发电厂电气部分-主接线的设计原则和步骤
发电厂电气部分设计

摘要:本设计是对4×600MW总装机容量为2400MW的凝汽式火力发电厂进行电气一次部分及其厂用电高压部分的设计,它主要包括了五大部分,分别为:电气主接线的选择、厂用电设计、短路电流的计算、主要电气设备的选择、完成主接线图与设计说明书。
其中详细描述了短路电流的计算和电气设备的选择,从不同的短路情况进行分析和计算,对不同的短路参数来进行不同种类设备的选择,列出各设备选择结果表。
并对设计进行了理论分析。
最后的设计总图包括主接线,主要电气设备。
关键词:电气一次部分;电气主接线;短路计算;设备选择Abstract:This design is for 4 × 600MW total installed capacity of the electrical powe r plant and a part of the high-pressu-re part of the design of 2400MW of condensing st eam power plant.Itincludes five parts, namely: the calculation of the main electrical co nnection options, power design, short-circuit current, the main electrical equipment se lection, complete the main wiring diagrams and design specification. Which describes in detail the selection of the short circuit current computing and electrical equipment for analysis and calculations from different short circuit, short circuit to different para meters to choose different types of devices, each device listed in the selection result ta ble.Theoretical analysis anddesign.The final master plan includes a main wiring,main electrical equipment.Keywords:Electrical primary part;Electrical main wiring;Short circuit calculations;Equipment selection目录1 电气主接线 (1)1.1 系统与负荷资料分析 (1)1.2 主接线方案的选择 (3)1.3 各接线方式的比较 (7)1.3.1 双母线接线方式的特点: (7)1.3.2 双母带旁路接线方式的特点: (8)1.3.3 一台半断路器接线方式的特点: (8)1.4 主变压器的选择与计算 (10)1.4.1 单元接线的主变压器容量的确定原则 (10)1.4.2 主变压器型式的确定原则 (10)1.4.3 主变压器型式的选择 (11)1.4.4 联络变压器的选择 (12)1.5 厂用电的接线方式和选择 (13)1.5.1 厂用电设计要求: (13)1.5.2 厂用电的电压等级: (13)1.5.3 厂用变压器的选择 (14)1.5.4 厂用电系统中性点接地方式 (15)1.5.5 厂用电接线形式 (15)2 短路电流的计算 (17)2.1 短路计算的一般规则 (17)2.2 短路计算的一般规定和条件 (17)2.3 短路计算过程 (18)3 电气设备的选择 (27)3.1 电气设备选择的一般规则 (27)3.2 电气选择的条件 (27)3.2.1 断路器的种类和形式的选择 (29)3.2.2 隔离开关的种类和形式的选择 (31)3.2.2 互感器的种类和形式的选择 (31)3.2.3 避雷器的种类和形式的选择 (33)3.3 500kV设备选择 (33)3.3.1 500kV断路器的选择 (33)3.3.2 500kV隔离开关的选择 (35)3.3.3 500kV电流互感器的选择 (36)3.3.4 500kV电压互感器的选择 (36)3.3.5 500kV避雷器的选择 (36)3.4 220kV设备选择 (37)3.4.1 220kV断路器的选择 (37)3.4.2 220kV隔离开关的选择 (38)3.4.3 220kV电流互感器的选择 (39)3.4.4 220kV电压互感器的选择 (40)3.4.5 220kV避雷器的选择 (40)3.5 电气设备选择的结果表 (41)4 母线选择及校验 (43)4.1 母线材料及形状的选择 (43)4.2 500KV侧母线选择及校验 (44)4.3 220KV侧母线选择及校验 (45)5 配电装置 (47)5.1 配电装置选择的一般原则 (47)5.2 配电装置的选型和依据 (47)5.3 主接线中设备配置的一般原则 (48)5.3.1 隔离开关的配置 (48)5.3.2 电压互感器的配置 (48)5.3.3 电流互感器的配置 (49)参考文献 (50)致谢 (51)附录I (52)本次设计是在课程设计任务书的基础上,依靠本学期所学的<<电力系统基础>>专业理论知识进行的,翻阅及参考了多种资料,通过本设计树立工程观点,加强基本理论的理解和工程设计基本技能的训练,了解现代大型发电厂的电能生产过程及其特点,掌握发电厂电气主系统的设计方法,并在分析、计算和解决实际工程能力等方面得到训练,为今后从事电气设计、运行管理和科研工作,奠定必要的理论基础。
电气主接线基础知识及操作

本章小结
1、掌握对电气主接线的基本要求。 2、认识并能绘出各种形式电气主接线, 会分析各种主接线的特点,了解其适
重点: 用范围。
3、掌握一次接线图中各元件的作用。 4、掌握基本的倒闸操作原则。
优点: (4)操作方便、安全。
隔离开关不做操作电器,减少了误操作。
(5)正常运行时两组母线与
WL1
全部断路器都投入使用,
每串断路器互相连接形成
多环状供电,运行调度较灵活。
缺点:
使用设备较多,配电装置复杂,
投资较多。
S1
WL4
W2 QF3
QF2
QF1 W1
S4
3、一台半断路器接线的两条原则 (1)电源线与负荷线配对成串 WL1 同一个“断路器串”上配置一 条电源回路和一条引出线回路。
WL1 QF1 QF2
WL2 W2
WL1
WL2
QF3
T1
交叉接线
W1
T2
T1
T2
非交叉接线
4、一台半断路器接线适用范围: 适用于超高压电网!
