(完整)初中奥林匹克数学竞赛题

合集下载

初中数学奥林匹克竞赛题包括答案.docx

初中数学奥林匹克竞赛题包括答案.docx

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题 1 分,共 10 分)1.如果 a,b 都代表有理数,并且a+b=0 ,那么 ( ) A.a,b 都是 0B.a,b 之一是 0C.a,b 互为相反数D. a,b 互为倒数答案: C解析:令 a=2 , b= - 2,满足 2+( - 2)=0 ,由此 a、b 互为相反数。

2.下面的说法中正确的是( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案: D3都是单项式.两个单项式33A。

两个单项式解析: x2, x x , x2之和为 x +x 2是多项式,排除x2, 2x2之和为3x2是单项式,排除 B。

两个多项式x3+x2 与 x3-x2之和为2x3 是个单项式,排除 C,因此选 D。

3.下面说法中不正确的是( )A.有最小的自然数B.没有最小的正有理数Word资料C.没有最大的负整数D.没有最大的非负数答案: C解析:最大的负整数是-1 ,故 C 错误。

4.如果 a,b 代表有理数,并且a+b 的值大于 a- b 的值,那么( ) A.a,b 同号B.a,b 异号C.a>0D. b> 0答案: D5.大于-π并且不是自然数的整数有( )A.2 个B.3 个C.4 个D.无数个答案: C解析:在数轴上容易看出:在-π右边0的左边(包括0 在)的整数只有-3,- 2,-1 ,0 共 4 个.选 C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

Word资料这四种说法中,不正确的说法的个数是( )A.0 个B.1 个C.2 个D. 3 个答案: B解析:负数的平方是正数,所以一定大于它本身,故 C 错误。

7.a 代表有理数,那么, a 和- a 的大小关系是( )A.a 大于- aB.a 小于- aC.a 大于- a 或 a 小于- aD. a 不一定大于- a答案: D解析:令 a=0 ,马上可以排除A、 B、 C,应选 D。

初中八年级奥林匹克数学竞赛(决赛)模拟试题附答案

初中八年级奥林匹克数学竞赛(决赛)模拟试题附答案

初中八年级奥林匹克数学竞赛(决赛)试题附答案班级 姓名(竞赛时间:2010年3月21日上午9:30—11:30)题号 一 二 三 四 五 总分得分评卷人一、选择题(每小题5分,共30分) 1.计算(1252011)(2462010)++++-++++的结果是( )A . 1004B . 1006C . 1008D .10102.如图1是一个无盖正方体盒子的表面展开图,A 、B 、C 为图上三点,则在正方体盒子中,∠ABC 的度数为( )A . 120°B .90°C . 60°D .45°3.九年级的数学老师平均每月上6节辅导课,如果由女教师完成,则每人每月应上15节;如果只由男教师完成,则每人应上辅导课( )节A .9B . 10C . 12D .144.如果有四个不同的正整数m 、n 、p 、q 满足(7-m )(7-n )(7-p)(7-q )=4,那么m+n+p+q 等于( )A .21B . 24C . 26D .25.如图2,在△ABC 中,AC=BC ,∠ACB=90°,AD 平分∠BAC,AD 的延长线交BF 于E ,且E 为垂足,则结论①AD=BF ,②CF=CD,③AC+CD=AB ,④BE=CF,⑤BF=2BE ,其中正确的结论的个数是( )F( 图2 )EDC BAA .4B .3C .2D .1 6.如果实数8181m n m m n m n n m n ++≠=+=++,且,则( )A . 7B . 8C . 9D .10 二、填空题(每小题5分,共30分) 7.若(2011 4149aQ a --,)是第三象限内的点,且a 为整数,则a = 。

8.若实数2222231 3-2x y x y S x y +==,满足,,则S 的取值范围是 . 9.在△ABC 中,三个内角的度数均为整数,且∠A 〈∠B 〈∠C ,5∠C=9∠A ,则∠B 的度数是 .10.已知22302010 672010 x yx y==+=,,则 。

