EF=2+.∵H′M==,∴H′N=H′M•sin30°=,∴此时点H′的横坐标为PE﹣H′N=2=2+;Ⅲ.当FH′所在直线与DE垂直时,如图,∵∠H′FG′=90°,GF∥DE,∴∠GFH′=90°,∴H,F,H′三点在一条直线上,则∠H′FD=30°,过点H′作H′L⊥DF,交FD的延长线于点L,H′L=H′F•sin30°=2×=,∴此时点H′的横坐标为EF﹣H′L=2=.综上,当△G′FH′的边与线段DE垂直时,点H′的横坐标为2+3或2+或.27.(2023•大连)如图,在平面直角坐标系中,抛物线C1:y=x2上有两点A、B,其中点A的横坐标为﹣2,点B的横坐标为1,抛物线C2:y=﹣x2+bx+c过点A、B.过A作AC∥x轴交抛物线C1另一点为点C.以AC、AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式;(2)将矩形ACDE向左平移m个单位,向下平移n个单位得到矩形A′C′D′E′,点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式,并直接写出自变量m的取值范围;②直线A′E′交抛物线C1于点P,交抛物线C2于点Q.当点E′为线段PQ的中点时,求m 的值;③抛物线C2与边E′D′、A′C′分别相交于点M、N,点M、N在抛物线C2的对称轴同侧,当MN=时,求点C′的坐标.【答案】(1)y=﹣x2﹣2x+4.(2)①n=﹣m2+4m(0<m<4).②.③或.【解答】(1)根据题意,点A的横坐标为﹣2,点B的横坐标为1,代入抛物线C1:y=x2,∴当x=﹣2时,y=(﹣2)2=4,则A(﹣2,4),当x=1时,y=1,则B(1,1),将点A(﹣2,4),B(1,1)代入抛物线C2:y=﹣x2+bx+c,∴,解得,∴抛物线C2的解析式为y=﹣x2﹣2x+4.(2)①∵AC∥x轴交抛物线另一点为C,当y=4时,x=±2,。
2021年辽宁省沈阳市中考数学试题及答案

2021年沈阳市中考数学试题*试题满分150分 考试时间120分钟参考公式: 抛物线c bx ax y ++=2的顶点是(a b 2-,ab ac 442-),对称轴是直线a bx 2-=.一、选择题 (下列各题的备选答案中,只有一个答案是正确的.每小题3分,共24分)1.下列各数中比0小的数是 A.-3 B.311 C.3 D. 32.左下图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是3.沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学记数法表示为A .3.04×105B .3.04×106C .30.4×105D .0.304×107 4.计算(2a )3·a 2的结果是A .2a 5B .2a 6C .8a 5D .8a 65.在平面直角坐标系中,点P (-1,2 ) 关于x 轴的对称点的坐标为 A.(-1,-2 ) B.(1,-2 ) C.(2,-1 ) D.(-2,1 )6.气象台预报“本市明天降水概率是30%” ,对此消息下列说法正确的是 A.本市明天将有30%的地区降水 B.本市明天将有30%的时间降水 C.本市明天有可能降水 D.本市明天肯定不降水 7.一次函数y =-x +2的图象经过A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限 8.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,则图中的等腰直角三角形有 A .4个 B .6个 C .8个 D .10个二、填空题(每小题4分,共32分)9.分解因式:m 2-6m +9=____________.10.一组数据1,3,3,5,7的众数是____________. 11.五边形的内角和为____________度.12.不等式组⎩⎨⎧>->+02101x x 的解集是____________.13.已知△ABC △△A ′B ′C ′,相似比为3△4,△ABC 的周长为6,则△A ′B ′C 的周长为____________.14.已知点A 为双曲线y = kx 图象上的点,点O 为坐标原点过点A 作AB △x 轴于点B ,连接OA .若△AOB 的面积为5,则k 的值为____________.15.有一组多项式:a +b 2,a 2-b 4,a 3+b 6,a 4-b 8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为____________.16.如图,菱形ABCD 的边长为8cm ,△A =60°,DE △AB 于点E ,DF △BC 于点F ,则四边形BEDF 的面积为____________cm 2.三、解答题(第17、18小题各8分,第19小题10分,共26分 )17.计算:(-1)2+|12|-+2sin 45°18.小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图.小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.(1) 小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接..写出结果)(2) 请你用列表法或画树状图(树形图)法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学、一个是国外大学的概率.(卡片名称可用字母表示)19.已知,如图,在荀ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM△△CFN;(2)求证:四边形BMDN是平行四边形.四、(每小题10分,共20分)20.为了提高沈城市民的节水意识,有关部门就“你认为最有效的节水措施”随机对部分市民进行了问卷调查.其中调查问卷设置以下选项(被调查者只能选择其中的一项):A.出台相关法律法规;B.控制用水大户数量;C.推广节水技改和节水器具;D.用水量越多,水价越高;E.其他.根据调查结果制作了统计图表的一部分如下:(1)此次抽样调查的人数为△ 人;(2)结合上述统计图表可得m= △ ,n= △ ;(3)请根据以上信息直接..在答题卡中补全条形统计图.21.甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?22.如图,△O是△ABC的外接圆,AB是△O的直径,D为△O上一点,OD△AC,垂足为E,连接BD.(1)求证:BD平分△ABC;(2) 当△ODB=30°时,求证:BC=OD.六、(本题12分)23.已知,如图,在平面直角坐标系内,点A的坐标为(0,24 ),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD△y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.△设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);△若矩形CDEF的面积为60,请直接..写出此时点C的坐标.24.已知,如图△,△MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点4,在△MON的内部、△AOB的外部有一点P,且AP=BP,△APB=120°. O重合),且AB=3(1)求AP的长;(2)求证:点P在△MON的平分线上;(3)如图△,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,P A的中点,连接CD,DE,EF,FC,OP.△当AB△OP时,请直接..写出四边形CDEF的周长的值;△若四边形CDEF的周长用t表示,请直接..写出t的取值范围.25.已知,如图,在平面直角坐标系中,点A 坐标为(-2,0),点B 坐标为 (0,2 ),点E 为线段AB 上的动点(点E 不与点A ,B 重合),以E 为顶点作△OET =45°,射线ET 交线段OB 于点F ,C 为y 轴正半轴上一点,且OC =AB ,抛物线y =2-x 2+mx +n 的图象经过A ,C 两点.(1) 求此抛物线的函数表达式; (2) 求证:△BEF =△AOE ;(3) 当△EOF 为等腰三角形时,求此时点E 的坐标;(4) 在(3)的条件下,当直线EF 交x 轴于点D ,P 为(1) 中抛物线上一动点,直线PE 交x 轴于点G ,在直线EF 上方的抛物线上是否存在一点P ,使得△EPF 的面积是△EDG 面积的(122+) 倍.若存在,请直接..写出点P 的坐标;若不存在,请说明理由. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.参考答案一、选择题(每小题3分,共24分)1.A2.D3.B4.C5.A6.C7.B8.C 二、填空题(每小题4分,共32分)9. (m -3)2 10.3 11. 540 12.-1<x <2113.8 14.10 或 -10 15.a 10-b 20 16. 316三、解答题 (第17、 18小题各8分, 第19小题10分,共26分) 17.原式=1+ 2-1+2×22=22 18.解: (1)31 (2) 列表得或画树状 (形) 图得由表格 (或树状图/树形图) 可知, 共有9种可能出现的结果, 每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学, 一个是国外大学的结果有4种: (A , C )(B , C )(C , A )(C , B )△P (两次抽取的卡片上的图片一个是国内大学一个是国外大学) =94. 19.证明:(1) △四边形ABCD 是平行四边形△△DAB =△BCD △△EAM =△FCN 又△AD △BC △△E =△F △AE =CF △△AEM △△CFN(2) 由(1) 得AM =CN ,又△四边形ABCD 是平行四边形△AB CD △BM DN △四边形BMDN 是平行四边形四、(每小题10分,共20分) 20.解: (1) 500 (2) 35%, 5% (3)21.解:设乙每小时加工机器零件x 个, 则甲每小时加工机器零件(x +10) 个, 根据题意得:xx 12010150=+ 解得x =40 经检验, x =40是原方程的解 x +10=40+10=50 答: 甲每小时加工50个零件, 乙每小时加工40个零件. 五、(本题10分)22.证明: (1) △OD △AC OD 为半径△△△CBD =△ABD △BD 平分△ABC(2) △OB =OD △△OBD =△ODB =30°△△AOD =△OBD +△ODB =30°+30°=60° 又△OD △AC 于E △△OEA =90°△△A =180°-△OEA -△AOD =180°-90°-60°=30° 又△AB 为△O 的直径 △△ACB =90°则在Rt △ACB 中BC =21AB △OD =21AB △BC =OD 六、(本题12分)23.解:(1)设直线l 1的表达式为y =k 1x ,它过B (18, 6) 得18k 1=6 k 1=31 △y =31x设直线l 2的表达式为y =k 2x +b ,它过A (0, 24), B (18, 6)得⎩⎨⎧=+=618242b k b 解得⎩⎨⎧=-=212b ky =-x +24 (2) △△点C 在直线l 1上, 且点C 的纵坐标为a ,△a =31x x =3a △点C 的坐标为 (3a , a ) △CD △y 轴△点D 的横坐标为3a △点D 在直线l 2上 △y =-3a +24 △D (3a , -3a +24) △C (3, 1) 或C (15, 5) 七、(本题12分)24.解: (1) 过点P 作PQ △AB 于点Q △P A =PB , △APB =120° AB =43△AQ =21AB =21×43=23 △APQ = 21△APB =21×120°=60°在Rt △APQ 中, sin △APQ =AP AQ △AP = 233260sin 32sin =︒=∠APQ AQ =sin 60°=4 (2) 过点P 分别作PS △OM 于点S , PT △ON 于点T △△OSP =△OTP =90° 在四边形OSPT 中,△SPT =360°-△OSP -△SOT -△OTP =360°-90°-60°-90°=120°△△APB =△SPT =120° △△APS =△BPT又△△ASP =△BTP =90° AP =BP△△APS △△BPT △PS =PT△点P 在△MON 的平分线上(3) △8+43 △4+43<t ≤8+43八、 (本题14分)25.解:(1) 如答图△, △A (-2, 0) B (0, 2)△OA =OB =2 △AB 2=OA 2+OB 2=22+22=8△AB =22△OC =AB △OC =22, 即C (0, 22) 又△抛物线y =-2x 2+mx +n 的图象经过A 、C 两点 则可得⎪⎩⎪⎨⎧==+--220224n n m 解得:⎪⎩⎪⎨⎧=-=222n m △抛物线的表达式为y =-2x 2-2x +22 (2) △OA =OB △AOB =90° △△BAO =△ABO =45°又△△BEO =△BAO +△AOE =45°+△AOE△BEO =△OEF +△BEF =45°+△BEF △△BEF =△AOE(3) 当△EOF 为等腰三角形时,分三种情况讨论△当OE =OF 时, △OFE =△OEF =45°在△EOF 中, △EOF =180°-△OEF -△OFE =180°-45°-45°=90°又△△AOB =90°则此时点E 与点A 重合, 不符合题意, 此种情况不成立.△如答图△, 当FE =FO 时,△EOF =△OEF =45°在△EOF 中,△EFO =180°-△OEF -△EOF =180°-45°-45°=90°△△AOF +△EFO =90°+90°=180°△EF △AO △ △BEF =△BAO =45° 又△ 由 (2) 可知 ,△ABO =45°△△BEF =△ABO △BF =EF △EF =BF =OF =21OB =21×2=1 △ E (-1, 1) △如答图△, 当EO =EF 时, 过点E 作EH △y 轴于点H 在△AOE 和△BEF 中, △EAO =△FBE , EO =EF , △AOE =△BEF △△AOE △△BEF △BE =AO =2△EH △OB △△EHB =90°△△AOB =△EHB △EH △AO △△BEH =△BAO =45°在Rt △BEH 中, △△BEH =△ABO =45° △EH =BH =BEcos 45°=2×22=2 △OH =OB -BH =2- 22△ E (-2, 2-2)综上所述, 当△EOF 为等腰三角形时, 所求E 点坐标为E (-1, 1)或E (-2, 2- 22)(4) P (0, 22)或P (-1, 2 2)。
2022年辽宁省沈阳市中考数学试卷及答案解析