大型发电厂和变电所的330~500kV的装置中: 当进出线回路数为6回及以上,配电装置在系统中 有主要地位时,宜采用一台半断路器接线。
现500kV变电站,一般都采用此接线。
优点:
(1)检修任一断路器时,都不会造成任何回路停电。
(2)任一母线故障,仅跳开与此母线相连的断路器,不引起
任何回路停电。
WL1
WL4
甚至于两组母线同时故障
W2 QF3
的极端情况下,功率仍可送出!
QF2
(3)线路故障,只是该回路被切除, 不会造成其他回路停电。
S1
QF1 W1
S4
火力发电厂电气部分设计

火力发电厂电气部分设计摘要电能行业依然是我国生活生产中最重要的行业之一,随着人类生活水平的不断提高,人们对电能的质量要求更高。
为了满足人们的需求,电力行业也将发生巨大改革。
将可靠、安全、环保的电能源,输送给千家万户,这种变革相对应的方案设计,有着深远的意义。
科技的不断进步,使得我国的发电厂,更加智能化,更加信息化,满足人们对其质量效率的高要求,是我国电网位于世界前列的主要因素。
关键词:发电厂;主接线;变压器;电能;电力系统第1章绪论1.1 选题背景、研究目的及意义电能对于我们的生产生活非常重要,安全、稳定可靠的电能是国民经济发展所必需的,严谨可靠的发电厂电气设计,对于提高可靠性、节省成本起着关键作用。
电能早已走进千家万户,深入地渗透到人们的生活生产当中。
大部分电能都来源于发电厂,电力的稳定,直接影响我国国民经济。
它是我国电力行业稳步向前的根本,对研究有着深远的意义。
伴随着我国人民的生活水平不断提高,电力行业也将跟随时代的脚步不断发展,否则将被时代所遗弃。
所以电力行业,必须大刀阔斧的进行改革,保证稳定供电。
当今火力发电,仍然是提供电能的主要来源。
保证供电稳定的前提情况下,还要考虑火力发电对地球环境的污染,对电力行业提出了更高的要求。
我国的电力行业已经步入新台阶,引进了许多国外先进的技术手段[1]。
该设计把电气相关设备的发展带入到了一个新的境地和领域。
无论对发电厂还是用户,都提高了用电效率。
更重要的是充分利用了自然资源,减少了不必要的资源浪费。
针对当前用户设备的使用情况和特点,能够让用户快速高效的使用电能,对社会的发展和有效的资源利用有着积极的意义。
1.2 国内外研究现状中国的电力行业水平不断发展,结合当下互联网实现了集中调控,同时利用辅助电器进行监控。
伴随着不断改革,我国的电力行业已经走向世界的新高度。
随着电气设备的性能不断提高,变电站的设备,已经简化了很多。
例如,铁路配电室中,已经无人值守,通过小机器人,来实现各种操作。
发电厂电气部分课程设计

《发电厂电气部分课程设计》说明书学院:电气与自动化工程学院专业:电气工程及其自动化姓名:班级:学号:引言能源是人类赖以生存的基础,从日常生活所必需的电、水、气到人们所利用的交通、通信、娱乐等都与能源息息相关。
人类为了生存除了要吃饭获取能源之外,还要利用诸如石油、煤炭、电能等能源。
电力能源从上世纪开始,在总能源需求中的比重增加较快,从世界的平均水平来看,每20年约增加一倍。
因此随着世界人口的不断增加,能源的需求也在不断地增加,特别是人类进入21世纪高度信息化社会后更是如此。
电能是二次能源,是由煤、油、风力和核能等一次能源转化而来的,又可以方便地转化成其他能源。
它是现代社会中最重要的、最方便的、最清洁的能源,各行各业以及人们的日常生活都离不开它。
如果发生大面积的、长时间的停电,整个社会尤其是大城市中人们的生活将会受到很大的影响,甚至可能影响到社会秩序直至国家的安全。
随着国家经济实力的增强,电力行业的重要性越来越明显了。
电力行业是国民经济发展的基础和关键,电力系统的发展与时俱进。
高质量的电力资源和可靠的供电水平是衡量电力行业发展的指标。
本设计是针对大型火电厂的要求进行配置的,它主要包括了电气主接线的选择、短路电流的计算、电气设备的选择,其中详细描述了短路电流的计算和电气设备的选择,对该设计进行了理论分析,在理论上证实了火电厂的实际可行性,达到了设计要求。
火电厂的电气主接线设计是整个火电厂的核心技术。
它对火电厂内电气设备选择、布置、火电厂总平面布置的设计,都起着决定性的作用。
一、原始资料发电厂情况:凝汽式大型火电厂。
汽轮发电机组600MW×2台,机端电压20kV,200MW×4台,机端电压10.5kV,功率因数cosφ=0.85,厂用电率7%,年运行时间=0.6秒。
T=7000h,年最大负荷利用小时数Tmax=6000h。