2023年全国中学生奥林匹克数学竞赛浙江赛区初赛试题

2023年全国中学生奥林匹克数学竞赛浙江赛区初赛试题

2023年全国中学生奥林匹克数学竞赛浙江赛区初赛试题本卷共15道题目,12道填空题,3道解答题,所有答案填写在答题纸上,满分150分。

一、填空题(每小题8分,共计96分) 1. 已知集合2{20}S x x x a =∈++=,若1S −∈,则实数a =_______________。

2. 函数(sin 1)(cos 1)())sin cos 2x x f x x x π++=在(0,上的最小值为___________________。

3.已知四面体S ABC −,点1A 为三角形SBC 的重心,G 在线段1AA 上,13AGGA =,连接SG 交三角形ABC 所在的平面于M ,则1A MAS=____________。

4.已知关于x的方程222x x x a +++−=存在四个不同的实根,则实数a 的取值范围为______________。

5.设函数()(f z z 为复数)满足2(())()f f z zz z z =−−。

若(1)0,f =则()1f i −=____。

6. 已知,,m n k 为正整数,若存在正整数对(,)a b 满足222(1)4()44(1)3a n m a n m a b k +−++++−<,则m n k ++可能值的个数为______________。

7. 已知,,a b c ∈,且2223333,6,a b c a b c a b c ++=++=++= 则202320232023(1)(1)(1)a b c −+−+−=__________________________。

8.已知数列{}n a 满足111,,1,2,32(21)(25)nn na a a n n n a +===−+−,则20231i i a ==∑____________。

9.设,a b 为两个垂直的平面向量,且210a b == 。

当01t ≤≤时,记向量(1)ta t b+−与向量1()(1)5t a t b −+−最大夹角为θ,则cos θ=________________。

初中数学奥林匹克考试试题

初中数学奥林匹克考试试题

初中数学奥林匹克考试试题本文将提供一些经典的初中数学奥林匹克考试试题,旨在帮助学生提升数学解题能力和思维能力。

以下是一些题目供大家练习:1. 在平面直角坐标系中,点A(-2, 4)和B(3, 1)在坐标轴上的垂直平分线所交的点为C,求AC的长度。

2. 若x能被3整除,且由x的各位数字组成的3位数能被27整除,求满足条件的最小正整数x。

3. 甲、乙两车,相向而行,甲车的速度是乙车速度的4倍,甲车行驶8小时后,与乙车相距960公里,求甲车和乙车的速度分别是多少。

4. 求4/7与21/50的和的最简分数形式。

5. 若a、b、c均为正整数,且满足方程式:1/a + 1/b + 1/c = 1/2求满足条件的最小正整数解。

6. 在等腰三角形ABC中,AC=BC,角ACB的角度为120°,D是AB的中点,连接AD和BD,求角ACD的度数。

7. 若x和y是正整数,满足x^3 + x^2y + xy^2 + y^3 = (x + y)^3,求x与y的和。

8. 若正整数m、n均满足m/n = 12.3456789...,求m与n的最大公约数。

9. 设a、b、c为正整数,满足a+b+c=99,且a^2 + b^2 + c^2 =3(abc),求a、b、c的值。

10. 在等腰梯形ABCD中,AB//CD,AB+CD=15,AC=10,BD=12,求AB的长度。

以上是一些初中数学奥林匹克考试的典型题目,希望能对大家的数学学习有所帮助。

通过练习,可以提高解题能力和思维能力,培养逻辑思维和分析问题的能力。

希望大家能够积极参与数学竞赛,挑战自我,不断进步!。

全国奥林匹克数学初二竞赛题

全国奥林匹克数学初二竞赛题

全国奥林匹克数学初二竞赛题
全国奥林匹克数学初二竞赛题
一、数学逻辑
1、已知函数f(x)的定义域为[a,b],若f(a)=8,f(b)=15,求f(c)的值。

2、若函数f(x)的定义域为[a,b],其图像对称轴的方程若为y=kx-k,求a,b的值。

3、已知椭圆的两个焦点F1,F2在x轴上,以及它们到圆心的距离为a,求椭圆方程。

二、不等式
4、设a,b,c分别为正实数,求使a,b,c满足不等式x^2+2ax+2bx+c=0
的有界解集。

5、若x^2+2ax+2bx+c>0,其中a,b,c均为正实数,求对应的x的取值范围。

6、已知x,y,a,b均为正实数,求使x^2+2ax+2bx+y^2+2ay+2by=c的有
界解集。

三、函数
7、已知f(x)的定义域为[2,30],求f(x)的最大值以及f(x)的最小值。

8、已知直线上有m,n两点,求m到n的最短距离以及对应的方程(以
y=mx+b的形式表示)。

9、已知椭圆上有m,n两点,求m到n的最短距离以及对应的方程(以ax^2+by^2+cx+dy+k=0的形式表示)。

四、应用题
10、已知某商品的销售总额为50万,还知该商品的单位成本为100元,求该商品的最大利润。

11、若有两段距离分别为a,b共需要t小时,若要同时全程行驶,求所
需的最大时间。

12、已知f(x)的定义域为[1,50],求f(x)的单调递增区间及它们的
端点值。

数学奥林匹克初中训练题(含答案)