2022年辽宁省沈阳市中考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2分)计算5+(﹣3),结果正确的是()A.2B.﹣2C.8D.﹣82.(2分)如图是由4个相同的小立方体搭成的几何体,这个几何体的主视图是()A.B.C.D.3.(2分)下列计算结果正确的是()A.(a3)3=a6B.a6÷a3=a2C.(ab4)2=ab8D.(a+b)2=a2+2ab+b24.(2分)在平面直角坐标系中,点A(2,3)关于y轴对称的点的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,﹣3)D.(﹣3,﹣2)5.(2分)调查某少年足球队全体队员的年龄,得到数据结果如下表:年龄/岁1112131415人数34722则该足球队队员年龄的众数是()A.15岁B.14岁C.13岁D.7人6.(2分)不等式2x+1>3的解集在数轴上表示正确的是()A.B.C.D.7.(2分)如图,在Rt△ABC中,∠A=30°,点D、E分别是直角边AC、BC的中点,连接DE,则∠CED的度数是()A.70°B.60°C.30°D.20°8.(2分)在平面直角坐标系中,一次函数y=﹣x+1的图象是()A.B.C.D.9.(2分)下列说法正确的是()A.了解一批灯泡的使用寿命,应采用抽样调查的方式B.如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C.若甲、乙两组数据的平均数相同,S甲2=2.5,S乙2=8.7,则乙组数据较稳定D.“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件10.(2分)如图,一条河的两岸互相平行,为了测量河的宽度PT(PT与河岸PQ垂直),测量得P,Q两点间距离为m米,∠PQT=α,则河宽PT的长为()A.m sinαB.m cosαC.m tanαD.二、填空题(每小题3分,共18分)11.(3分)因式分解:ay2+6ay+9a=.12.(3分)二元一次方程组的解是.13.(3分)化简:(1﹣)•=.14.(3分)如图,边长为4的正方形ABCD内接于⊙O,则的长是(结果保留π).15.(3分)如图,四边形ABCD是平行四边形,CD在x轴上,点B在y轴上,反比例函数y=(x>0)的图象经过第一象限点A,且▱ABCD的面积为6,则k=.16.(3分)如图,将矩形纸片ABCD折叠,折痕为MN,点M,N分别在边AD,BC上,点C,D的对应点分别为点E,F,且点F在矩形内部,MF的延长线交边BC于点G,EF交边BC于点H.EN=2,AB=4,当点H为GN的三等分点时,MD的长为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:﹣3tan30°+()﹣2+|﹣2|.18.(8分)为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.19.(8分)如图,在△ABC中,AD是△ABC的角平分线,分别以点A,D为圆心,大于AD 的长为半径作弧,两弧交于点M,N,作直线MN,分别交AB,AD,AC于点E,O,F,连接DE,DF.(1)由作图可知,直线MN是线段AD的.(2)求证:四边形AEDF是菱形.四、(每小题8分,共16分)20.(8分)某校积极落实“双减”政策,将要开设拓展课程.为让学生可以根据自己的兴趣爱好选择最喜欢的课程,进行问卷调查,问卷设置以下四种选项:A(综合模型)、B (摄影艺术)、C(音乐鉴赏)、D(劳动实践),随机抽取了部分学生进行调查,每名学生必须且只能选择其中最喜欢的一种课程,并将调查结果整理绘制成如下不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为名;(2)直接在答题卡中补全条形统计图;(3)求拓展课程D(劳动实践)所对应的扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校800名学生中,有多少名学生最喜欢C(音乐鉴赏)拓展课程.21.(8分)如图,用一根60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1)若所围成的矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?(2)矩形框架ABCD面积的最大值为平方厘米.22.(10分)如图,四边形ABCD内接于⊙O,AD是⊙O的直径,AD,BC的延长线交于点E,延长CB交PA于点P,∠BAP+∠DCE=90°.(1)求证:PA是⊙O的切线;(2)连接AC,sin∠BAC=,BC=2,AD的长为.六、(本题10分)23.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y 轴交于点B(0,9),与直线OC交于点C(8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为(用含有m的代数式表示);②当0<m<时,S与m的关系式为;③当S=时,m的值为.24.(12分)【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA 上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=3,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.八、(本题12分)25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方的部分沿x轴向上翻折,与抛物线剩下的部分组成新的曲线记为C1,点C的对应点为C′,点G的对应点为G′,将曲线C1沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点记作点P和点Q,若四边形C′G′QP是平行四边形,直接写出点P的坐标.2022年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.【分析】根据有理数异号相加法则即可处理.【解答】解:5+(﹣3)=2,故选:A.【点评】本题主要考查有理数加法,掌握其运算法则是解题关键.2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看,底层有2个正方形,上层左边有1个正方形,故选:D.【点评】本题考查了三视图的知识.注意主视图是指从物体的正面看物体.3.【分析】根据幂的乘方与积的乘方,同底数幂的除法以及完全平方公式逐项进行计算即可.【解答】解:A.(a3)3=a9,因此选项A不符合题意;B.a6÷a3=a6﹣3=a3,因此选项B不符合题意;C.(ab4)2=a2b8,因此选项C不符合题意;D.(a+b)2=a2+2ab+b2,因此选项D符合题意;故选:D.【点评】本题考查幂的乘方与积的乘方,同底数幂的除法以及完全平方公式,掌握幂的乘方与积的乘方的计算方法,同底数幂的除法的计算法则以及完全平方公式的结构特征是正确判断的前提.4.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点A(2,3)关于y轴的对称点坐标为(﹣2,3).故选:B.【点评】本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5.【分析】一组数据中出现次数最多的数据叫做众数.【解答】解:该足球队队员年龄13岁出现的次数最多,故众数为13岁.故选:C.【点评】本题考查了众数,掌握众数的定义是解答本题的关键.6.【分析】解不等式求得不等式的解集,然后根据数轴上表示出的不等式的解集,再对各选项进行逐一分析即可.【解答】解:不等式2x+1>3的解集为:x>1,故选:B.【点评】本题考查的解一元一次不等式以及在数轴上表示不等式解集,熟知实心圆点与空心圆点的区别是解答此题的关键.7.【分析】根据直角三角形的性质求出∠B,根据三角形中位线定理得到DE∥AB,根据平行线的性质解答即可.【解答】解:在Rt△ABC中,∠A=30°,则∠B=90°﹣∠A=60°,∵D、E分别是边AC、BC的中点,∴DE是△ABC的中位线,∴DE∥AB,∴∠CED=∠B=60°,故选:B.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形中位线平行于第三边是解题的关键.8.【分析】依据一次函数y=x+1的图象经过点(0,1)和(1,0),即可得到一次函数y=﹣x+1的图象经过一、二、四象限.【解答】解:一次函数y=﹣x+1中,令x=0,则y=1;令y=0,则x=1,∴一次函数y=﹣x+1的图象经过点(0,1)和(1,0),∴一次函数y=﹣x+1的图象经过一、二、四象限,故选:C.【点评】本题主要考查了一次函数的图象,一次函数的图象是与坐标轴不平行的一条直线.9.【分析】根据抽样调查与全面调查的定义,概率以及方差的定义逐项进行判断即可.【解答】解:A.了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A符合题意;B.如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B不符合题意;C.若甲、乙两组数据的平均数相同,S甲2=2.5,S乙2=8.7,则甲组数据较稳定,因此选项C不符合题意;D.“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D不符合题意;故选:A.【点评】本题考查全面调查与抽样调查,方差以及随机事件、不可能事件、必然事件,理解全面调查与抽样调查的方法,方差的意义以及随机事件、不可能事件、必然事件的定义是正确判断的前提.10.【分析】根据垂直定义可得PT⊥PQ,然后在Rt△PQT中,利用锐角三角函数的定义进行计算即可解答.【解答】解:由题意得:PT⊥PQ,∴∠APQ=90°,在Rt△APQ中,PQ=m米,∠PQT=α,∴PT=PQ•tanα=m tanα(米),∴河宽PT的长度是m tanα米,故选:C.【点评】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.二、填空题(每小题3分,共18分)11.【分析】首先提取公因式a,进而利用完全平方公式分解因式得出即可.【解答】解:ay2+6ay+9a=a(y2+6y+9)=a(y+3)2.故答案为:a(y+3)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用完全平方公式是解题关键.12.【分析】用代入消元法解二元一次方程组即可.【解答】解:,将②代入①,得x+4x=5,解得x=1,将x=1代入②,得y=2,∴方程组的解为,故答案为:.【点评】本题考查二元一次方程组,理解二元一次方程组的解,掌握二元一次方程组的解法是正确解答的关键.13.【分析】先算括号内的式子,然后计算括号外的乘法即可.【解答】解:(1﹣)•===x﹣1,故答案为:x﹣1.【点评】本题考查分式的混合运算,熟练掌握运算法则是解答本题的关键.14.【分析】连接OA、OB,可证∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【解答】解:连接OA、OB.∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=42,解得:AO=2,∴的长==π,故答案为:π.【点评】本题考查了弧长公式和正方形的性质,能求出∠AOB的度数和OA的长是解此题的关键.15.【分析】作AE⊥CD于E,由四边形ABCD为平行四边形得AB∥x轴,则可判断四边形ABOE为矩形,所以S平行四边形ABCD=S矩形ABOE,根据反比例函数k的几何意义得到S矩形ABOE=|k|,利用反比例函数图象得到.【解答】解:作AE⊥CD于E,如图,∵四边形ABCD为平行四边形,∴AB∥x轴,∴四边形ABOE为矩形,=S矩形ABOE=6,∴S平行四边形ABCD∴|k|=6,而k>0,∴k=6.故答案为:6.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k ≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.【分析】根据点H为GN三等分点,分两种情况分别计算,根据折叠的性质和平行线的性质证明∠GMN=∠MNG,得到MG=NG,证明△FGH∽△ENH,求出FG的长,过点G作GP⊥AD于点P,则PG=AB=4,设MD=MF=x,根据勾股定理列方程求出x即可.【解答】解:当HN=GN时,GH=2HN,∵将矩形纸片ABCD折叠,折痕为MN,∴MF=MD,CN=EN,∠E=∠C=∠D=∠MFE=90°,∠DMN=∠GMN,AD∥BC,∴∠GFH=90°,∠DMN=∠MNG,∴∠GMN=∠MNG,∴MG=NG,∵∠GFH=∠E=90°,∠FHG=∠EHN,∴△FGH∽△ENH,∴==2,∴FG=2EN=4,过点G作GP⊥AD于点P,则PG=AB=4,设MD=MF=x,则MG=GN=x+4,∴CG=x+6,∴PM=6,∵GP2+PM2=MG2,∴42+62=(x+4)2,解得:x=2﹣4,∴MD=2﹣4;当GH=GN时,HN=2GH,∵△FGH∽△ENH,∴==,∴FG=EN=1,∴MG=GN=x+1,∴CG=x+3,∴PM=3,∵GP2+PM2=MG2,∴42+32=(x+1)2,解得:x=4,∴MD=4;故答案为:2﹣4或4.【点评】本题考查了翻折变换(折叠问题),矩形的性质,考查了分类讨论的思想,根据勾股定理列方程求解是解题的关键.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.【分析】先计算开方运算、特殊三角函数值、负整数指数幂的运算及绝对值的运算,再合并即可.【解答】解:原式=2﹣3×+4+2﹣=2﹣+4+2﹣=6.【点评】此题考查的是实数的运算,负整数指数幂的运算,特殊三角形函数值,掌握其运算法则是解决此题的关键.18.【分析】(1)根据概率公式求解即可.(2)画树状图,表示出所有等可能的结果数,以及两张卡片上的数字是“2”和“3”的结果数,再结合概率公式即可得出答案.【解答】解:(1)由题意得,随机抽取一张卡片,卡片上的数字是“4”的概率是.故答案为:.(2)画树状图如下:共有12种等可能的结果,其中两张卡片上的数字是“2”和“3”的结果有2种,∴小明随机抽取两张卡片,两张卡片上的数字是“2”和“3”的概率为.【点评】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法是解答本题的关键.19.【分析】(1)根据作法得到MN是线段AD的垂直平分线;(2)根据垂直平分线的性质则AF=DF,AE=DE,进而得出DF∥AB,同理DE∥AF,于是可判断四边形AEDF是平行四边形,加上FA=FD,则可判断四边形AEDF为菱形.【解答】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵FA=FD,∴四边形AEDF为菱形.【点评】本题考查了作图﹣基本作图以及菱形的判定方法,熟知线段垂直平分线的作法是解答此题的关键.四、(每小题8分,共16分)20.【分析】(1)根据选择A的人数和所占的百分比,可以计算出本次调查的学生人数;(2)根据条形统计图中的数据,即可计算出选择B的人数,然后即可将条形统计图补充完整;(3)用360°乘以D(劳动实践)所占比例可得答案;(4)用样本估计总体即可.