故障计算时间Tk 电力系统情况:通过2回500kV架空线与10000MVA的系统1交换功率1000MW~1200MW,cosφ=0.85,Tmax=5500h,系统在500kV母线处的等值短路阻抗为2.0(基值为10000MVA);通过4回220kV架空线与5000MVA的系统2交换功率400MW~600MW,cosφ=0.85,Tmax=5500h,系统在220kV母线处的等值短路阻抗为2.0(基值为7000MVA);出4回110kV线路供负荷,cosφ=0.9,Tmax=5000h。
2X50MW发电厂电气部分设计

摘要电能是经济发展最重要的一种能源,可以方便、高效地转换成其它能源形式。
电力系统由发电厂、变电所、线路及用户组成。
发电厂是把各种能源(化学能、水能、原子能)转换成电能的工厂。
发电厂生产的电能,一般先由电厂的升压站升压,经高压输电线路传送,再经变电所若干次降压后,才能供给用户使用。
直接生产、转换和输配电能的如:开关设备,载流导体成为一次设备。
本次设计为发电厂一次设备部分的设计。
设计中将主要从理论上在电气主接线设计,所用电设计,短路电流计算,电气设备的选择,配电装置设计规划及选择,变电所总平面布置,防雷接地保护设计等方面做详尽的论述,同时,在保证设计可靠性的前提下,还要兼顾经济性和灵活性,通过计算论证该发电厂实际设计的合理性与经济性。
在计算和论证的过程中,结合新编电气工程手册规范,采用Microsoft Office Visio 软件绘制了大量电气图,进一步完善了设计。
作为现代化中型发电厂,是建立大型发电厂的基础,因为意义重大。
关键词:电气主接线设计厂用电设计短路电流计算配电装置设计规划及选择总平面布置防雷接地保护设计AbstractElectricity is the most important energy of economic development which can be conveniently and efficiently converted into other forms of energy. Today,not only in China but also in the world ,the thermoelectricity capacity accounts to about 70% and the power about 80%.So, electricity plays an important role in our country which is a developing country.In this design, I will mainly discuss main electric connection design, short circuit account, electric equipment choice, electric equipment layout, lightning strike defending design,electrical machine, transformer and generatrix protective relaying detailedly in theory and comparing with the power plant of San he,while ensuring the reliability of the design, under the premise we should also take into account economic and flexibility demonstrated by calculating the effective thermal power plant design and reasonable economy.During my counting and demonstrating,in order to consummate my design, I will protract a great lot of electric engineering-pictures by Microsoft Office Visio following the new criterion of electric engineering-enchiridion.Keywords:main electric connection design ,short