数学奥林匹克初中训练题(含答案)

数学奥林匹克初中训练题第一试一、选择题(每小题7分,共42分)1.设z y x ++=+++6323,且x 、y 、z 为有理数.则xyz =( ).(A)3/4 (B)5/6 (C)7/12 (D)13/182.设二次函数f (x )=ax 2+ax +1的图像开口向下,且满足f (f (1))=f (3).则2a 的值为( ).(A)-3 (B)-5 (C)-7 (D)-93.方程|xy |+|x +y |=1的整数解的组数为( ).(A)2 (B)4 (C)6 (D)84.a 、b 是方程x 2+(m -5)x +7=0的两个根.则(a 2+ma +7)(b 2+mb +7)=( ).(A)365 (B)245 (C)210 (D)1755.如图,Rt △ABC 的斜边BC =4,∠ABC =30°,以AB 、AC 为直径分别作圆.则这两圆的公共部分面积为( )(A)2332+π (B) 33265-π (C) 365-π (D) 332-π 6.从1,2,…,13中取出k 个不同的数,使这k 个数中任两个数之差既不等于5,也不等于8.则k 的最大值为( ).(A)5 (B)6 (C)7 (D)8二、填空题(每小题7分,共28分)1.若整系数一元二次方程x 2+(a +3)x +2a +3=0有一正根x 1和一负根x 2,且|x 1|<|x 2|,则a = .2.当x =2329-时,代数式x 4+5x 3-3x 2-8x +9的值是 . 3.给定两组数,A 组为:1,2,…,100;B 组为:12,22,…,1002.对于A 组中的数x ,若有B组中的数y ,使x +y 也是B 组中的数,则称x 为“关联数”.那么,A 组中这样的关联数有个.4.已知△ABC 的三边长分别为AB =2576a 2+,BC =62514a a 2++,AC =62514a -a 2+,其中a >7.则△ABC 的面积为 .第二试一、(20分)解方程:(12x +5)2(6x -1)(x +1)=255.二、(25分)如图,四边形ABCD 中,∠ACB =∠ADB =90°,自对角线AC 、BD 的交点N 作NM ⊥AB 于点M ,线段AC 、MD 交于点E ,BD 、MC 交于点F ,P 是线段EF 上的任意一点.证明:点P 到线段CD 的距离等于点P 到线段MC 、MD 的距离之和.三、(25分)矩形玻璃台板碎裂成一些小玻璃片,每块碎片都是凸多边形,将其重新粘合成原矩形后,有交结点30个,其中20个点在原矩形的周界上(包括原矩形的四个顶点),其余10个点在矩形内部.在矩形的内部有45条粘缝(两个结点之间的线段算是一条粘缝,如图所示).试求该矩形台板所碎裂成的各种类型(指三角形、四边形、五边形等)的块数.说明:若凸多边形的周界上有n个点,就将其看成n边形,例如,图中的多边形ABCDE要看成五边形.数学奥林匹克初中训练题1参考答案第一试1.A .两边平方得3+2 +3+6=x +y +z +2xy +2yz +2xz . 根据有理数x 、y 、z 的对称性,可考虑方程组x +y +z =3,2xy = 2,2yz =3,2xz = 6.解得x =1,y =1/2,z =3/2.此时,xyz =3/4.2.B .注意到f (1)=2a +1,f (3)=12a +1,f (f (1))=a (2a +1)2+a (2a +1)+1.由f (f (1))=f (3),得 (2a +1)2+(2a +1)=12.所以,2a +1=3或-4.因a <0,故2a =-5.3.C .因x 、y 为整数,则|xy |、|x +y |为非负整数.于是,|xy |、|x +y |中一个为0,一个为1.分情形考虑得6组解.4.D .由ab =7,a 2+ma +7=5a ,b 2+mb +7=5b ,所以,(a 2+ma +7)(b 2+mb +7)=25ab =175.5.C .记两圆公共部分的面积为S .如图,易知S =S 扇形EAD +S 扇形F AD -S 四边形AEDF =5π/6-3 .6.B .将这13个数按照相邻两数的差为5或8排列于一个圆周上(如图5).若取出的数多于6个,则必有2个数在圆周上相邻.另一方面,可以取出适合条件的6个数(任取圆周上不相邻的6个数即可),因此,k 的最大值为6.二、1.-2.因方程的两根不等,故Δ>0,即(a +3)2>4(2a +3).