数据挖掘之数据预处理
数据预处理的主要步骤和具体流程

数据预处理的主要步骤和具体流程英文版Data preprocessing is an essential step in the data mining process. It involves transforming raw data into a format that is suitable for analysis. This process is crucial for ensuring the accuracy and reliability of the results obtained from data mining techniques. There are several key steps involved in data preprocessing, each of which plays a critical role in preparing the data for analysis.The first step in data preprocessing is data cleaning. This involves identifying and correcting errors in the data, such as missing values, duplicate entries, and inconsistencies. Data cleaning is essential for ensuring the quality of the data and preventing inaccuracies in the analysis.The next step is data transformation, which involves converting the data into a format that is suitable for analysis. This may involve standardizing the data, normalizing it, or encoding categorical variables. Data transformation is important for ensuring that the data is in a format that can be easily analyzed using data mining techniques.The final step in data preprocessing is data reduction. This involves reducing the size of the data set by removing irrelevant or redundant information. Data reduction can help to improve the efficiency of the data mining process and reduce the computational resources required for analysis.Overall, data preprocessing is a critical step in the data mining process. By following the main steps of data cleaning, data transformation, and data reduction, analysts can ensure that the data is in a format that is suitable for analysis and can obtain accurate and reliable results from data mining techniques.数据预处理的主要步骤和具体流程数据预处理是数据挖掘过程中的一个关键步骤。
数据预处理的常见方法

数据集成
7
数据集成
➢ 将多个数据源中的数据整合到一个一致的存储中。 ➢ 这些源可以是关系型数据库、数据立方体或一般文件。
它需要统一原始数据中的所有矛盾之处,如字段的:
➢ 同名异义; ➢ 异名同义; ➢ 单位不统一; ➢ 字长不一致等。
数据变换
➢ 可用来构造数据立方体。
数据归约
9
对大规模数据库内容进行复杂的数据分析常需要消耗大量的时间,使得这样 的分析变得不现实和不可行;
数据归约(data reduction):数据消减或约简,是在不影响最终挖掘结果 的前提下,缩小所挖掘数据的规模。
数据归约技术可以用来得到数据集的归约表示,它小得多,但仍接近保持原 数据的完整性。
4
数据清理(清洗):去掉数据中的噪声,纠正不一致 数据集成 数据变换(转换) 数据归约(消减)
注意:
5
上述的各种数据预处理方法,并不是相互独立的,而是相互关联的,如消除 数据冗余既可以看成是一种形式的数据清洗,也可以看成是一种数据归约 (消减)。
一、数据清理
6
现实世界的数据一般是脏的、不完整的和不一致的。而数据清洗试图填充空 缺的值、识别孤立点、消除噪声,并纠正数据中的不一致性。因此,从如下 几个方面介绍:
对归约后的数据集进行挖掘可提高挖掘的效率,并产生相同(或几乎相同) 的结果。
数据归约
10
数据归约的标准:
用于数据归约的时间不应当超过或“抵消”在归约后的数据集上挖掘节省的时间。 归约得到的数据比原数据小得多,但可以产生相同或几乎相同的分析结果。
数据规约
11
数据归约的策略如下:
数据立方体聚集; 维归约; 数据压缩; 数值归约; 离散化和概念分层生成。
数据挖掘的主要方法

数据挖掘的主要方法
数据挖掘是一种从大量数据中提取有价值信息的技术,它可以帮助企业更好地分析客户行为,改善产品质量,提高销售效率等。
数据挖掘的主要方法包括:
1. 数据预处理:数据预处理是数据挖掘的第一步,它的目的是清洗数据,去除噪声,缺失值,异常值等,以便更好地进行后续的数据挖掘。
2. 模式发现:模式发现是数据挖掘的核心,它的目的是从大量数据中发现有价值的模式,如关联规则,分类规则,聚类规则等。
3. 模型评估:模型评估是数据挖掘的最后一步,它的目的是评估模型的准确性,以便确定最佳模型,并将其应用于实际问题中。
4. 数据可视化:数据可视化是数据挖掘的一个重要组成部分,它的目的是将复杂的数据以图表的形式展示出来,以便更好地理解数据。
5. 机器学习:机器学习是数据挖掘的一个重要方法,它的目的是通过训练数据,建立模型,以便从大量数据中发现有价值的模式。
6. 数据库技术:数据库技术是数据挖掘的基础,它的目的是收集、存储、管理大量数据,以便更好地进行数据挖掘。
以上就是数据挖掘的主要方法。
通过这些方法,可以有效地从大量数据中提取有价值的信息,为企业提供有效的决策支持。
数据挖掘的基本流程