current, electric equipment choice, electric equipment layout,protective relaying目录摘要 (1)Abstract (2)目录 (3)第1章电气主接线的设计 (5)1.1 明确任务和设计原理 (6)1.1.1原始资料 (6)1.1.2原始资料的分析 (6)1.2方案的设计、论证和选择 (6)1.2.1 方案设计 (6)1.2.2设计方案比较 (10)1.3 小结 (11)第 2 章厂用电设计 (11)2.1 负荷的分类与统计 (11)2.2厂用电接线的设计 (13)2.2.1厂用供电电压等级的确定 (13)2.2.2厂用电系统接地方式 (13)2.2.3 厂用工作电源引接方式 (13)2.2.4厂用备用电源和启动电源引接方式 (14)2.2.5 确定厂用电系统 (14)2.3 厂用主变选择 (15)2.3.1 厂用电主变选择原则 (16)2.3.2 确定厂用电主变容量 (16)第3章短路电流的计算 (16)3.1 短路电流计算的目的 (16)3.1.1基本假定 (17)3.1.2 一般规定 (17)3.2 短路的原因、后果及其形式 (18)3.3短路的物理过程及计算方法 (18)3.4短路电流的计算数据和计算结果 (21)3.4.1电路元件参数的计算 (21)3.5 短路电流的详细计算结果 (23)3.5.1效电抗标幺值画出等值计算网络电路图 (23)3.5.2计算短路电流 (23)3.5.3短路计算结果列表 (33)第4章电气设备的选择 (34)4.1电气设备选择概述 (34)4.2电气设备选择的一般原则 (34)4.3电气设备选择的校验内容 (35)4.4 电气设备选择的技术条件 (36)4.5 主变压器和发电机的选择 (37)4.5.1发电机的选择 (37)4.5.2主变压器的选择 (37)4.6高低压电器设备的选择 (38)4.6.1断路器的选择 (38)4.6.2隔离开关的选择 (39)4.6.3 互感器的选择 (40)4.6.4熔断器的选择 (41)4.6.5限流电抗器的选择 (42)4.6.6避雷器的选择 (42)4.7导体的设计和选择 (43)4.7.1分相封闭母线 (43)4.7.2设备选择 (45)第5章配电装置 (47)5.1屋外配电装置 (47)5.1.1 220KV室外配电装置 (47)5.2屋内配电装置 (49)5.2.1 220KV、6kV屋内配电装置 (49)第6章防雷接地保护设计 (51)6.1 避雷针 (51)6.2 避雷器 (53)6.2.1 额定电压 (53)6.2.2 灭弧电压 (53)6.2.3 工频放电电压 (54)6.2.4 冲击放电电压和残压 (54)6.2.5避雷器的选择 (54)6.2.6避雷器的装置 (54)6.3 防雷接地 (55)6.3.1 接地的一般要求 (55)6.3.2 接地的种类 (55)第7章变电所总平面布置 (55)7.1所区规划 (55)7.2建筑物及构筑物的布置 (57)7.3竖向布置 (59)7.4管沟布置 (60)7.5道路 (60)7.6其他 (61)第8章结论 (62)致谢 (63)参考文献 (64)附表: (66)1 变压器技术参数 (66)2 变压器外观 (68)3 变电所平面布置图 (69)第1章电气主接线的设计发电厂和变电所的电气主接线是保证电网安全可靠﹑经济运行的关键,是电气设备布置﹑选择﹑自动化水平和二次回路设计的原则和基础。
燕山大学发电厂电气部分课程设计 大型骨干电厂电气主接线

目录第一章原始资料的分析 (1)1.1电压等级 (1)第二章电气主接线方案 (1)2.1 电气主接线设计的基本原则 (1)2.2 具体方案的拟定 (2)第三章主要电气设备的选择 (4)3.1 发电机 (4)3.2 主变压器 (4)3.4 断路器和隔离开关 (5)3.5电压互感器 (8)3.6电流互感器的选择 (9)3.7 母线的导体 (10)第四章方案优化 (11)第五章短路电流计算 (12)5.1 等效阻抗网络图 (12)5.2阻抗标幺值计算 (12)5.3 短路点短路电流计算 (14)Q的计算 (15)5.4 短路电流热效应K第六章校验动、热稳定(设备) (17)6.1断路器稳定校验 (18)6.2 隔离开关稳定校验 (18)6.3电流互感器稳定校验 (19)6.4 母线导体稳定校验 (20)第七章心得体会 (20)参考资料 (21)大型骨干电厂电气主接线第一章原始资料的分析1.1电压等级根据原始资料的分析可知,需要设计的是一个大型骨干凝汽电厂,共有两个电压等级:220KV,500KV发电机容量和台数为6× 300MW (QFSN-300-2)因此主变压器的台数选为6台。