解得a >3或a <-1.又由题设条件知,方程的两根和与积皆负,即-(a +3)<0,2a +3<0.从而,a >-3,a <-3/2,即-3<a <-3/2.而a 为整数,则a =-2. 2. 32297-. x =2329-是方程x 2+3x -5=0的根, 3.73.记x +y =a 2,y =b 2,则1≤b <a ≤100.而x=a2-b2=(a+b)(a-b)≤100,因a+b、a-b同奇偶,故a+b≥(a-b)+2.(1)若a-b=1,则a+b为奇数,且3≤a+b≤99.于是,a+b可取3,5,7,…,99,共49个值,这时,相应的x 也可取这49个值.(2)若a-b=2,则a+b为偶数,且4≤a+b≤50.于是,a+b可取4,6,8,…,50,共24个值,这时,相应的x 可取8,12,16,…,100这24个值.其他情况下所得的x值均属于以上情形.若a-b=奇数,则a+b=奇数.而x=a2-b2≥a+b≥3,归入(1).若a-b=偶数,则a+b=偶数.而x=(a-b)(a+b)为4的倍数,且a-b≥2,a+b≥4,故x≥8,归入(2).因此,这种x共有49+24=73个.4.168.注意到AB2=(2a)2+482,BC2=(a+7)2+242,AC2=(a-7)2+242.如图,以AB为斜边,向△ABC一侧作直角△ABD,使BD=2a,AD=48,∠ADB=90°.在BD上取点E,使BE=a+7,ED=a-7,又取AD的中点F,作矩形EDFC1.因BC21=BE2+EC21=(a+7)2+242=BC2,AC21=C1F2+AF2=(a-7)2+242=AC2,故点C与点C1重合.而S△ABD=48a,S△CBD=24a,S△ACD=24(a-7),则S△ABC=S△ABD-S△CBD-S△ACD=168.第二试一、将原方程变形得(12x+5)2(12x-2)(12x+12)=660.令12x+5=t,则t2(t-7)(t+7)=660,即t4-49t2=660.解得t2=60或t2=-11(舍去).由此得t=±2 15,即有12x+5=±215.因此,原方程的根为x1,2=121525-.二、如图,易知A、B、C、D四点共圆,B、C、N、M四点共圆,因此,∠ACD=∠ABD=∠MCN.故AC平分∠DCM.同理,BD平分∠CDM.如图,设PH⊥MC于点H,PG⊥MD于点G,PT⊥CD于点T;过点P作XY∥MC,交MD于点X,交AC于点Y;过点Y作YZ∥CD,交MD于点Z,交PT于点R;再作YH1⊥MC于点H1,YT1⊥CD 于点T1.由平行线及角平分线的性质得PH=YH1=YT1=RT.为证PT=PG+PH,只须证PR=PG.由平行线的比例性质得EP/EF=EY/EC=EZ/ED.因此,ZP∥DF.由于△XYZ与△MCD的对应边分别平行,且DF平分∠MDC,故ZP是∠XZY的平分线.从而,PR=PG.因此,所证结论成立.三、设全部碎片中,共有三角形a3个,四边形a4个,……,k边形a k个(a3,a4,…,a k为非负整数).记这些多边形的内角和为S角,于是,S角=a3×π+a4×2π+…+a k(k-2)π.另一方面,矩形内部有10个结点,对于每个点,围绕它的多边形顶角和为2π,10个内结点共获得10×2π弧度;矩形边界上(不含4个顶点)共有16个结点,在每个这种结点处,各多边形的顶角在此汇合成一个平角,16个这种结点共获得16π弧度;而原矩形的4个顶点处,共获得多边形碎片的2π弧度.因此,S角=20π+16π+2π=38π.于是,a3+2a4+…+(k-2)a k=38.①记这些多边形的边数和为S边.由于每个n边形有n条边,则S边=3a3+4a4+…+ka k.另一方面,在矩形内部的45条粘缝,每条都是两个多边形的公共边,故都计算了两次;矩形周界上的20条线段各被计算了一次,因此,S边=2×45+20=110.于是,3a3+4a4+…+ka k=110.②②-①得2(a3+a4+…+a k)=72.故a3+a4+…+a k=36.③①-③得a4+2a5+3a6+…+(k-3)a k=2.因所有a i∈N,故a6=a7=…=a k=0,a4+2a5=2.所以,或者a4=2,a5=0;或者a4=0,a5=1.综上,本题的解共有两种情况,即全部碎片共36块,其中,或含有34个三角形,2个四边形;或含有35个三角形,1个五边形.。