【解答】解:(1)此次被调查的学生人数为:12÷10%=120(名),故答案为:120;(2)选择B的学生有:120﹣12﹣48﹣24=36(名),补全的条形统计图如图所示;(3)360°×=72°,即拓展课程D(劳动实践)所对应的扇形的圆心角的度数是72°;(4)800×=320(名),答:估计该校800名学生中,有320名学生最喜欢C(音乐鉴赏)拓展课程.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、频数(率)分布表,解答本题的关键是明确题意,利用数形结合的思想解答.21.【分析】(1)设框架的长AD为xcm,则宽AB为cm,根据面积公式列出一元二次方程,解之即可;(2)在(1)的基础上,列出二次函数,再利用二次函数的性质可得出结论.【解答】解:(1)设框架的长AD为xcm,则宽AB为cm,∴x•=144,解得x=12或x=18,∴AB=12cm或AB=8cm,∴AB的长为12厘米或8厘米;(2)由(1)知,框架的长AD为xcm,则宽AB为cm,∴S=x•,即S=﹣x2+20x=﹣(x﹣15)2+150,∵﹣<0,∴要使框架的面积最大,则x=15,此时AB=10,最大为150平方厘米.故答案为:150.【点评】此题考查的是二次函数在实际生活中的运用及求函数最值的方法,属较简单题目.解题的关键是用一个未知数表示出长和宽,利用面积公式来列出函数表达式后再求其最值.五、(本题10分)22.【分析】(1)根据圆内接四边形对角互补以及平角定义可得∠BAD=∠DCE,然后根据已知可得∠BAP+∠BAD=90°,从而可得∠OAP=90°,即可解答;(2)连接BO并延长交⊙O于点F,连接CF,根据直径所对的圆周角是直角可得∠BCF=90°,再利用同弧所对的圆周角相等可得sin∠BAC=sin F=,最后在Rt△BCF中,利用锐角三角函数的定义进行计算即可解答.【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠BAD=∠DCE,∵∠BAP+∠DCE=90°,∴∠BAP+∠BAD=90°,∴∠OAP=90°,∵OA是⊙O的半径,∴PA是圆O的切线;(2)连接BO并延长交⊙O于点F,连接CF,∵BF是⊙O的直径,∴∠BCF=90°,∵∠BAC=∠F,∴sin∠BAC=sin F=,在Rt△BCF中,BC=2,∴BF===6,∴AD=BF=6,故答案为:6.【点评】本题考查了解直角三角形,切线的判定与性质,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.六、(本题10分)23.【分析】(1)将点B(0,9),C(8,3)的坐标代入直线解析式,求解即可;(2)①过点C作CF⊥C′D′,易得△CFC′∽△AOB,可用m表达CF和C′F的长度,进而可表达点C′,D′的坐标,由点C的坐标可得出直线OC的解析式,代入可得点E的坐标;②根据题意可知,当0<m<时,点D′未到直线OC上,利用三角形面积公式可得出本题结果;③分情况讨论,分别求出当0<m<时,当<m<5时,当5<m<10时,当10<m<15时,S与m的关系式,分别令S=,建立方程,求出m即可.【解答】解:(1)将点B(0,9),C(8,3)的坐标代入直线y=kx+b,∴,解得.∴直线AB的函数表达式为:y=﹣x+9;(2)①由(1)知直线AB的函数表达式为:y=﹣x+9,令y=0,则x=12,∴A(12,0),∴OA=12,OB=9,∴AB=15;如图1,过点C作CF⊥C′D′于点F,∴CF∥OA,∴∠OAB=∠FCC′,∵∠C′FC=∠BOA=90°,∴△CFC′∽△AOB,∴OB:OA:AB=C′F:CF:CC′=9:12:15,∵CC′=m,∴CF=m,C′F=m,∴C′(8﹣m,3+m),A′(12﹣m,m),D′(8﹣m,m),∵C(8,3),∴直线OC的解析式为:y=x,∴E(8﹣m,3﹣m).∴C′E=3+m﹣(3﹣m)=m.故答案为:m.②法一、当点D′落在直线OC上时,有m=(8﹣m),解得m=,∴当0<m<时,点D′未到直线OC,此时S=C′E•CF=•m•m=m2;法二、∵C′D′∥BO,∴△CC′E∽△CBO,∴=()2,即=,∴S=m2.故答案为:m2.③法一、分情况讨论,当0<m<时,由②可知,S=m2;令S=m2=,解得m=>(舍)或m=﹣(舍);当≤m<5时,如图2,设线段A′D′与直线OC交于点M,∴M(m,m),∴D′E=m﹣(3﹣m)=m﹣3,D′M=m﹣(8﹣m)=m﹣8;∴S=m2﹣•(m﹣3)•(m﹣8)=﹣m2+m﹣12,令﹣m2+m﹣12=;整理得,3m2﹣30m+70=0,解得m=或m=>5(舍);当5≤m<10时,如图3,S=S△A′C′D′=×4×3=6≠,不符合题意;当10≤m<15时,如图4,此时A′B=15﹣m,∴BN=(15﹣m),A′N=(15﹣m),∴S=•(15﹣m)•(15﹣m)=(15﹣m)2,令(15﹣m)2=,解得m=15+2>15(舍)或m=15﹣2.法二、分情况讨论,当0<m<时,由②可知,S=m2;令S=m2=,解得m=>(舍)或m=﹣(舍);(同法一)当≤m<5时,如图2,设线段A′D′与直线OC交于点M,=×4×3=6,∵S△A′C′D′=6﹣=,∴S=18,∵S△AOC∵A′D′∥OA,∴△A′CM∽△ACO,∴=,∴CA′=,∴m=C′A′﹣CA′=5﹣,当5≤m<10时,如图3,S=S△A′C′D′=×4×3=6≠,不符合题意;当10≤m<15时,如图4,∵A′D′∥x轴,∴△A′BK∽△ABO,=54,∵S=,S△ABO∴=,解得BA′=2,∴m=BA﹣BA′=15﹣2.故答案为:或15﹣2.【点评】本题属于一次函数综合题,涉及待定系数法求函数解析式,三角形的面积,相似三角形的性质与判定,分类讨论思想等知识,根据△A′C′D′的运动,进行正确的分类讨论是解题关键.七、(本题12分)24.【分析】(1)证明△AOD≌△BOC(SAS),即可得出结论;(2)利用旋转性质可证得∠BOC=∠AOD,再证明△AOD≌△BOC(SAS),即可得出结论;(3)①过点A作AT⊥AB,使AT=AB,连接BT,AD,DT,BD,先证得△ABC∽△TBD,得出DT=3,即点D的运动轨迹是以T为圆心,3为半径的圆,当D在AT的延长线上时,AD的值最大,最大值为8+3;②如图4,在AB上方作∠ABT=30°,过点A作AT⊥BT于点T,连接AD、BD、DT,过点T作TH⊥AD于点H,可证得△BAC∽△BTD,得出DT=AC=×3=,再求出DH、AH,即可求得AD;如图5,在AB下方作∠ABE=30°,过点A作AE⊥BE 于点E,连接DE,可证得△BAC∽△BTD,得出DE=,再由勾股定理即可求得AD.【解答】解:(1)AD=BC.理由如下:如图1,∵△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,∴OA=OB,OD=OC,在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴AD=BC,故答案为:AD=BC;(2)AD=BC仍然成立.证明:如图2,∵∠AOB=∠COD=90°,∴∠AOB+∠AOC=∠AOC+∠COD=90°+α,即∠BOC=∠AOD,在△AOD和△BOC中,,°∴△AOD≌△BOC(SAS),∴AD=BC;(3)①过点A作AT⊥AB,使AT=AB,连接BT,AD,DT,BD,∵△ABT和△CBD都是等腰直角三角形,∴BT=AB,BD=BC,∠ABT=∠CBD=45°,∴==,∠ABC=∠TBD,∴△ABC∽△TBD,∴==,∴DT=AC=×3=3,∵AT=AB=8,DT=3,∴点D的运动轨迹是以T为圆心,3为半径的圆,∴当D在AT的延长线上时,AD的值最大,最大值为8+3,故答案为:8+3;②如图4,在AB上方作∠ABT=30°,过点A作AT⊥BT于点T,连接AD、BD、DT,过点T作TH⊥AD于点H,∵==cos30°=,∠ABC=∠TBD=30°+∠TBC,∴△BAC∽△BTD,∴==,∴DT=AC=×3=,在Rt△ABT中,AT=AB•sin∠ABT=8sin30°=4,∵∠BAT=90°﹣30°=60°,∴∠TAH=∠BAT﹣∠DAB=60°﹣30°=30°,∵TH⊥AD,∴TH=AT•sin∠TAH=4sin30°=2,AH=AT•cos∠TAH=4cos30°=2,在Rt△DTH中,DH===,∴AD=AH+DH=2+;如图5,在AB上方作∠ABE=30°,过点A作AE⊥BE于点E,连接DE,则==cos30°=,∵∠EBD=∠ABC=∠ABD+30°,∴△BDE∽△BCA,∴==,∴DE=AC=×3=,∵∠BAE=90°﹣30°=60°,AE=AB•sin30°=8×=4,∴∠DAE=∠DAB+∠BAE=30°+60°=90°,∴AD===;综上所述,AD的值为2+或.【点评】本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识点,关键是添加恰当辅助线,构造全等三角形或相似三角形解决问题,综合性较强,难度较大,属于中考压轴题.八、(本题12分)25.【分析】(1)运用待定系数法即可求得抛物线解析式和直线AD的解析式;(2)设点E(t,t2﹣t﹣3),F(x,y),过点E作EM⊥x轴于点M,过点F作FN⊥x 轴于点N,如图1,根据三角形面积关系可得=,由EM∥FN,可得△BFN∽△BEM,得出===,可求得F(2+t,t2﹣t﹣2),代入直线AD的解析式即可求得点E的坐标;(3)根据题意可得:点C′(0,3),G′(2,4),向上翻折部分的图象解析式为y=﹣(x﹣2)2+4,向上翻折部分平移后的函数解析式为y=﹣(x﹣2)2+4﹣n,平移后抛物线剩下部分的解析式为y=(x﹣2)2﹣4﹣n,利用待定系数法可得:直线BC的解析式为y=x﹣3,直线C′G′的解析式为y=x+3,由四边形C′G′QP是平行四边形,分类讨论即可.【解答】解:(1)①∵抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),∴,解得:,∴抛物线的函数表达式为y=x2﹣x﹣3;②由①得y=x2﹣x﹣3,当y=0时,x2﹣x﹣3=0,解得:x1=6,x2=﹣2,∴A(﹣2,0),设直线AD的函数表达式为y=kx+d,则,解得:,∴直线AD的函数表达式为y=x﹣1;(2)设点E(t,t2﹣t﹣3),F(x,y),过点E作EM⊥x轴于点M,过点F作FN⊥x 轴于点N,如图1,∵S1=2S2,即=2,∴=2,∴=,∵EM⊥x轴,FN⊥x轴,∴EM∥FN,∴△BFN∽△BEM,∴===,∵BM=6﹣t,EM=﹣(t2﹣t﹣3)=﹣t2+t+3,∴BN=(6﹣t),FN=(﹣t2+t+3),∴x=OB﹣BN=6﹣(6﹣t)=2+t,y=﹣(﹣t2+t+3)=t2﹣t﹣2,∴F(2+t,t2﹣t﹣2),∵点F在直线AD上,∴t2﹣t﹣2=﹣(2+t)﹣1,解得:t1=0,t2=2,∴E(0,﹣3)或(2,﹣4);(3)∵y=x2﹣x﹣3=(x﹣2)2﹣4,∴顶点坐标为G(2,﹣4),当x=0时,y=3,即点C(0,﹣3),∴点C′(0,3),G′(2,4),∴向上翻折部分的图象解析式为y=﹣(x﹣2)2+4,∴向上翻折部分平移后的函数解析式为y=﹣(x﹣2)2+4﹣n,平移后抛物线剩下部分的解析式为y=(x﹣2)2﹣4﹣n,设直线BC的解析式为y=k′x+d′(k′≠0),把点B(6,0),C(0,﹣3)代入得:,解得:,∴直线BC的解析式为y=x﹣3,同理直线C′G′的解析式为y=x+3,∴BC∥C′G′,设点P的坐标为(s,s﹣3),∵点C′(0,3),G′(2,4),∴点C′向右平移2个单位,再向上平移1个单位得到点G′,∵四边形C′G′QP是平行四边形,∴点Q(s+2,s﹣2),当点P,Q均在向上翻折部分平移后的图象上时,则,解得:(不符合题意,舍去),当点P在向上翻折部分平移后的图象上,点Q在平移后抛物线剩下部分的图象上时,则,解得:或(不合题意,舍去),当点P在平移后抛物线剩下部分的图象上,点Q在向上翻折部分平移后的图象上时,则,解得:或(不合题意,舍去),综上所述,点P的坐标为(1+,)或(1﹣,).【点评】本题主要是二次函数综合题,考查了待定系数法求函数解析式,二次函数的图象和性质,三角形面积,平行四边形的性质,相似三角形的判定和性质,抛物线的平移、翻折变换等,利用数形结合思想解答是解题的关键.。
2018年辽宁省沈阳市中考数学试卷(含答案解析版)-(27820)
2018年辽宁省沈阳市中考数学试卷一、选择题(每题只有一个正确选项,本题共10 小题,每题 2 分,共 20 分)1.( 2.00 分)( 2018? 沈阳)下列各数中是有理数的是()A.πB.0 C. D .2.(2.00 分)( 2018? 沈阳)辽宁男蓝夺冠后,从 4 月21 日至 24 日各类媒体体关于“辽篮CBA 夺冠”的相关文章达到 81000篇,将数据81000用科学记数法表示为()A.0.81×104 B.0.81× 106 C.8.1×104D.8.1×106 3.( 2.00 分)( 2018? 沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.4.(2.00分)( 2018? 沈阳)在平面直角坐标系中,点 B 的坐标是( 4,﹣ 1),点 A 与点 B 关于 x 轴对称,则点 A 的坐标是()A.(4,1)B.(﹣ 1,4) C .(﹣ 4 ,﹣ 1 )D.(﹣ 1,﹣ 4)5.(2.00分)( 2018? 沈阳)下列运算错误的是()A.(m2)3=m 6B.a10÷a9=a C . x3?x5=x 8 D.a4+a3=a76.(2.00分)( 2018? 沈阳)如图,AB∥CD,EF∥GH ,∠ 1=60 °,则∠2 补角的度数是()A. 60 °B. 100 ° C. 110 ° D.120 °7.( 2.00 分)( 2018? 沈阳)下列事件中,是必然事件的是()A.任意买一张电影票,座位号是 2 的倍数----WORD格式 -- 专业资料 -- 可编辑 ---B.13 个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.( 2.00 分)( 2018? 沈阳)在平面直角坐标系中,一次函数 y=kx+b 的图象如图所示,则k 和 b 的取值范围是()A.k>0,b>0 B.k>0, b<0 C.k<0,b>0 D.k <0,b<09.(2.00分)( 2018? 沈阳)点A(﹣ 3,2)在反比例函数 y= (k≠0)的图象上,则k 的值是()A.﹣ 6 B.﹣C.﹣ 1 D.610.(2.00分)( 2018? 沈阳)如图,正方形ABCD 内接于⊙ O,AB=2,则的长是()--WORD格式 -- 专业资料 -- 可编辑 ---A.πB.π C. 2π D.π二、细心填一填(本大题共 6 小题,每小题 3 分,满分 18 分,请把答案填在答題卷相应题号的横线上)11.( 3.00分)(2018? 沈阳因)式分解:3x3﹣12x=.12.(3.00分)( 2018? 沈阳)一组数 3,4,7,4,3,4,5,6,5 的众数是.13.(3.00分)( 2018? 沈阳化)简:﹣=.14.(3.00分)( 2018? 沈阳)不等式组<的解集是.15.(3.00分)(2018? 沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与 CD 边平行的篱笆 EF 分开.