1.4 联络变压器选择三绕组变压器,连接两个电压等级,剩余一端引接备用电源。
第二章电气主接线方案2.1 电气主接线设计的基本原则电气主接线设计的基本原则是以设计任务书为依据,以国家的经济建设方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下、兼顾运行、维护方便,尽可能的节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。
电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流,高电压的网络,它要求用规定的设备文字和图形符号,并按工作顺序排列,详细地表示电气设备或成套装置全部基本组成和连接关系,代表该变电站电气部分的主体结构,是电力系统结构网络的重要组成部分。
发电厂电气部分设计
三、发电厂电缆线路设计
三、发电厂电缆线路设计
电缆线路是发电厂电能输送的重要通道,其设计应满足安全、可靠、经济和 环保的要求。在电缆线路的设计过程中,需要考虑以下几个方面:
三、发电厂电缆线路设计
1、电缆型号选择:电缆型号的选择应考虑电力系统的电压等级、电流容量、 敷设环境等因素,以确保电缆能够安全可靠地运行。
一、发电厂主接线设计
一、发电厂主接线设计
主接线是发电厂的重要组成部分,用于实现电能的生产、变换和输送。主接 线的设计应满足可靠性高、灵活性强、易于操作和维修、经济性好的要求。在主 接线的设计过程中,需要考虑以下几个方面:
一、发电厂主接线设计
1、可靠性:主接线的设计应确保电力系统的稳定运行,避免因设备故障导致 的大规模停电事故。为此,可以采用分段接线和桥型接线等方式,提高主接线的 可靠性。
一、发电厂主接线设计
4、经济性:主接线的设计应在满足可靠性和灵活性的前提下,尽量降低建设 成本和维护成本。例如,可以采用低损耗设备、优化线路布局等方式,降低能耗 和维护成本。
二、发电厂防雷设计
二、发电厂防雷设计
防雷设计是发电厂电气部分设计的关键环节之一,其目的是在雷击情况下保 护设备和建筑物不受损坏。发电厂的防雷设计应包括以下几个方面:
内容摘要
总之,本次演示通过详细阐述4200MW发电厂电气一次部分设计的原则、流程、 要求及成果,为我们成功地完成这一复杂而关键的设计工作提供了有力的支持。 通过这一设计工作,我们不仅提高了发电厂的效率和性能,还推动了电力行业的 技术进步和发展。
引言
引言
随着电力工业的不断发展,发电厂的规模不断扩大,设备日益复杂,对发电 厂的运营和管理提出了更高的要求。为了提高发电厂的运营效率和管理水平,电 气综合自动化系统的应用越来越受到。本次演示将对发电厂电气综合自动化系统 的发展和应用进行探讨。
发电厂变电站电气主接线确定原则分析
发电厂变电站电气主接线确定原则分析摘要:近年来,随着社会经济的不断进步,工业企业居民生活用电负荷的不断增加,一批又一批的发电厂变电站也在不断的新建、改建、扩建中。
如何设计一座能符合当地所需的发电厂变电站,成为电力企业的首要任务。
而作为发电厂变电站设计的首要部分,电气主接线如何确定也是需要重点考虑的问题之一。
本论文的开展基于此,分两大部分,分别对发电厂变电站电气主接线确定原则进行分析,结合外部环境,当地实际情况已经电力部门的内部规划出发,具体问题具体分析。
同时参照电气主接线三大原则,结合其原始资料,拟定主接线方案。
特别以110kv变电站的电气主接线选择设计原则为例展开,更好的铺设发电厂变电站在电气主接线选择确定原则的具体分析,多角度认识电力系统中的电气主接线问题,为今后新建改建扩建变电站,进行电气主接线设计时提供参考。
关键词:发电厂;变电站;电气主接线0 引言随着全球经济化的快速发展,我国经济也取得了重大成效。
各行各业在接轨国际发展步伐的同时,也面临着新的挑战。
特别是电力系统行业。
现如今各行业要想发展都离不开电力的基本保障,因此电力行业也在发展潮流中不断突破创新。
发展电力行业,重点首先是对发电厂、变电站的基本建设工作做到符合现代所需。
维持电力正常输送运转的各装置必须也要同步发展。