世界奥林匹克数学竞赛(七年级总决赛)

世界奥林匹克数学竞赛(七年级总决赛)

AF EDCB世界奥林匹克数学竞赛(中国区)总决赛七年级数学试题一、选择题(10个小题,每小题5.2分,共52分) 1、已知c a 、、b 是互不相等的有理数,那么ba ac a c c b c b b a ------,,中,正数有( )A. 0个B. 1个C. 2个D.3个 2、方程0|3||1|)1(2=+--++x x x 解的个数有( )A. 1个 B. 2个 C.3个D.无穷多个3、已知200919200817)1()1(++-+-=n n a ,当n 依次取1,2,…,2009时,a 的值为负数的个数是( )。

A .0个 B. 1个 C. 1004个 D.1005个 4、已知c a 、、b ,m 是有理数,且1b +>--=++m c b a m c a ,,则有( )A. b < 0B. c < 0C.21-<+c b D. 1>bc 5、已知200920082010200720102008200920072010200920082007⨯⨯-=⨯⨯-=⨯⨯-=c b a ,,,则有( )A .c b a<< B.c b a >> C.b a c << D. a c b >>6、已知⎩⎨⎧=+=+3||||0||y x x y x 中,0≠xy ,则有=y x( )A .1 B. -1 C. 2 D. -27、小明在三张卡片上分别写上2,3,5,每张卡片作为数轴上的一个点,卡片上的数表示这个离原点的距离,把三张卡片摆放到数轴上,不同的摆放方法最多有( ) A .12种 B. 8种 C. 6种 D. 2种 8、设三角形三边的长为c a 、、b ,且c b a>>,下面三个式子:①bc a +2;②ca b +2;③ab c +2,其中值最大的是( ) A .① B. ②C. ③D. 不确定9、已知:如图,△ABC 中,D 是BC 上的点,BD= 2DC ,E 在AD上,AE = DE ,BE 交AC 于F ,若△ABC 的面积是302cm ,那么四边形CDEF 的面积是( ) A .92cm B. 8.52cm C. 82cm D. 7.52cm10、圆周上有9个点,以这些为顶点构成三角形,那么所构成的三角形的个数共有( ) A .24个 B. 27个 C. 72个 D. 84个 二、填空题(8个小题,每小题6分,共48分)1、已知a 是质数,则方程组⎩⎨⎧=-=+ay x ay x 4的正整数解是;2、正整数1400的正因数的个数有个;3、已知有理数c b a>>,且0=++c b a ,则ac 的值的范围是;4、已知b a ,是正整数,2734=+ba ,则代数式22b ab a +-的值是;5、已知:如图,长方形ABCD 中,P 是CD 边上任一点,过点P 作AC 、BD 的垂线分别交AC 、BD 于E 、F ,若长方形的一条对角线的长为lcm ,面积为l 42cm ,则PE+PF=cm6、已知z y x 、、都是有理数,且绝对值都不大于2,那么方程3=+-z y x 的整数解个数是个;7、对于数x ,[x ]表示不超过x 的最大整数,已知关于x 的方程24||3=⎥⎦⎤⎢⎣⎡+a x 有正整数解,则a 的值的范围是;8、平面上5个圆和一条直线,最多能把平面分成部分。