数据挖掘的基本流程数据挖掘是一种从大量数据中提取实用信息的过程,它可以匡助我们发现隐藏在数据中的模式、关联和趋势。
数据挖掘的基本流程通常包括以下几个步骤:数据采集、数据预处理、特征选择、模型构建、模型评估和模型应用。
1. 数据采集:数据采集是数据挖掘的第一步,它涉及到从各种来源采集数据。
数据可以来自数据库、文件、传感器、社交媒体等多种渠道。
在这个阶段,我们需要明确我们的数据需求,并选择合适的数据源进行采集。
2. 数据预处理:数据预处理是数据挖掘的关键步骤之一,它包括数据清洗、数据集成、数据变换和数据规约。
在数据清洗阶段,我们需要处理缺失值、异常值和噪声,以确保数据的质量。
在数据集成阶段,我们需要将来自不同数据源的数据进行整合。
在数据变换阶段,我们可以对数据进行归一化、标准化或者离散化等处理。
在数据规约阶段,我们可以使用采样或者聚类等方法减少数据的规模。
3. 特征选择:特征选择是数据挖掘的关键步骤之一,它涉及到从大量特征中选择出最相关的特征。
特征选择可以匡助我们减少数据维度、降低计算复杂度,并提高模型的准确性。
在特征选择阶段,我们可以使用统计方法、机器学习方法或者领域知识来选择最相关的特征。
4. 模型构建:模型构建是数据挖掘的核心步骤之一,它涉及到选择合适的数据挖掘算法并训练模型。
常用的数据挖掘算法包括决策树、神经网络、支持向量机、聚类和关联规则等。
在模型构建阶段,我们需要根据具体的问题选择合适的算法,并使用训练数据对模型进行训练。
5. 模型评估:模型评估是数据挖掘的关键步骤之一,它涉及到评估模型的性能和准确性。
在模型评估阶段,我们需要使用测试数据对模型进行评估,并计算模型的准确率、召回率、精确率、F1值等指标。
通过模型评估,我们可以了解模型的优劣,并对模型进行改进。
6. 模型应用:模型应用是数据挖掘的最后一步,它涉及到将训练好的模型应用到实际问题中。
在模型应用阶段,我们可以使用模型对新数据进行预测、分类或者聚类等操作。
数据挖掘的发展历程

数据挖掘的发展历程数据挖掘是指通过探索和分析大规模数据集,发现其中隐藏的模式、关联和规律的过程。
它起源于20世纪80年代,并经历了几个重要的发展阶段。
阶段一:数据管理在数据挖掘的早期阶段,最重要的任务是如何有效地存储和管理大规模数据集。
数据库技术的发展提供了数据集合、查询和检索的基础。
阶段二:数据预处理在挖掘数据之前,需要对原始数据进行清理和处理,以消除异常值、噪声和缺失数据的影响,提高后续分析的准确性。
数据预处理阶段包括数据清洗、数据集成、数据转换和数据规约等步骤。
阶段三:数据挖掘算法随着数据积累的扩大,出现了越来越多的数据挖掘算法。
这些算法包括分类、聚类、关联规则挖掘、时序模式挖掘等。
不同的算法适用于不同的数据挖掘任务,可以从数据中提取出不同类型的信息。
阶段四:应用领域拓展随着数据挖掘技术的成熟,它在各个领域得到了广泛的应用。
金融、电子商务、医疗保健、市场营销等领域都开始运用数据挖掘技术来预测、分析和优化业务。
阶段五:大数据时代随着互联网的发展和智能设备的普及,数据开始以指数级增长。
这促使数据挖掘技术与大数据技术相结合,以更高效地处理和分析大规模数据集。
阶段六:机器学习与深度学习近年来,机器学习和深度学习技术的兴起为数据挖掘注入了新的动力。
这些技术能够自动识别和学习数据中的模式和规律,提供更准确、快速的数据分析和预测能力。
总的来说,数据挖掘经历了数据管理、数据预处理、数据挖掘算法、应用领域拓展、大数据时代和机器学习与深度学习的发展阶段。
随着技术的不断进步和应用的广泛推广,数据挖掘在各个领域的重要性和应用价值逐渐凸显出来。
数据挖掘ppt课件