在电力系统中,电气主接线作为该系统中的重要组成部分,对电气主接线方案的设计确定原则需要结合实际情况予以选择,变压器、断路器、隔离开关以及母线接入原则都需要考虑在内,本文研究的课题发电厂变电站电气主接线确定原则分析,主要以研究110kv变电站的电气主接线出发,需要解决的是主要问题是从110kv变电站电气主接线的选择到最终确定需要综合考虑的各方面因素,为110kv变电站的可靠安全运营提供基础保障,同时又要确保变电站的灵活性和经济运行。
1.电气主接线设计原则电气主接线主要是指在发电厂、变电所、电力系统中,为满足预定的功率和运行等要求而设计的,表明高压电气设备之间相互连接关系的传送电能的电路。
电力工程基础课件——电气主接线
有汇流母线-单母线接线
优点:简单清晰、设备少、投资小、运行操作方便, 且有利于扩建 。
缺点是:可靠性和灵活性较差 。 应用: 6~10kV配电装置的出线回路数不超过5回; 35~63kV配电装置的出线回路数不超过3回; 110~220kV配电装置的出线回路数不超过2回。 改进: 单母线分段接线 单母线带旁路接线
间隙击穿。
58
屋内配电装置安全净距
59
屋外配电装置安全净距
60
屋内配电装置安全净距
屋内配电装置的布置应注意:
1、同一回路的电器和导体应布置在一 个间隔内;2、尽量将电源进线布置在 每段的中部;3、较重设备布置在下层; 4、充分利用间隔空间;5、布置对称, 便于操作;6、易于扩建;7、要有必要 的操作通道、维护通道防爆通道;
40
三、配电网的接线方式— 放射式接线
41
三、配电网的接线方式— 树干式接线
42
第五节 低压配电网接线方式
43
一、低压放射式接线
44
一、低压树干接线
45
一、低压混合式接线
46
一、低压链式接线
47
一、低压链式接线
48
第六节 工厂供电系统的主接线
49
工厂供电系统结构图
50
10kV变电所电气主接线典型方案 -路外供电源
37
一、架空线路的结构
优点: 设备简单,建设低;露置在空气中, 易于检修与维护;利用空气绝缘,建 造较为容易。 缺点: 容易遭受雷击和风雨冰雪等自然灾害 的侵袭;需要大片土地作为出线走廊 ;对交通、建筑、市容和人身安全有 影响。
38
二、电缆线路的结构
39
二、电缆线路的结构
优点: 占地少;整齐美观;受气候条件和周围 环境的影响小;传输性能稳定,故障少, 供电可靠性高;维护工作量少。 缺点:电缆线路的投资大;线路不易变 动;寻测故障点难,检修费用大;电缆 终端的制作工艺要求复杂。
发电厂电气部分课程设计
发电厂电气部分课程设计TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-目录摘要……………………………………………......................第1章设计任务…………………………….....................第2章电气主接线图………………………........................电气主接线的叙述……………………………..电气主接线方案的拟定.....................................电气主接线的评定..................................................第3章短路电流计算……………………….....................概述............................................................. .....系统电气设备电抗标要值的计算.................短路电流计算..................................................第4章电气设备选择……………………….....................电气设备选择的一般规则……………………….电气选择的技术条件…………………………….按正常情况选择电器……………………….......按短路情况校验……………………………........电气设备的选择………………………………….断路器的选择……………………………….隔离开关的选择…………………………….第5章设计体会及以后改进意见…………........................参考文献……………………………………….......................摘要由发电、变电、输电、和用电等环节组成的电能生产与消费系统,他的功能是将自然界的一次能源通过发电动力装置转化为电能,再经过输、变电系统及配电系统将电能供应到个负荷中心。