初二数学奥林匹克竞赛题及答案

初二数学奥林匹克竞赛题及答案

初二数学奥林匹克竞赛题及答案1、如图,梯形ABCD 中,AD ∥BC ,DE =EC ,EF ∥AB 交BC 于点F ,EF =EC ,连结DF 。

(1)试说明梯形ABCD 是等腰梯形;(2)若AD =1,BC =3,DC DCF 的形状;(3)在条件(2)下,射线BC 上是否存在一点P ,使△PCD 是等腰三角形,若存在,请直接写出PB 的长;若不存在,请说明理由.2、在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A →B →C 向终点C 运动,连接DM 交AC 于点N 。

(1)如图25-1,当点M 在AB 边上时,连接BN .①求证:△ABN ≌△ADN ; ②若∠ABC = 60°,AM = 4,求点M 到AD 的距离; (2)如图25-2,若∠ABC = 90°,记点M 运动所经过的路程为x (6≤x ≤12)试问:x 为何值时,△ADN 为等腰三角形.3、对于点O 、M ,点M 沿MO 的方向运动到O 左转弯继续运动到N ,使OM =ON ,且OM ⊥ON ,这一过程称为M 点关于O 点完成一次“左转弯运动".正方形ABCD 和点P ,P 点关于A 左转弯运动到P 1,P 1关于B 左转弯运动到P 2,P 2关于C 左转弯运动到P 3,P 3关于D 左转弯运动到P 4,P 4关于A 左转弯运动到P 5,……. (1)请你在图中用直尺和圆规在图中确定点P 1的位置;(2)连接P 1A 、P 1B ,判断 △ABP 1与△ADP 之间有怎样的关系?并说明理由。

(3)以D 为原点、直线AD 为y 轴建立直角坐标系,并且已知点B 在第二象限,A 、P 两点的坐标为(0,4)、(1,1),请你推断:P 4、P 2009、P 2010三点的坐标.BA4、如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt △A1B1C1关于直线QN成轴对称的图形;(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?5、如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图中有几个等腰三角形?猜想: EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中奥林匹克数学竞赛题2011年09月14日07:4字号:T|T 1 .三个有理数A,B,C,其积为负数,其和为正数,当:
X=(A的绝对值)/A+(B的绝对值)/B+(C的绝对值)/C时,则代数式(XY9-95X+1028)的值是多少?
2 .元旦晚会,主持人出了一道题目:如何把"2+3=8"变成一个真正的等式?没人能答出,这时小李拿出一个镜子就把问题解决了,大家都说小李聪明,你知道小李用的什么办法吗(数字为电子表上的写法)
参考答案:
1 .解:因为ABC小于0
所以A,B,C,中只能是二正,一负或三个皆负
因为A+B+C大于0
所以三个不能都负,故只能一负二正
不妨假设A小于0,B大于0,C大于0,则
X=(A的绝对值)/A+(B的绝对值)/B+(C的绝对值)/C=(-1)+1+1=1 所以(XA29-95X+1028)=934
2 .拿一面镜子倒过来看它的像
赛前模拟:初中奥数系列综合模拟试卷及答案1
日期:2008-08-11来源:互联网作者:佚名[打印][评论]初中奥数系列综合模拟试卷
2007年初中数学竟赛模拟试题(1)
一、选择题【每小题6分,共30分)
1 .方程(1十二—D*=1的所有整数解的个数是()个
㈤2(m3(C )4⑴5
AD_1
2 .设AABC 的面积为1,口是边AB 上一点,,且金日工若在迫AC 上取一点&
1111
5)2⑻3(c)4(D)5
3 .如图所示,半周口的直径在梯形细①的底边杷上,且与其
余三边EC,CD,DA 相切,若EC=2,DA=3,则AB 的长()
(以)等于451等于5(C )等于8(D )不能确定
4 .在直角坐标系中,纵、横坐标都是整数的点,称为整点.设上先整数,当直建了二二十2 与直线卫二桁-4的交点为整点时,上的值可以取(1个
(,A')曰个9个(C )T 个(D )8个
5 .世界杯足球赛小组赛,每个小组4个队进行单循环比褰,每场比赛胜队得3分,败队得。

分,平局时两队各得1分,小组塞完后,总积分最高的2个队出线进入下轮比赛.如果总积分相同,还有按净胜球数排序.一个队要保证出线,这个队至少要积()分.
(,A')5(B )6(C )7(D )S
二、埴空题(每小题日分,共3。

分)
111111
邑当工分别等于208,2004,2003,2002,2001,2000,2000,2001,2002,
3
隹四边形DECB 的面积为4, CE 则丽的值为(。

相关文档
最新文档