已知篱笆的总长为 900m(篱笆的厚度忽略不计),当 AB=m 时,矩形土地 ABCD 的面积最大.--WORD格式 -- 专业资料 -- 可编辑 ---16.(3.00分)( 2018? 沈阳)如图,△ABC 是等边三角形, AB= ,点 D 是边 BC 上一点,点 H 是线段 AD 上一点,连接 BH、CH.当∠ BHD=60°,∠ AHC=90°时, DH=.三、解答题题( 17 题 6 分,18-19题各 8 分,请认真读题)17.(6.00分)( 2018? 沈阳)计算:2tan45 °﹣|﹣3|+()﹣20﹣( 4﹣π).18.(8.00 分)( 2018? 沈阳)如图,在菱形 ABCD 中,对角线 AC 与 BD 交于点 O.过点 C 作 BD 的平行线,过点 D 作 AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若 CE=1,DE=2 ,ABCD 的面积是.--WORD格式 -- 专业资料 -- 可编辑 ---19.(8.00 分)( 2018? 沈阳)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题(每题8 分,请认真读题)20.(8.00 分)( 2018? 沈阳)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的--WORD格式 -- 专业资料 -- 可编辑 ---值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有 1000 名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.(8.00分)( 2018? 沈阳)某公司今年1 月份的生产成本是 400 万元,由于改进技术,生产成本逐月下降,3 月份的生产成本是361万元.假设该公司 2、3、4 月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测 4 月份该公司的生产成本.五、解答题(本题10)22.(10.00分)( 2018? 沈阳)如图,BE 是 O 的直径,点 A 和点 D 是⊙ O 上的两点,过点 A 作⊙ O 的切----WORD格式 -- 专业资料 -- 可编辑 ---交 BE 延长线于点.(1)若∠ ADE=25°,求∠C 的度数;(2)若 AB=AC ,CE=2,求⊙ O 半径的长.六、解答题(本题10 分)23.(10.00分)( 2018? 沈阳)如图,在平面直角坐标系中,点 F 的坐标为(0,10).点 E 的坐标为(20,0),直线 l1经过点 F 和点 E,直线 l1与直线 l2、y= x 相交于点 P.(1)求直线 l1的表达式和点 P 的坐标;(2)矩形 ABCD 的边 AB 在 y 轴的正半轴上,点 A与点 F 重合,点 B 在线段 OF 上,边 AD 平行于 x 轴,且 AB=6 ,AD=9 ,将矩形 ABCD 沿射线 FE 的方向平移,边 AD 始终与 x 轴平行.已知矩形 ABCD 以每秒个单位的速度匀速移动(点 A 移动到点 E 时止移动),设移动时间为 t 秒( t>0).①矩形 ABCD 在移动过程中, B、C、D 三点中有且只有一个顶点落在直线l1或 l2上,请直接写出此时t的值;②若矩形 ABCD 在移动的过程中,直线CD 交直线 l1于点 N,交直线 l2于点 M.当△ PMN 的面积等于 18时,请直接写出此时t 的值.七、解答题(本题12 分)24.(12.00 分)( 2018? 沈阳)已知:△ABC 是等腰三角形, CA=CB , 0°<∠ACB≤ 90 °.点 M 在边 AC 上,点 N 在边 BC 上(点 M、点 N 不与所在线段端点重合),BN=AM ,连接 AN ,BM,射线 AG ∥BC,延长 BM 交射线 AG 于点 D ,点 E 在直线 AN 上,且AE=DE .(1)如图,当∠ ACB=90°时①求证:△ BCM≌△ ACN ;②求∠BDE 的度数;(2)当∠ ACB=α,其它多件不变时,∠BDE 的度数是(用含α的代数式表示)(3)若△ ABC 是等边三角形, AB=3 ,点 N 是 BC 边上的三等分点,直线 ED 与直线 BC 交于点 F,请直接写出线段 CF 的长.八、解答题(本题12 分)25.(12.00分)( 2018? 沈阳如)图,在平面角坐标系中,抛物线 C1:y=ax2+bx﹣1 经过点 A(﹣ 2,1)和点 B (﹣ 1,﹣ 1),抛物线 C2:y=2x2+x+1 ,动直线 x=t 与抛物线 C1交于点 N ,与抛物线 C2交于点 M.(1)求抛物线 C1的表达式;(2)直接用含 t 的代数式表示线段 MN 的长;(3)当△ AMN 是以 MN 为直角边的等腰直角三角形时,求 t 的值;(4)在(3)的条件下,设抛物线 C1与 y 轴交于点 P,点 M 在 y 轴右侧的抛物线 C2上,连接 AM 交 y 轴于点k,连接 KN ,在平面内有一点Q,连接 KQ 和 QN ,当 KQ=1 且∠ KNQ= ∠BNP 时,请直接写出点 Q 的坐标.2018年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10 小题,每题 2 分,共 20 分)1.( 2.00 分)( 2018? 沈阳)下列各数中是有理数的是()A.πB.0 C. D .【考点】 27:实数.【专题】 511:实数.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解: A、π是无限不循环小数,属于无理数,故本选项错误;B、0 是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选: B.【点评】本题考查了有理数,有限小数或无限循环小数是有理数.2.(2.00 分)( 2018? 沈阳)辽宁男蓝夺冠后,从 4 月21 日至 24 日各类媒体体关于“辽篮CBA 夺冠”的相关文章达到 81000篇,将数据81000用科学记数法表示为()A.0.81×104 B.0.81× 106 C.8.1×104D.8.1×106【考点】 1I:科学记数法—表示较大的数.【专题】 1:常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中 1≤|a| <10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时,n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解:将 81000用科学记数法表示为: 8.1×104.故选: C.--WORD格式 -- 专业资料 -- 可编辑 ---【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n的形式,其中 1≤|a| <10,n为整数,表示时关键要正确确定 a 的值以及 n 的值.3.( 2.00 分)( 2018? 沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.【考点】 U2:简单组合体的三视图.【专题】 55:几何图形.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,从左往右小正方形的个数依次为: 2,1.左视图如下:【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.(2.00分)( 2018? 沈阳)在平面直角坐标系中,点 B 的坐标是( 4,﹣ 1),点 A 与点 B 关于 x 轴对称,则点 A 的坐标是()A.(4,1)B.(﹣ 1,4) C .(﹣ 4 ,﹣ 1 )D.(﹣ 1,﹣ 4)【考点】 P5:关于 x 轴、 y 轴对称的点的坐标.【专题】 1:常规题型.【分析】直接利用关于x 轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点 B 的坐标是( 4,﹣1),点 A 与点 B 关于 x 轴对称,∴点 A 的坐标是:(4,1).【点评】此题主要考查了关于 x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.(2.00分)( 2018? 沈阳)下列运算错误的是()A.(m2)3=m 6B.a10÷a9=a C . x3?x5=x 8 D.a4+a3=a7【考点】 35:合并同类项; 46:同底数幂的乘法; 47:幂的乘方与积的乘方; 48:同底数幂的除法.【专题】 11 :计算题.【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答】解: A、(m2)3=m 6,正确;B、a10÷a9=a,正确;C、x3?x5=x 8,正确;D、a4+a3=a4+a3,错误;----WORD格式 -- 专业资料 -- 可编辑 ---【点评】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.6.(2.00分)( 2018? 沈阳)如图,AB∥CD,EF∥GH ,∠ 1=60 °,则∠2 补角的度数是()A. 60°B. 100 ° C. 110 °D. 120 °【考点】 IL :余角和补角; JA:平行线的性质.【专题】 551:线段、角、相交线与平行线.【分析】根据平行线的性质比较多定义求解即可;【解答】解:∵ AB∥CD,∴∠ 1=∠EFH ,∵E F∥GH ,∴∠ 2=∠EFH ,∴∠ 2=∠ 1=60 °,∴∠ 2 的补角为 120 °,故选: D.【点评】本题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.( 2.00 分)( 2018? 沈阳)下列事件中,是必然事件的是()A.任意买一张电影票,座位号是 2 的倍数B.13 个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【考点】 X1:随机事件.【专题】 543:概率及其应用.【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解: A 、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“ 13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误;故选: B.【点评】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.( 2.00 分)( 2018? 沈阳)在平面直角坐标系中,一次函数 y=kx+b 的图象如图所示,则 k 和 b 的取值范围是()A.k>0,b>0 B.k>0, b<0 C.k<0,b>0 D.k <0,b<0【考点】 F7:一次函数图象与系数的关系.【专题】 53:函数及其图象.【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数 y=kx+b 的图象经过一、二、四象限,∴k<0,b> 0.故选: C.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数 y=kx+b (k≠0)中,当 k<0,b>0 时图象在一、二、四象限.9.(2.00分)( 2018? 沈阳)点A(﹣ 3,2)在反比例函数 y= (k≠0)的图象上,则k 的值是()A.﹣ 6 B.﹣C.﹣ 1 D.6【考点】 G6:反比例函数图象上点的坐标特征.【专题】 33 :函数思想.【分析】根据点 A 的坐标,利用反比例函数图象上点的坐标特征求出 k 值,此题得解.【解答】解:∵A(﹣3,2)在反比例函数y= (k≠0)的图象上,∴k=(﹣ 3)× 2= ﹣6.故选: A.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.10.(2.00分)( 2018? 沈阳)如图,正方形ABCD 内接于⊙ O,AB=2,则的长是()A.πB.π C. 2π D.π【考点】 LE :正方形的性质; MN :弧长的计算.【专题】 1:常规题型.【分析】连接 OA 、OB,求出∠ AOB=90°,根据勾股定理求出 AO ,根据弧长公式求出即可.【解答】解:连接 OA 、OB,∵正方形 ABCD 内接于⊙ O,∴A B=BC=DC=AD ,∴===,∴∠ AOB= × 360 ° =90 °,在 Rt△AOB 中,由勾股定理得: 2AO2= (2 )2,解得: AO=2 ,∴的长为=π,故选: A.【点评】本题考查了弧长公式和正方形的性质,能求出∠ AOB 的度数和 OA 的长是解此题的关键.二、细心填一填(本大题共 6 小题,每小题 3 分,满分 18 分,请把答案填在答題卷相应题号的横线上)11.(3.00分)( 2018? 沈阳)因式分解:3x3﹣12x= 3x (x+2)(x﹣ 2).【考点】 55:提公因式法与公式法的综合运用.【分析】首先提公因式 3x,然后利用平方差公式即可分解.【解答】解: 3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案是: 3x(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.(3.00分)( 2018? 沈阳)一组数 3,4,7,4,3,4,5,6,5 的众数是4.【考点】 W5:众数.【专题】 1:常规题型;542:统计的应用.【分析】根据众数的定义求解可得.【解答】解:在这组数据中 4 出现次数最多,有 3 次,所以这组数据的众数为 4,故答案为: 4.【点评】本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.13.(3.00分)( 2018? 沈阳化)简:﹣=.【考点】 6B:分式的加减法.【专题】 11 :计算题; 513:分式.【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=﹣==,故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(3.00分)( 2018? 沈阳)不等式组<的解集是﹣2≤x<2.【考点】 CB:解一元一次不等式组.【专题】 11 :计算题; 524:一元一次不等式 (组)及应用.【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式 x﹣2<0,得: x<2,解不等式 3x+6≥0,得: x≥﹣ 2,则不等式组的解集为﹣2≤x<2,故答案为:﹣ 2≤x<2.【点评】本题考查了解一元一次不等式组,遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.(3.00分)(2018? 沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与 CD 边平行的篱笆 EF 分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当 AB= 150 m 时,矩形土地 ABCD 的面积最大.