情感分析:情感词典构建、情感倾向判断等
情感词典构建
收集和整理表达情感的词汇,构 建情感词典,为情感分析提供基 础数据。
情感倾向判断
利用情感词典和文本表示模型, 判断文本的情感倾向,如积极、 消极或中立。
深度学习方法
如循环神经网络(RNN)、长短 期记忆网络(LSTM)等,用于捕 捉文本中的时序信息和情感上下 文。
通过准确率、灵敏度、特异度等指 标评估模型性能,将模型应用于实 际医疗场景中,提高医生诊断效率 和准确性。
疾病预测与辅助诊断模型构建
利用机器学习、深度学习等技术构 建疾病预测和辅助诊断模型,如决 策树、神经网络、卷积神经网络等 。
谢谢您的聆听
THANKS
模型评估与优化
通过准确率、召回率、F1值等 指标评估模型性能,采用交叉 验证、网格搜索等方法优化模
型参数。
金融欺诈检测模型构建与优化
金融欺诈类型及特点
信用卡欺诈、贷款欺诈、洗钱等。
数据来源与处理
交易数据、用户行为数据、第三方数据等,进行数据清洗、特征工程 等处理。
欺诈检测模型构建
利用有监督学习、无监督学习等技术构建欺诈检测模型,如支持向量 机、随机森林、聚类等。
数据挖掘ppt课件
CONTENTS
• 数据挖掘概述 • 数据预处理技术 • 关联规则挖掘方法 • 分类与预测方法 • 聚类分析方法 • 时间序列分析方法 • 文本挖掘技术 • 数据挖掘在实际问题中应用案
01
数据挖掘概述
定义与发展历程
定义
数据挖掘是从大量数据中提取出 有用信息和知识的过程。
发展历程
应用
FP-Growth算法适用于大型数据集和复杂关联规则的挖掘,如电商网站的推荐 系统、网络安全领域的入侵检测等。
名词解释数据挖掘

名词解释数据挖掘
数据挖掘是一种利用大规模数据集挖掘出隐藏在这些数据中隐藏的模式、规律和知识的过程,通常应用于商业、医疗、金融、交通等多个领域。
数据挖掘的基本概念包括数据收集、数据预处理、数据挖掘算法选择、结果解释和应用等。
数据收集是指在特定的时间和地点,通过多种方式(如传感器、网络、数据库等)收集到大量的数据。
数据预处理是指在收集到数据后,对其进行清洗、转换、集成等处理,以便于后续的数据挖掘工作。
数据挖掘算法选择是指在进行数据预处理后,选择适合特定问题的算法,并进行算法的优化和调试。
结果解释和应用是指在挖掘出数据中的模式、规律和知识后,对结果进行解释和应用,以解决实际问题或提升业务效率。
数据挖掘技术已经广泛应用于医疗、金融、交通、教育、农业等多个领域。
例如,在医疗领域中,数据挖掘可以帮助医生预测疾病风险、制定更有效的治疗方案、预测患者的治疗效果等。
在金融领域中,数据挖掘可以帮助银行提高贷款审批效率、预测股票价格、防范金融风险等。
在交通领域中,数据挖掘可以帮助车辆管理部门提高车辆利用率、优化路线规划、预测交通流量等。
虽然数据挖掘技术已经取得了很大的进展,但是数据挖掘仍然面临一些挑战。
例如,数据质量的保证、算法的选择和优化、结果的解释和应用等。
因此,在实际应用中,需要结合实际情况,采取科学的方法和策略,不断提高数据挖掘的效率和准确性。
第四章数据预处理 ppt课件