【考点】 HE :二次函数的应用.【专题】 12 :应用题.【分析】根据题意可以用相应的代数式表示出矩形绿地的面积;即可解答本题.【解答】解:(1)设 AB=xm ,则 BC= (900﹣3x),由题意可得, S=AB× BC=x ×( 900﹣ 3x)= ﹣( x2﹣300x)= ﹣(x﹣150)2+33750∴当 x=150 时, S 取得最大值,此时, S=33750,--WORD格式 -- 专业资料 -- 可编辑 ---∴A B=150m,故答案为: 150.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的顶点式求函数的最值.16.(3.00分)( 2018? 沈阳)如图,△ABC 是等边三角形, AB= ,点 D 是边 BC 上一点,点 H 是线段 AD 上一点,连接 BH、CH.当∠ BHD=60°,∠ AHC=90°时, DH=.【考点】 KD :全等三角形的判定与性质; KK :等边三角形的性质; S9:相似三角形的判定与性质.【专题】11 :计算题.【分析】作 AE⊥BH 于 E,BF⊥AH 于 F,如图,利用等边三角形的性质得 AB=AC ,∠ BAC=60°,再证明∠ ABH= ∠CAH ,则可根据“AAS”证明△ABE ≌△CAH ,所以 BE=AH ,AE=CH ,在 Rt△AHE 中利用含 30 度的直角三角形三边的关系得到HE=AH ,AE= AH ,则 CH= AH ,于是在 Rt△AHC 中利用勾股定理可计算出AH=2 ,从而得到BE=2 , HE=1 ,AE=CH=,BH=1 ,接下来在Rt△ BFH 中计算出HF= ,BF=,然后证明△ CHD∽△ BFD,利用相似比得到=2,从而利用比例性质可得到DH 的长.【解答】解:作 AE⊥BH 于 E,BF⊥AH 于 F,如图,∵△ ABC 是等边三角形,∴A B=AC ,∠ BAC=60°,∵ ∠ BHD= ∠ ABH+ ∠ BAH=60°,∠ BAH+ ∠CAH=60°,∴∠ ABH= ∠CAH ,在△ ABE 和△ CAH 中,∴△ ABE≌△ CAH ,∴B E=AH ,AE=CH ,在 Rt△AHE 中,∠ AHE= ∠ BHD=60°,∴sin∠AHE= ,HE= AH ,∴ AE=AH?sin60 °=AH ,∴C H= AH ,在 Rt△AHC 中, AH 2+ ( AH )2=AC 2= ()2,解得 AH=2 ,∴BE=2,HE=1 ,AE=CH=,∴B H=BE ﹣HE=2 ﹣1=1,在 Rt△BFH 中, HF= BH= ,BF= ,∵B F∥CH,∴△ CHD ∽△ BFD ,∴===2,∴D H=HF=×=.故答案为.--WORD格式 -- 专业资料 -- 可编辑 ---【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了全等三角形的判定与性质和等边三角形的性质.三、解答题题( 17 题 6 分,18-19题各 8 分,请认真读题)17.(6.00分)( 2018? 沈阳)计算:2tan45 °﹣|﹣3|+()﹣20﹣( 4﹣π).【考点】 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂; T5:特殊角的三角函数值.【专题】 1 :常规题型.--WORD格式 -- 专业资料 -- 可编辑 ---【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值以及负指数幂的性质分别化简得出答案.【解答】解:原式 =2×1﹣( 3﹣)+4﹣1=2﹣3+ +4﹣1=2+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(8.00 分)( 2018? 沈阳)如图,在菱形 ABCD 中,对角线 AC 与 BD 交于点 O.过点 C 作 BD 的平行线,过点 D 作 AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若 CE=1,DE=2 ,ABCD 的面积是4.【考点】 L8:菱形的性质; LD :矩形的判定与性质.--WORD格式 -- 专业资料 -- 可编辑 ---【专题】 556:矩形菱形正方形.【分析】(1)欲证明四边形 OCED 是矩形,只需推知四边形 OCED 是平行四边形,且有一内角为90 度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【解答】(1)证明:∵四边形 ABCD 是菱形,∴AC⊥BD,∴∠ COD=90°.∵CE∥OD ,DE ∥OC,∴四边形 OCED 是平行四边形,又∠ COD=90°,∴平行四边形OCED 是矩形;( 2)由( 1)知,平行四边形OCED 是矩形,则CE=OD=1 ,DE=OC=2 .∵四边形 ABCD 是菱形,∴AC=2OC=4 ,BD=2OD=2 ,∴菱形 ABCD 的面积为:AC?BD= ×4×2=4.故答案是: 4.【点评】考查了矩形的判定与性质,菱形的性质.此题中,矩形的判定,首先要判定四边形是平行四边形,然后证明有一内角为直角.19.(8.00 分)( 2018? 沈阳)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.【考点】 X6:列表法与树状图法.【专题】 1:常规题型;543:概率及其应用.【分析】画树状图展示所有9 种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有 9 种等可能的结果数,其中两人之中至少有一人直行的结果数为 5,所以两人之中至少有一人直行的概率为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果 n,再从中选出符合事件 A 或 B 的结果数目 m,然后利用概率公式计算事件 A 或事件 B 的概率.四、解答题(每题8 分,请认真读题)20.(8.00 分)( 2018? 沈阳)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.--WORD格式 -- 专业资料 -- 可编辑 ---据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了50名学生,m的值是18.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是108度;(4)若该校九年级共有 1000 名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.【考点】 V5:用样本估计总体; VB :扇形统计图;VC:条形统计图.【专题】 54:统计与概率.【分析】(1)根据统计图化学对应的数据和百分比可以求得这次调查的学生数,进而求得m 的值;(2)根据( 1)中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得“数学”所对应的圆心角度数;(4)根据统计图中的数据,可以求得该校九年级学生中有多少名学生对数学感兴趣.【解答】解:( 1)在这次调查中一共抽取了: 10÷20%=50(名)学生,m%=9÷50× 100%=18%,故答案为: 50,18;(2)选择数学的有;50﹣9﹣5﹣8﹣10﹣3=15(名),补全的条形统计图如右图所示;(3)扇形统计图中,“数学”所对应的圆心角度数是:360 °× =108 °,故答案为: 108;(4)1000×=300(名),答:该校九年级学生中有300 名学生对数学感兴趣.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8.00分)( 2018? 沈阳)某公司今年1 月份的生产成本是 400 万元,由于改进技术,生产成本逐月下降,3 月份的生产成本是361万元.假设该公司 2、3、4 月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测 4 月份该公司的生产成本.【考点】 AD :一元二次方程的应用.【专题】34 :方程思想; 523:一元二次方程及应用.--WORD格式 -- 专业资料 -- 可编辑 ---【分析】(1)设每个月生产成本的下降率为x,根据 2月份、 3 月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由 4 月份该公司的生产成本 =3 月份该公司的生产成本×( 1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为 x,根据题意得: 400(1﹣x)2=361,解得: x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为 5%.(2)361×( 1﹣5%)=342.95(万元).答:预测 4 月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.五、解答题(本题10)22.(10.00分)( 2018? 沈阳)如图,BE 是 O 的直径,点 A 和点 D 是⊙ O 上的两点,过点 A 作⊙ O 的切--交 BE 延长线于点.(1)若∠ ADE=25°,求∠C 的度数;(2)若 AB=AC ,CE=2,求⊙ O 半径的长.【考点】 KQ :勾股定理; M5:圆周角定理; MC:切线的性质.【专题】 55:几何图形.【分析】(1)连接 OA ,利用切线的性质和角之间的关系解答即可;(2)根据直角三角形的性质解答即可.【解答】解:(1)连接 OA ,∵A C 是⊙O 的切线,OA 是⊙O 的半径,∴OA⊥AC,∴∠ OAC=90°,∵,∠ ADE=25°,∴∠ AOE=2 ∠ ADE=50°,∴∠ C=90°﹣∠AOE=90°﹣ 50 ° =40 °;(2)∵ AB=AC ,∴∠ B=∠C,∵ ,∴∠ AOC=2∠B,∴∠ AOC=2∠C,∵∠OAC=90°,∴∠ AOC+ ∠ C=90°,∴3∠ C=90°,∴∠ C=30°,∴OA= OC,设⊙ O 的半径为 r,∵CE=2,∴r=,解得: r=2,∴⊙ O 的半径为 2.【点评】此题考查切线的性质,关键是根据切线的性质进行解答.六、解答题(本题10 分)23.(10.00分)( 2018? 沈阳)如图,在平面直角坐标系中,点 F 的坐标为(0,10).点 E 的坐标为(20,0),直线 l 1经过点 F 和点 E,直线 l1与直线 l2、y= x 相交于点 P.(1)求直线 l1的表达式和点 P 的坐标;(2)矩形 ABCD 的边 AB 在 y 轴的正半轴上,点 A与点 F 重合,点 B 在线段 OF 上,边 AD 平行于 x 轴,且 AB=6 ,AD=9 ,将矩形 ABCD 沿射线 FE 的方向平移,边 AD 始终与 x 轴平行.已知矩形 ABCD 以每秒个单位的速度匀速移动(点 A 移动到点 E 时止移动),设移动时间为 t 秒( t>0).①矩形 ABCD 在移动过程中, B、C、D 三点中有且只有一个顶点落在直线l1或 l2上,请直接写出此时t 的值;②若矩形 ABCD 在移动的过程中,直线CD 交直线 l1于点 N,交直线 l2于点 M.当△ PMN 的面积等于 18时,请直接写出此时t 的值.【考点】 FI:一次函数综合题.【专题】153:代数几何综合题; 31 :数形结合; 32 :分类讨论; 533:一次函数及其应用.【分析】(1)利用待定系数法求解析式,函数关系式联立方程求交点;(2)①分析矩形运动规律,找到点 D 和点 B 分别在直线 l2上或在直线 l1上时的情况,利用 AD 、AB 分别可以看成图象横坐标、纵坐标之差构造方程求点A 坐标,进而求出 AF 距离;②设点 A 坐标,表示△ PMN 即可.【解答】解:(1)设直线 l1的表达式为 y=kx+b ∵直线 l1过点 F(0,10),E( 20,0)∴解得直线 l1的表达式为 y= ﹣ x+10求直线 l1与直线 l2交点,得x=﹣ x+10解得 x=8y= ×8=6∴点 P 坐标为( 8,6)(2)①如图,当点 D 在直线上 l2时∵A D=9∴点 D 与点 A 的横坐标之差为 9 ∴将直线 l1与直线 l2交解析式变为x=20﹣2y,x= y∴y﹣( 20﹣2y)=9解得y=则点 A 的坐标为:(,)则 AF=∵点 A 速度为每秒个单位∴t=如图,当点 B 在 l2直线上时∵A B=6∴点 A 的纵坐标比点 B 的纵坐标高 6 个单位∴直线 l1的解析式减去直线l2的解析式得﹣x+10﹣ x=6解得 x=则点A坐标为(,)则 AF=∵点 A 速度为每秒个单位∴t=故 t 值为或②如图,设直线 AB 交 l2于点 H设点 A 横坐标为 a,则点 D 横坐标为 a+9 由①中方法可知: MN=此时点 P 到 MN 距离为:a+9﹣8=a+1∵△ PMN 的面积等于 18∴解得a1=,a2=﹣(舍去)∴A F=6 ﹣则此时 t 为当 t=时,△ PMN的面积等于18【点评】本题是代数几何综合题,应用待定系数法和根据函数关系式来表示点坐标,涉及到了分类讨论思想和数形结合思想.七、解答题(本题12 分)24.(12.00 分)( 2018? 沈阳)已知:△ABC 是等腰三角形, CA=CB , 0°<∠ACB≤ 90 °.点 M 在边 AC 上,点 N 在边 BC 上(点 M、点 N 不与所在线段端点重合),BN=AM ,连接 AN ,BM,射线 AG ∥BC,延长 BM 交射线 AG 于点 D ,点 E 在直线 AN 上,且AE=DE .(1)如图,当∠ ACB=90°时①求证:△ BCM≌△ ACN ;。
沈阳中考数学及答案word