✓发现两个相关的变量之间的变化模式,利用回归分析方 法所获得的拟合函数,帮助平滑数据及除去噪声。
y
Y1 Y1’
y=x+1
X1
x
39
3. 不一致数据的处理?
41
不一致数据
处理不一致数据的方式: 人工更正 利用知识工程工具:如,如果知道属性间的函数依赖 关系,可以据此查找违反函数依赖的值。 数据字典:在将不同操作性数据库中的数据进行集成 时,也会带来数据的不一致。如:一个给定的属性在不 同的数据库中可能具有不同的名字,如姓名在一个数据 库中为Bill,在另一个数据库中可能为B。对此,可根据 数据字典中提供的信息,消除不一致。
10
数据预处理的重要性
4)噪声数据:数据中存在着错误或异常(偏离期望值) ❖ 如:血压和身高为0就是明显的错误 ❖ 噪声数据的产生原因:
➢数据采集设备有问题; ➢在数据录入过程发生人为或计算机错误; ➢数据传输过程中出现错误; ➢由于命名规则或数据代码不同而引起的不一致。
11
数据预处理的常见方法
43
1. 数据集成?
44
37
如何处理噪声数据
2)聚类(Clustering):
✓相似或相邻近的数据聚合在一起形成各个聚类集合,而那些 位于聚类集合之外的数据对象,被视为孤立点。
✓特点:直接形成簇并对簇进行描述,不需要任何先验知识。
通过聚类分 析查找孤立 点,消除噪 声
38
如何处理噪声数据
3)计算机和人工检查结合
✓计算机检测可疑数据,然后对它们进行人工判断
32
练习:
已知客户收入属性income排序后的值(人民币元): 800,1000,1200,1500,1500,1800,2000, 2300,2500,2800,3000,3500,4000,4500, 4800,5000 要求:分别用等深分箱方法(箱深为4)、等宽分箱方法 (宽度为1000)对其进行平滑,以对数据中的噪声进行 处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘之数据预处理
数据挖掘是指从海量数据中发现有价值的信息和知识,而数据预处理是数据挖掘的第一步,也是最重要的一步。
数据预处理主要包括数据清洗、数据集成、数据转换和数据规约四个方面。
一、数据清洗
1.1 数据异常处理
在实际应用中,往往会出现异常值、缺失值等问题。
异常值可能是因为测量仪器故障或人为操作失误导致的,而缺失值则可能是因为样本不完整或者调查问卷填写不完整导致的。
这些问题都需要进行处理。
1.2 数据去重
在大规模的数据集中,可能存在重复的记录,这些重复记录会对挖掘模型产生负面影响。
因此需要进行去重操作。
1.3 数据格式化
在实际应用中,经常会遇到不同格式的数据文件,如txt、csv、xls等格式。
需要将这些文件进行格式化操作,以便后续处理。
二、数据集成
2.1 数据源选择
在进行数据集成时需要选择合适的数据源。
通常情况下,在多个数据库中获取相关信息,并将其汇总到一个数据库中。
2.2 数据冲突解决
当不同来源的数据被集成到同一个数据库中时,可能会出现相互矛盾的信息。
需要进行数据冲突解决,以保证数据的准确性。
三、数据转换
3.1 数据属性选择
在进行数据挖掘时,可能会遇到大量无用的属性,这些属性会对模型产生负面影响。
因此需要进行属性选择。
3.2 数据离散化
将连续型变量转化为离散型变量,可以减少噪音和异常值对模型的影响,同时也可以降低计算难度。
3.3 数据规范化
当不同属性具有不同的取值范围时,需要进行数据规范化操作。
常用的方法有最小-最大规范化和z-score规范化。
四、数据规约
4.1 数据压缩
在处理大数据集时,可能会出现存储空间不足的问题。
可以采用数据压缩技术来解决这个问题。
4.2 数据抽样
当处理大数据集时,为了节省时间和计算资源,可以采用数据抽样技术来获取样本子集,并在子集上进行分析。
总结:
通过以上四个方面的操作,可以将原始数据转换成可挖掘的高质量数据。
在实际应用中,每个步骤都需要仔细处理,并根据具体情况选择合适的方法和工具来完成预处理工作。
只有经过充分的预处理,才能保证挖掘出来的知识和信息具有准确性和可信度,为后续的数据挖掘工作提供有力支持。