最新年沈阳市中考数学试卷试题满分150分考试时间120分钟参考公式:抛物线2y ax bx c =++的顶点是24(,)24b ac b a a --,对称轴是直线2b x a =-. 一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题4分,共24分) 这个数是()A 正数B 负数C 整数D 无理数年端午节小长假期间,沈阳某景区接待游客约为85000人,将数据85000用科学记数法表示为() ×103 104 C 某几何体的三视图如图所示,这个几何体是()A 圆柱B 三棱柱C 长方体D 圆锥4已知一组数据:1,2,6,3,3,下列说法正确的是()A 众数是3B 中位数是6C 平均数是4D 方差是5-1≥0的解集在数轴上表示正确的是()A B C D6正方形是轴对称图形,它的对称轴有()条条条条7.下列运算正确的是()A ()623x x -=-B 844x x x =+C 632x x x =⋅D ()34y xy xy -=-÷8如图,在△ABC 中,点D 在边AB 上,BD=2AD ,DE ∥BC 交AC 于点E ,若线段DE=5,则线段BC 的长为()A.7.5.10 C二、填空题(每小题4分,共32分)9.计算:=9___________10.分解因式:2m 210m=___________如图,直线a ∥b ,直线与a 相交于点=⋅⎪⎭⎫ ⎝⎛-+x x 1111xk y =42cm3cm4cm ,AB=②cm三、解答题(第17、18小题各8分,第19小题10分,共26分)17.先化简,再求值:()()a b a b a ⋅--+22,其中a=-1,b=5 18如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在边AD ,BC上,且DE=CF ,连接OE ,OF 求证:OE=OF19.在一个不透明的盒子里有红球、白球、黑球各一个,它们除了颜色外其余都相同小明从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色请用列表法或画树状图树形图)法求小明两次摸出的球颜色不同的概率四、(每小题10分,共20分)年世界杯足球赛于北京时间6月13日2时在巴西开幕,某媒体足球栏目从参加世界杯球队中选出五支传统强队:意大利队、德国队、西班牙队、巴西队、阿根廷队,对哪支球队最有可能获得冠军进行了问卷调查为了使调查结果有效,每位被调查者只能填写一份问卷,在问卷中必须选择这五支球队中的一队作为调查结果,这样的问卷才能成为有效问卷从收集到的4800份有效问卷中随机抽取部分问卷进行了统计,绘制了统计图表的一部分如下:根据统计图表提供的信息,解答下列问题:(1)a=________,b=________;(2)根据以上信息,请直接..在答题卡中补全条形统计图; (3) 根据抽样调查结果,请你估计在提供有效问卷的这4800人中有多少人预测德国队最有可能获得冠军21.某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加万元,假设该产品利润每月的增长率相同,求这个增长率五、(本题10分)22.如图,⊙O 是△ABC 的外接圆,AB 为直径,OD ∥BC 交⊙O 于点D ,交AC 于点E ,连接AD ,BD ,CD(1)求证:AD=CD ;(2)若AB=10,co ∠ABC=53,求tan ∠DBC 的值 六、(本题12分)23.如图,在平面直角坐标系中,四边形OABC 的顶点O 为坐标原点,点C 在轴的正半轴上,且BC ⊥OC 于点C ,点A 的坐标为(2,32),AB=34,∠B=60°,点D 是线段OC 上一点,且OD=4,连接AD(1)求证:△AOD 是等边三角形;(2)求点B 的坐标;(3)平行于AD 的直线从原点O 出发,,直线与轴交点的横坐标为t①当直线与轴的交点在线段CD 上(交点不与点C ,D 重合)时,请直接..写出m 与t 的函数关系式(不必写出自变量t 的取值范围)②若m=2,请直接..写出此时直线与轴的交点坐标 七、(本题12分)24如图1,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=13,BD=24,上一动点(点F 不与点B 重合),将线段AF 绕点A 顺时针方向旋转60°得到线段AM ,连接FM(1)求AO 的长;(2)如图2,当点F 在线段BO 上,且点M ,F ,C 三点在同一条直线上时,求证:AC=3AM ;(3)连接EM ,若△AEM 的面积为40,请直接..写出△AFM 的周长 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答八、(本题14分)25.如图1,在平面直角坐标系中,二次函数122742+-=x y 的图象与轴交于点A ,与轴交于B ,C 两点点B 在点C 的左侧,连接AB ,AC(1)点B 的坐标为________,点C 的坐标为________;过点C 作射线CD ∥AB ,点M 是线段AB 上的动点,点=A 不与点A ,点B 重合,过点M 作MN ∥BC 分别交AC 于点Q ,交射线CD 于点N (点Q 不与点,AC n 21<≌△NC 的长为97,当二次函数122742+-=x y的图象经过平移同时过点P和点N时,请直接..写出此时二次函数表达式温馨提示:考生可以根据题意,在备用图中补充图形,以便作答。
2022年辽宁省沈阳市中考数学试题及答案解析
2022年辽宁省沈阳市中考数学试卷一、选择题(本大题共10小题,共20.0分)1.计算5+(−3),结果正确的是( )A. 2B. −2C. 8D. −82.如图是由4个相同的小立方体搭成的几何体,这个几何体的主视图是( )A.B.C.D.3.下列计算结果正确的是( )A. (a3)3=a6B. a6÷a3=a2C. (ab4)2=ab8D. (a+b)2=a2+2ab+b24.在平面直角坐标系中,点A(2,3)关于y轴对称的点的坐标是( )A. (−2,−3)B. (−2,3)C. (2,−3)D. (−3,−2)5.调查某少年足球队全体队员的年龄,得到数据结果如下表:年龄/岁1112131415人数34722则该足球队队员年龄的众数是( )A. 15岁B. 14岁C. 13岁D. 7人6.不等式2x+1>3的解集在数轴上表示正确的是( )A. B.C. D.7.如图,在Rt△ABC中,∠A=30°,点D、E分别是直角边AC、BC的中点,连接DE,则∠CED的度数是( )A. 70°B. 60°C. 30°D. 20°8. 在平面直角坐标系中,一次函数y =−x +1的图象是( )A.B.C.D.9. 下列说法正确的是( )A. 了解一批灯泡的使用寿命,应采用抽样调查的方式B. 如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C. 若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D. “任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件10. 如图,一条河的两岸互相平行,为了测量河的宽度PT(PT 与河岸PQ 垂直),测量得P ,Q 两点间距离为m 米,∠PQT =α,则河宽PT 的长为( )A. msinαB. mcosαC. mtanαD. mtanα二、填空题(本大题共6小题,共18.0分) 11. 因式分解:ay 2+6ay +9a =______. 12. 二元一次方程组{x +2y =5y =2x的解是______.13. 化简:(1−1x+1)⋅x 2−1x=______.14. 如图,边长为4的正方形ABCD 内接于⊙O ,则AB⏜的长是______(结果保留π).15. 如图,四边形ABCD 是平行四边形,CD 在x 轴上,点B 在y 轴上,反比例函数y =kx (x >0)的图象经过第一象限点A ,且▱ABCD 的面积为6,则k =______.16. 如图,将矩形纸片ABCD 折叠,折痕为MN ,点M ,N 分别在边AD ,BC 上,点C ,D 的对应点分别为点E ,F ,且点F 在矩形内部,MF 的延长线交边BC 于点G ,EF 交边BC 于点H.EN =2,AB =4,当点H 为GN 的三等分点时,MD 的长为______.三、解答题(本大题共9小题,共82.0分) 17. 计算:√12−3tan30°+(12)−2+|√3−2|.18. 为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是______;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.19. 如图,在△ABC 中,AD 是△ABC 的角平分线,分别以点A ,D 为圆心,大于12AD 的长为半径作弧,两弧交于点M ,N ,作直线MN ,分别交AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的______. (2)求证:四边形AEDF 是菱形.20.某校积极落实“双减”政策,将要开设拓展课程.为让学生可以根据自己的兴趣爱好选择最喜欢的课程,进行问卷调查,问卷设置以下四种选项:A(综合模型)、B(摄影艺术)、C(音乐鉴赏)、D(劳动实践),随机抽取了部分学生进行调查,每名学生必须且只能选择其中最喜欢的一种课程,并将调查结果整理绘制成如下不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为______名;(2)直接在答题卡中补全条形统计图;(3)求拓展课程D(劳动实践)所对应的扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校800名学生中,有多少名学生最喜欢C(音乐鉴赏)拓展课程.21.如图,用一根60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1)若所围成的矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?(2)矩形框架ABCD面积的最大值为______平方厘米.22.如图,四边形ABCD内接于⊙O,AD是⊙O的直径,AD,BC的延长线交于点E,延长CB交PA于点P,∠BAP+∠DCE=90°.(1)求证:PA是⊙O的切线;(2)连接AC,sin∠BAC=1,BC=2,AD的长为______.323.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B(0,9),与直线OC交于点C(8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为______(用含有m的代数式表示);②当0<m<10时,S与m的关系式为______;3③当S=24时,m的值为______.524.【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是______;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=3√3,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是______;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx−3经过点B(6,0)和点D(4,−3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方的部分沿x轴向上翻折,与抛物线剩下的部分组成新的曲线记为C1,点C的对应点为C′,点G的对应点为G′,将曲线C1沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点记作点P和点Q,若四边形C′G′QP是平行四边形,直接写出点P的坐标.答案解析1.【答案】A【解析】解:5+(−3)=2,故选:A.根据有理数异号相加法则即可处理.本题主要考查有理数加法,掌握其运算法则是解题关键.2.【答案】D【解析】解:从正面看,底层有2个正方形,上层左边有1个正方形,故选:D.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识.注意主视图是指从物体的正面看物体.3.【答案】D【解析】解:A.(a3)3=a9,因此选项A不符合题意;B.a6÷a3=a6−3=a3,因此选项B 不符合题意;C.(ab4)2=a2b8,因此选项C不符合题意;D.(a+b)2=a2+2ab+b2,因此选项D符合题意;故选:D.根据幂的乘方与积的乘方,同底数幂的除法以及完全平方公式逐项进行计算即可.本题考查幂的乘方与积的乘方,同底数幂的除法以及完全平方公式,掌握幂的乘方与积的乘方的计算方法,同底数幂的除法的计算法则以及完全平方公式的结构特征是正确判断的前提.4.【答案】B【解析】解:点A(2,3)关于y轴的对称点坐标为(−2,3).故选:B.根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5.【答案】C【解析】解:该足球队队员年龄13岁出现的次数最多,故众数为13岁.故选:C.一组数据中出现次数最多的数据叫做众数.本题考查了众数,掌握众数的定义是解答本题的关键.6.【答案】B【解析】解:不等式2x+1>3的解集为:x>1,故选:B.解不等式求得不等式的解集,然后根据数轴上表示出的不等式的解集,再对各选项进行逐一分析即可.本题考查的解一元一次不等式以及在数轴上表示不等式解集,熟知实心圆点与空心圆点的区别是解答此题的关键.7.【答案】B【解析】解:在Rt△ABC中,∠A=30°,则∠B=90°−∠A=60°,∵D、E分别是边AC、BC的中点,∴DE是△ABC的中位线,∴DE//AB,∴∠CED=∠B=60°,故选:B.根据直角三角形的性质求出∠B,根据三角形中位线定理得到DE//AB,根据平行线的性质解答即可.本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形中位线平行于第三边是解题的关键.8.【答案】C【解析】解:一次函数y=−x+1中,令x=0,则y=1;令y=0,则x=1,∴一次函数y=x+1的图象经过点(0,1)和(1,0),∴一次函数y=x+1的图象经过一、二、四象限,故选:C.依据一次函数y=x+1的图象经过点(0,1)和(1,0),即可得到一次函数y=−x+1的图象经过一、二、四象限.本题主要考查了一次函数的图象,一次函数的图象是与坐标轴不平行的一条直线.9.【答案】A【解析】解:A.了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A符合题意;B.如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B不符合题意;C.若甲、乙两组数据的平均数相同,S甲2=2.5,S乙2=8.7,则甲组数据较稳定,因此选项C不符合题意;D.“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D不符合题意;故选:A.根据抽样调查与全面调查的定义,概率以及方差的定义逐项进行判断即可.本题考查全面调查与抽样调查,方差以及随机事件、不可能事件、必然事件,理解全面调查与抽样调查的方法,方差的意义以及随机事件、不可能事件、必然事件的定义是正确判断的前提.10.【答案】C【解析】解:由题意得:PT⊥PQ,∴∠APQ=90°,在Rt△APQ中,PQ=m米,∠PQT=α,∴PT=PQ⋅tanα=mtanα(米),∴河宽PT的长度是mtanα米,故选:C.根据垂直定义可得PT⊥PQ,然后在Rt△PQT中,利用锐角三角函数的定义进行计算即可解答.本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.11.【答案】a(y +3)2【解析】解:ay 2+6ay +9a=a(y 2+6y +9)=a(y +3)2.故答案为:a(y +3)2.首先提取公因式a ,进而利用完全平方公式分解因式得出即可.此题主要考查了提取公因式法以及公式法分解因式,正确应用完全平方公式是解题关键.12.【答案】{x =2y =4【解析】解:{x +2y =5①y =2x②, 将②代入①,得x +4x =10,解得x =2,将x =2代入②,得y =4,∴方程组的解为{x =2y =4, 故答案为:{x =2y =4. 用代入消元法解二元一次方程组即可.本题考查二元一次方程组,理解二元一次方程组的解,掌握二元一次方程组的解法是正确解答的关键.13.【答案】x −1【解析】解:(1−1x+1)⋅x 2−1x =x+1−1x+1⋅(x+1)(x−1)x =x x+1⋅(x+1)(x−1)x=x −1,故答案为:x −1.先算括号内的式子,然后计算括号外的乘法即可.本题考查分式的混合运算,熟练掌握运算法则是解答本题的关键.14.【答案】√2π【解析】解:连接OA、OB.∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴AB⏜=BC⏜=CD⏜=AD⏜,∴∠AOB=14×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=42,解得:AO=2√2,∴AB⏜的长=90⋅π⋅2√2180=√2π,故答案为:√2π.连接OA、OB,可证∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.本题考查了弧长公式和正方形的性质,能求出∠AOB的度数和OA的长是解此题的关键.15.【答案】6【解析】解:作AE⊥CD于E,如图,∵四边形ABCD为平行四边形,∴AB//x轴,∴四边形ABOE为矩形,∴S平行四边形ABCD =S矩形ABOE=6,∴|k|=6,而k>0,∴k=6.故答案为:6.作AE⊥CD于E,由四边形ABCD为平行四边形得AB//x轴,则可判断四边形ABOE为矩形,所以S平行四边形ABCD=S矩形ABOE,根据反比例函数k的几何意义得到S矩形ABOE=|−k|,利用反比例函数图象得到.本题考查了反比例函数y=kx (k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.【答案】2√13−4或4【解析】解:当HN=13GN时,GH=2HN,∵将矩形纸片ABCD折叠,折痕为MN,∴MF=MD,CN=EN,∠E=∠C=∠D=∠MFE=90°,∠DMN=∠GMN,AD//BC,∴∠GFH=90°,∠DMN=∠MNG,∴∠GMN=∠MNG,∴MG=NG,∵∠GFH=∠E=90°,∠FHG=∠EHN,∴△FGH∽△ENH,∴FGEN =GHHN=2,∴FG=2EN=4,过点G作GP⊥AD于点P,则PG=AB=4,设MD=MF=x,则MG=GN=x+4,∴CG=x+6,∴PM=6,∵GP2+PM2=MG2,∴42+62=(x+4)2,解得:x=2√13−4,∴MD=2√13−4;当GH=13GN时,HN=2GH,∵△FGH∽△ENH,∴FGEN =GHHN=12,∴FG=12EN=1,∴MG=GN=x+1,∴CG=x+3,∴PM=3,∵GP2+PM2=MG2,∴42+32=(x+1)2,解得:x=4,∴MD=4;故答案为:2√13−4或4.根据点H为GN三等分点,分两种情况分别计算,根据折叠的性质和平行线的性质证明∠GMN=∠MNG,得到MG=NG,证明△FGH∽△ENH,求出FG的长,过点G作GP⊥AD 于点P,则PG=AB=4,设MD=MF=x,根据勾股定理列方程求出x即可.本题考查了翻折变换(折叠问题),矩形的性质,考查了分类讨论的思想,根据勾股定理列方程求解是解题的关键.17.【答案】解:原式=2√3−3×√3+4+2−√33=2√3−√3+4+2−√3=6.【解析】先计算开方运算、特殊三角函数值、负整数指数幂的运算及绝对值的运算,再合并即可.此题考查的是实数的运算,负整数指数幂的运算,特殊三角形函数值,掌握其运算法则是解决此题的关键.18.【答案】14【解析】解:(1)由题意得,.随机抽取一张卡片,卡片上的数字是“4”的概率是14.故答案为:14(2)画树状图如下:共有12种等可能的结果,其中两张卡片上的数字是“2”和“3”的结果有2种,∴小明随机抽取两张卡片,两张卡片上的数字是“2”和“3”的概率为212=16.(1)根据概率公式求解即可.(2)画树状图,表示出所有等可能的结果数,以及两张卡片上的数字是“2”和“3”的结果数,再结合概率公式即可得出答案.本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法是解答本题的关键.19.【答案】垂直平分线【解析】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF//AB,同理DE//AF,∴四边形AEDF是平行四边形,∵FA=ED,∴四边形AEDF为菱形.(1)根据作法得到MN是线段AD的垂直平分线;(2)根据垂直平分线的性质则AF=DF,AE=DE,进而得出DF//AB,同理DE//AF,于是可判断四边形AEDF是平行四边形,加上FA=ED,则可判断四边形AEDF为菱形.本题考查了作图−基本作图以及菱形的判定方法,熟知线段垂直平分线的作法是解答此题的关键.20.【答案】120【解析】解:(1)此次被调查的学生人数为:12÷10%=120(名),故答案为:120;(2)选择B的学生有:120−12−48−24=36(名),补全的条形统计图如图所示;=72°,(3)360°×24120即拓展课程D(劳动实践)所对应的扇形的圆心角的度数是72°;(3)800×48=320(名),120答:估计该校800名学生中,有320名学生最喜欢C(音乐鉴赏)拓展课程.(1)根据选择A的人数和所占的百分比,可以计算出本次调查的学生人数;(2)根据条形统计图中的数据,即可计算出选择B的人数,然后即可将条形统计图补充完整;(3)用360°乘以D(劳动实践)所占比例可得答案;(4)用样本估计总体即可.本题考查条形统计图、扇形统计图、用样本估计总体、频数(率)分布表,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】150cm,【解析】解:(1)设框架的长AD为xcm,则宽AB为60−2x3∴x⋅60−2x=144,3解得x=12或x=18,∴AB=12cm或AB=18cm,∴AB的长为12厘米或18厘米;(2)由(1)知,框架的长AD为xcm,则宽AB为60−2x3cm,∴S=x⋅60−2x3,即S=−23x2+20x=−23(x−15)2+150,∵−23<0,∴要使框架的面积最大,则x=15,此时AB=10,最大为150平方厘米.故答案为:150.(1)设框架的长AD为xcm,则宽AB为60−2x3cm,根据面积公式列出二元一次方程,解之即可;(2)在(1)的基础上,列出二次函数,再利用二次函数的性质可得出结论.此题考查的是二次函数在实际生活中的运用及求函数最值的方法,属较简单题目.解题的关键是用一个未知数表示出长和宽,利用面积公式来列出函数表达式后再求其最值.22.【答案】6【解析】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠BAD=∠DCE,∵∠BAP+∠DCE=90°,∴∠BAP+∠BAD=90°,∴∠OAP=90°,∵OA是⊙O的半径,∴PA是圆O的切线;(2)连接BO并延长交⊙O于点F,连接CF,∵BF是⊙O的直径,∴∠BCF=90°,∵∠BAC=∠F,∴sin∠BAC=sinF=13,在Rt△BCF中,BC=2,∴BF=BCsinF =213=6,∴AD=BF=6,故答案为:6.(1)根据圆内接四边形对角互补以及平角定义可得∠BAD=∠DCE,然后根据已知可得∠BAP+∠BAD=90°,从而可得∠OAP=90°,即可解答;(2)连接BO并延长交⊙O于点F,连接CF,根据直径所对的圆周角是直角可得∠BCF= 90°,再利用同弧所对的圆周角相等可得sin∠BAC=sinF=13,最后在Rt△BCF中,利用锐角三角函数的定义进行计算即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.23.【答案】910m925m215−√153或15−2√55【解析】解:(1)将点B(0,9),C(8,3)的坐标代入直线y=kx+b,∴{b=98k+b=3,解得{k=−34b=9.∴直线AB的函数表达式为:y=−34x+9;(2)①由(1)知直线AB的函数表达式为:y=−34x+9,令y=0,则x=12,∴A(12,0),∴OA=12,OB=9,∴AB=15;如图1,过点C作CF⊥C′D′于点F,∴CF//OA,∴∠OAB=∠FCC′,∵∠C′FC=∠BOA=90°,∴△CFC′∽△AOB,∴OB:OA:AB=C′F:CF:CC′=9:12:15,∵CC′=m,∴CF=45m,C′F=35m,∴C′(8−45m,3+35m),A′(12−45m,35m),D′(8−45m,35m),∵C(8,3),∴直线OC的解析式为:y=38x,∴E(8−45m,3−310m).∴C′E=3+35m−(3−310m)=910m.故答案为:910m.②当点D′落在直线OC上时,有35m=3 8(8−45m),解得m=103,∴当0<m<103时,点D′未到直线OC,此时S=12C′E⋅CF=12⋅910m⋅45m=925m2;故答案为:925m2.③分情况讨论,当0<m<103时,由②可知,S=925m2;令S=925m2=245,解得m=2√303>103(舍)或m=−2√303(舍);当103≤m<5时,如图2,设线段A′D′与直线OC交于点M,∴M(85m,35m),∴D′E=35m−(3−310m)=910m−3,D′M=85m−(8−45m)=125m−8;∴S=925m2−12⋅(910m−3)⋅(125m−8)=−1825m2+365m−12,令−1825m2+365m−12=245;整理得,3m 2−30m +70=0,解得m =15−√153或m =15+√153>5(舍); 当5≤m <10时,如图3,S =S △A′C′D′=12×4×3=6≠245,不符合题意; 当10≤m <15时,如图4,此时A′B =15−m ,∴BN =35(15−m),A′N =45(15−m),∴S =12⋅35(15−m)⋅45(15−m)=625(15−m)2,令625(15−m)2=245,解得m =15+2√5>15(舍)或m =15−2√5.故答案为:15−√153或15−2√5.(1)将点B(0,9),C(8,3)的坐标代入直线解析式,求解即可;(2)①过点C 作CF ⊥C′D′,易得△CFC′∽△AOB ,可用m 表达CF 和C′F 的长度,进而可表达点C′,D′的坐标,由点C 的坐标可得出直线OC 的解析式,代入可得点E 的坐标; ②根据题意可知,当0<m <103时,点D′未到直线OC 上,利用三角形面积公式可得出本题结果;③分情况讨论,分别求出当0<m <103时,当103<m <5时,当5<m <10时,当10<m <15时,S 与m 的关系式,分别令S =245,建立方程,求出m 即可.本题属于一次函数综合题,涉及待定系数法求函数解析式,三角形的面积,相似三角形的性质与判定,分类讨论思想等知识,根据△A′C′D′的运动,进行正确的分类讨论是解题关键.24.【答案】AD =BC 8+3√6【解析】解:(1)AD =BC.理由如下:如图1,∵△AOB 和△COD 是等腰直角三角形,∠AOB =∠COD =90°,∴OA=OB,OD=OC,在△AOD和△BOC中,{OA=OB∠AOD=∠BOC=90°OD=OC,∴△AOD≌△BOC(SAS),∴AD=BC,故答案为:AD=BC;(2)AD=BC仍然成立.证明:如图2,∵∠AOB=∠COD=90°,∴∠AOB+∠AOC=∠AOC+∠COD=90°+α,即∠BOC=∠AOD,在△AOD和△BOC中,{OA=OB∠AOD=∠BOC OD=OC,∴△AOD≌△BOC(SAS),∴AD=BC;(3)①过点A作AT⊥AB,使AT=AB,连接BT,AD,DT,BD,∵△ABT和△CBD都是等腰直角三角形,∴BT=√2AB,BD=√2BC,∠ABT=∠CBD=45°,∴BTAB =BDBC=√2,∠ABC=∠TBD,∴△ABC∽△TBD,∴DTAC =BTAB=√2,∴DT=√2AC=√2×3√3=3√6,∵AT=AB=8,DT=3√6,∴点D的运动轨迹是以T为圆心,3√6为半径的圆,∴当D在AT的延长线上时,AD的值最大,最大值为8+3√6,故答案为:8+3√6;②如图4,在AB上方作∠ABT=30°,过点A作AT⊥BT于点T,连接AD、BD、DT,过点T作TH⊥AD于点H,∵BTAB =BDBC=cos30°=√32,∠ABC=∠TBD=30°+∠TBC,∴△BAC∽△BTD ,∴ DT AC =BD BC =√32, ∴DT =√32AC =√32×3√3=92, 在Rt △ABT 中,AT =AB ⋅sin∠ABT =8sin30°=4,∵∠BAT =90°−30°=60°,∴∠TAH =∠BAT −∠DAB =60°−30°=30°,∵TH ⊥AD ,∴TH =AT ⋅sin∠TAH =4sin30°=2,AH =AT ⋅cos∠TAH =4cos30°=2√3, 在Rt △DTH 中,DH =√DT 2−TH 2=√(92)2−22=√652, ∴AD =AH +DH =2√3+√652. (1)证明△AOD≌△BOC(SAS),即可得出结论;(2)利用旋转性质可证得∠BOC =∠AOD ,再证明△AOD≌△BOC(SAS),即可得出结论;(3)①过点A 作AT ⊥AB ,使AT =AB ,连接BT ,AD ,DT ,BD ,先证得△ABC∽△TBD ,得出DT =3√6,即点D 的运动轨迹是以T 为圆心,3√6为半径的圆,当D 在AT 的延长线上时,AD 的值最大,最大值为8+3√6;②如图4,在AB 上方作∠ABT =30°,过点A 作AT ⊥BT 于点T ,连接AD 、BD 、DT ,过点T 作TH ⊥AD 于点H ,可证得△BAC∽△BTD ,得出DT =√32AC =√32×3√3=92,再求出DH 、AH ,即可求得AD .本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识点,关键是添加恰当辅助线,构造全等三角形或相似三角形解决问题,综合性较强,难度较大,属于中考压轴题.25.【答案】解:(1)①∵抛物线y =ax 2+bx −3经过点B(6,0)和点D(4,−3), ∴{36a +6b −3=016a +4b −3=−3, 解得:{a =14b =−1, ∴抛物线的函数表达式为y =14x 2−x −3;②由①得y =14x 2−x −3,当y =0时,14x 2−x −3=0,解得:x 1=6,x 2=−2,∴A(−2,0),设直线AD 的函数表达式为y =kx +d ,则{−2k +d =04k +d =−3, 解得:{k =−12d =−1, ∴直线AD 的函数表达式为y =−12x −1; (2)设点E(t,14t 2−t −3),F(x,y),过点E 作EM ⊥x 轴于点M ,过点F 作FN ⊥x 轴于点N ,如图1,∵S 1=2S 2,即S △BDF S△DEF =2, ∴BF EF =2, ∴BFBE =23, ∵EM ⊥x 轴,FN ⊥x 轴,∴EM//FN ,∴△BFN∽△BEM ,∴BNBM =FNEM =BF BE =23, ∵BM =6−t ,EM =−(14t 2−t −3)=−14t 2+t +3,∴BN =23(6−t),FN =23(−14t 2+t +3),∴x =OB −BN =6−23(6−t)=2+23t ,y =−23(−14t 2+t +3)=16t 2−23t −2, ∴F(2+23t,16t 2−23t −2), ∵点F 在直线AD 上,∴16t 2−23t −2=−12(2+23t)−1,解得:t 1=0,t 2=2,∴E(0,−3)或(2,−4);(3)∵y =14x 2−x −3=14(x −2)2−4,∴顶点坐标为G(2,−4),当x =0时,y =3,即点C (0,−3),∴点C′(0,3),G′(2,4),∴向上翻折部分的图象解析式为y =−14(x −2)2+4,∴向上翻折部分平移后的函数解析式为y =−14(x −2)2+4−n ,平移后抛物线剩下部分的解析式为y =14(x −2)2−4−n ,设直线BC 的解析式为y =k′x +d′(k′≠0),把点B(6,0),C(0,−3)代入得:{6k′+d′=0d′=−3, 解得:{k′=12d′=−3, ∴直线BC 的解析式为y =12x −3,同理直线C′G′的解析式为y =12x +3,∴BC//C′G′,设点P 的坐标为(s,12s −3),∵点C′(0,3),G′(2,4),∴点C′向右平移2个单位,再向上平移1个单位得到点G′,∵四边形C′G′QP 是平行四边形,∴点Q(s +2,12s −2),当点P ,Q 均在向上翻折部分平移后的图象上时,则{−14(s −2)2+4−n =12s −3−14(s +2−2)2−4−n =12s −2, 解得:{s =0n =6(不符合题意,舍去), 当点P 在向上翻折部分平移后的图象上,点Q 在平移后抛物线剩下部分的图象上时,则{−14(s −2)2+4−n =12s −314(s +2−2)2−4−n =12s −2, 解得:{s =1+√17n =0或{s =1−√17n =0(不合题意,舍去), 当点P 在平移后抛物线剩下部分的图象上,点Q 在向上翻折部分平移后的图象上时,则{14(s −2)2−4−n =12s −3−14(s +2−2)2+4−n =12s −2, 解得:{s =1−√13n =√13或{s =1+√13n =−√13(不合题意,舍去), 综上所述,点P 的坐标为(1−√13,−5+√132).【解析】(1)运用待定系数法即可求得抛物线解析式和直线AD 的解析式;(2)设点E(t,14t 2−t −3),F(x,y),过点E 作EM ⊥x 轴于点M ,过点F 作FN ⊥x 轴于点N ,如图1,根据三角形面积关系可得BF BE =23,由EM//FN ,可得△BFN∽△BEM ,得出BN BM =FN EM =BFBE=23,可求得F(2+23t,16t2−23t−2),代入直线AD的解析式即可求得点E的坐标;(3)根据题意可得:点C′(0,3),G′(2,4),向上翻折部分的图象解析式为y=−14(x−2)2+4,向上翻折部分平移后的函数解析式为y=−14(x−2)2+4−n,平移后抛物线剩下部分的解析式为y=14(x−2)2−4−n,利用待定系数法可得:直线BC的解析式为y=12x−3,直线C′G′的解析式为y=12x+3,由四边形C′G′QP是平行四边形,分类讨论即可.本题主要是二次函数综合题,考查了待定系数法求函数解析式,二次函数的图象和性质,三角形面积,平行四边形的性质,相似三角形的判定和性质,抛物线的平移、翻折变换等,利用数形结合思想解答是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年辽宁沈阳中考数学一、选择题(共8小题;共40.0分)1. 比0大的数是 ( )C. −0.5D. 1A. −2B. −322. 如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是A.B.C.D.3. 下列事件为必然事件的是 ( )A. 经过有交通信号灯的路口,遇到红灯B. 明天一定会下雨C. 抛出的篮球会下落D. 任意买一张电影票,座位号是2的倍数4. 如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40∘,∠AED=60∘,则∠A的度数是A. 100∘B. 90∘C. 80∘D. 70∘ 5. 下列计算结果正确的是 ( ) A. a 4⋅a 2=a 8 B. (a 5)2=a 7C. (a −b )2=a 2−b 2D. (ab )2=a 2b 2 6. 一组数据 2,3,4,4,5,5,5 的中位数和众数分别是 ( )A. 3.5,5B. 4,4C. 4,5D. 4.5,47. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是 ( )A. 平行四边形B. 菱形C. 矩形D. 正方形8. 在平面直角坐标系中,二次函数 y =a (x −h )2(a ≠0)的图象可能是 ( )A.B.C.D.二、填空题(共8小题;共40.0分)9. 分解因式: ma 2−mb 2= .10. 不等式组 {x −3<0,2x +4≥0的解集是 . 11. 如图,在 △ABC 中,AB =AC ,∠B =30∘,以点 A 为圆心,以 3 cm 为半径作 ⊙A ,当 AB = cm 时,BC 与 ⊙A 相切.12. 某跳远队甲、乙两名运动员最近 10 次跳远成绩的平均数为 602 cm ,若甲跳远成绩的方差为 S 甲2=65.84,乙跳远成绩的方差为 S 乙2=285.21,则成绩比较稳定的是 .(填“甲”或“乙”)13. 在一个不透明的袋中装有 12 个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为 14,那么袋中的黑球有 个.14. 如图,△ABC 与 △DEF 位似,位似中心为点 O ,且 △ABC 的面积等于 △DEF 面积的 49,则 AB:DE = .15. 如图 1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度 y (cm )和注水时间 x (s )之间的关系满足如图 2中的图象,则至少需要 s 能把小水杯注满.16. 如图,正方形 ABCD 绕点 B 逆时针旋转 30∘ 后得到正方形 BEFG ,EF 与 AD 相交于点 H ,延长 DA 交 GF 于点 K .若正方形 ABCD 边长为 √3,则 AK = .三、解答题(共9小题;共117.0分)17. 计算:√273+∣∣√5−2∣∣−(13)−2+(tan60∘−1)0.18. 如图,点E为矩形ABCD外一点,AE=DE,连接EB,EC分别与AD相交于点F,G.求证:(1) △EAB≅△EDC;(2) ∠EFG=∠EGF.19. 我国是世界上严重缺水的国家之一,全国总用水量逐年上升,全国总用水量可分为农业用水量、工业用水量和生活用水量三部分.为了合理利用水资源,我国连续多年对水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了 2008 年全国总用水量分布情况扇形统计图和 2004~2008 年全国生活用水量折线统计图的一部分如下:(1)2007 年全国生活用水量比 2004 年增加了16%,则 2004 年全国生活用水量为亿m3,2008 年全国生活用水量比 2004 年增加了20%,则 2008 年全国生活用水量为亿m3;(2)根据以上信息,请直接在答题卡上补全折线统计图;(3)根据以上信息 2008 年全国总水量为亿;(4)我国 2008 年水资源总量约为2.75×104亿m3,根据国外的经验,一个国家当年的全国总用水量超过这个国家年水资源总量的20%,就有可能发生“水危机”.依据这个标准,2008 年我国是否属于可能发生"水危机"的行列?并说明理由.20. 高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690 km,高速铁路列车比普通铁路列车少运行了4.6 h,求高速铁路列车的平均速度.21. 如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA,OB,OC,AC,OB 与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2√3,求图中阴影部分面积(结果保留π和根号).22. 如图,已知一次函数y=32x−3与反比例函数y=kx的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为,k的值为;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)考察反比函数y=kx的图象,当y≥−2时,请直接写出自变量x的取值范围.23. 如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C 在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90∘,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.(1)求点A和点C的坐标;(2)当0<t<30时,求m关于t的函数关系式;(3)当m=35时,请直接写出t的值;(4)直线l上有一点M,当∠PMB+∠POC=90∘,且△PMB的周长为60时,请直接写出满足条件的点M的坐标.24. 如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60∘,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.(1)当点H与点C重合时.①填空:点E到CD的距离是;②求证:△BCE≅△GCF;③求△CEF的面积;(2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF的面积.25. 如图,在平面直角坐标系中,抛物线y=−23x2−43x+2与x轴交于B,C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为(,),点C的坐标为(,),点D的坐标为(,);(2)点P是线段BC上的动点(点P不与点B,C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A,B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.答案第一部分1. D2. A3. C4. C5. D6. C7. B8. D第二部分9. m(a +b)(a −b)10. −2≤x <311. 612. 甲13. 414. 2:315. 516. 2√3−3第三部分17. (1) 原式=3+√5−2−9+1=√5−7. 18. (1) ∵ 四边形 ABCD 是矩形,∴AB =DC ,∠BAD =∠CDA =90∘.∵EA =ED ,∴∠EAD =∠EDA ,∴∠EAB =∠EDC ,∴△EAB ≅△EDC .18. (2) ∵△EAB ≅△EDC ,∴EB =EC ,∴∠EBC =∠ECB .∵FG ∥BC ,∴∠EFG =∠EBC ,∠EGF =∠ECB ,∴∠EFG =∠EGF .19. (1) 625;75019. (2)19. (3) 500019. (4) 不属于理由:2.75×104×20%=5500>5000,因此,2008 年我国不属于可能发生“水危机”的行列.20. (1) 设高速铁路列车的平均速度为 x km/h .根据题意,得 69013x=690x +4.6. 解这个方程,得x=300.经检验,x=300是所列方程的根.答:高速铁路列车的平均速度为300 km/h.21. (1) ∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180∘.∵∠ABC=2∠D,∴2∠D+∠D=180∘,∴∠D=60∘,∴∠AOC=2∠D=120∘.∵OA=OC,∴∠OAC=∠OCA=30∘.21. (2) ∵∠COB=3∠AOB,∴∠AOC=∠AOB+3∠AOB=120∘,∴∠AOB=30∘,∴∠COB=∠AOC−∠AOB=90∘.在Rt△OCE中,OC=2√3,∴OE=OC⋅tan∠OCE=2√3⋅tan30∘=2√3×√33=2,∴S△OEC=12OE⋅OC=12×2×2√3=2√3,∴S扇形OBC =90π×(2√3)2360=3π,∴S阴影=S扇形OBC−S△OEC=3π−2√3.22. (1) 3;1222. (2) ∵直线y=32x−3与x轴相交于点B,∴32x−3=0,∴x=2,∴B点坐标为(2,0).过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F.∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE−OB=4−2=2,在Rt△ABE中,AB=√AE2+BE2=√32+22=√13,∵四边形ABCD是菱形,∴AB=CD=BC=√13,AB∥CD,∴∠ABE=∠DCF.∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90∘,∴△ABE≅△DCF,∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2+√13+2=4+√13,∴点D的坐标为(4+√13,3).22. (3) x≤−6或x>0.23. (1) 如图,过点A作AD⊥OB,垂足为D,过点C作CE⊥OB,垂足为E.∵OA=AB,∴OD=DB=12OB.∵∠OAB=90∘,∴AD=12OB,∴OD=AD.∵点B的坐标为(60,0),∴OB=60,∴OD=12OB=12×60=30,∴点A的坐标为(30,30).∵直线l平行于y轴且当t=40时,直线l恰好过点C,∴OE=40,在Rt△OCE,OC=50,由勾股定理得CE=√OC2−OE2=√502−402=30,∴点C的坐标为(40,−30).23. (2) 如图,∵∠OAB=90∘,OA=AB,∴∠AOB=45∘.∵直线l平行于y轴,∴∠OPQ=90∘,∴∠OQP=45∘,∴OP=QP.∵点P的横坐标为t.∴OP=QP=t,在Rt△OCE中,OE=40,CE=30,∴tan∠EOC=34,∴tan∠POR=PROP =34,∴PR=OP⋅tan∠POR=34t,∴QR=QP+PR=t+34t=74t,∴当0<t<30时,m关于t的函数关系式为m=74t.23. (3) t的值为20或46.23. (4) M1(40,15),M2(40,−15).24. (1) ①2√3②∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,由折叠可知AD=CG,∠D=∠G,∠A=∠ECG,∴BC=GC,∠B=∠G,∠BCD=∠ECG,∴∠BCE=∠GCF,∴△BCE≅△GCF.③过点E作EP⊥BC于P,∵∠B=60∘,∠EPB=90∘,∴∠BEP=30∘,∴BE=2BP.可设BP=m,则BE=2m,∴EP=BE⋅sin60∘=2m×√32=√3m.由折叠可知AE=CE,∵AB=6,∴AE=CE=6−2m.∵BC=4,∴PC=4−m.在Rt△ECP中,由勾股定理得(4−m)2+(√3m)2=(6−2m)2,∴m=54,∴EC=6−2m=6−2×54=72.∵△BCE≅△GCF,∴CF=EC=72,∴S△CEF=12×72×2√3=7√32.24. (2) 124√335或4√3.25. (1) 0;2;−3;0;1;0;−1;8325. (2) ①设点P的坐标为(n,0),∵EP⊥x轴,点E在抛物线上,∴点E的坐标为(n,−23n2−43n+2),∵PE=PC,∴−23n2−43n+2=1−n,∴n1=−32,n2=1(不符合题意,舍去),∴当n=−32时,−23n2−43n+2=−23×(−32)2−43×(−32)+2=52,∴E(−32,52 ).②32或52.③32√6565.。