平面直角坐标系与形的对称性

合集下载

湘教版八年级数学下册知识点总结

湘教版八年级数学下册知识点总结

湘教版八年级数学下册知识点总结湘教版初二数学下册(义务教育教科书)第1章直角三角形1.1 直角三角形的性质和判定(I)1.2 直角三角形的性质和判定(II)1.3 直角三角形全等的判定1.4 角平分线的性质本章复习与测试第2章四边形2.1 多边形2.2 平行四边形2.3 中心对称和中心对称图形2.4 三角形的中位线2.5 矩形2.6 菱形2.7 正方形本章复习与测试第3章图形与坐标3.1 平面直角坐标系3.2 简单图形的坐标表示3.3 轴对称和平移的坐标表示本章复习与测试第4章一次函数4.1 函数和它的表示法4.2 一次函数4.3 一次函数的图象4.4 用待定系数法确定一次函数表达式4.5 一次函数的应用本章复习与测试第5章数据的频数分布5.1 频数与频率5.2 频数直方图本章复习与测试期末考点第一章直角三角形一、已学须用知识点回顾知识点1、等腰三角形的性质(bjvdhuibf )(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴. (2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合. (3)等边对等角:等腰三角形的两个底角相等. 提示:“三线合一”是指对应的角平分线、中线、高线在画图时实际上只是一条线段,即是一条线段既是顶角的平分线,又是底边上的中线,还是底边上的高,不能混淆.三角形的高可能在三角形的内部,也有可能在三角形的外部,还有可能和三角形的边重合。

知识点2、等腰三角形的判定定理1、定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边). 2、提示:(1)定理题设中的两个角必须是同一个三角形中的两个内角,不能出现在两个三角形中;(2)结论中的两条边应是这两个内角的“对边”,这种对应关系不能混淆;(3)此定理的作用在于证明一个三角形为等腰三角形. 知识点3、等边三角形的性质与判定1、等边三角形的三个角都相等,并且每个角都等于60°.2、等边三角形具有等腰三角形的所有性质,并且在每条边上都有“三线合一”.因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴. 3、有一个角是60°的等腰三角形是等边三角形.拓展:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等.知识点4、等腰三角形性质的应用等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:(1) 等腰三角形两底角的平分线相等;(2)等腰三角形两腰上的中线相等; (3)等腰三角形两腰上的高相等;(4)等腰三角形底边上的中点到两腰的距离相等.知识点5、全等三角形的判定1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)。

2020年中考数学第一轮复习暨2019年全国中考试题分类汇编 专题10 平面直角坐标系与点的坐标(含解析)(002)

2020年中考数学第一轮复习暨2019年全国中考试题分类汇编 专题10 平面直角坐标系与点的坐标(含解析)(002)

平面直角坐标系与点的坐标一.选择题1. (2019·贵州安顺·3分)在平面直角坐标系中,点P(﹣3,m2+1)关于原点对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵m2+1>0,∴点P(﹣3,m2+1)在第二象限,∴点P(﹣3,m2+1)关于原点对称点在第四象限,故选:D.2.(2019•海南省•3分)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)【分析】由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.【解答】解:由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B的对应点B1的坐标(﹣1,0).故选:C.【点评】本题运用了点的平移的坐标变化规律,关键是由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.3.(2019•浙江丽水•3分)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处【考点】用方向角+距离表示地理位置.【分析】根据方向角的定义即可得到结论.【解答】解:由图可得,目标A在南偏东75°方向5km处故选D.【点评】此题主要考查了方向角,正确理解方向角的意义是解题关键.4..(2019湖南常德3分)点(﹣1,2)关于原点的对称点坐标是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(2,﹣1)【分析】坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【解答】解:根据中心对称的性质,得点(﹣1,2)关于原点的对称点的坐标为(1,﹣2).故选:B.【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.5.(2019•山东青岛•3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.二.填空题1.(2019•四川省广安市•3分)点M(x﹣1,﹣3)在第四象限,则x的取值范围是x>1.【分析】根据第四象限的点的横坐标是正数列出不等式求解即可.【解答】解:∵点M(x﹣1,﹣3)在第四象限,∴x﹣1>0解得x>1,即x的取值范围是x>1.故答案为x>1.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2. (2019•甘肃庆阳•4分)中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“兵”位于点(﹣1,1).【分析】直接利用“帅”位于点(0,﹣2),可得原点的位置,进而得出“兵”的坐标.【解答】解:如图所示:可得原点位置,则“兵”位于(﹣1,1).故答案为:(﹣1,1).【点评】本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.3. (2019•黑龙江省绥化市•33x的取值范围是.答案:x≠4考点:分式的意义。

《轴对称》图形的运动

《轴对称》图形的运动

contents •轴对称图形的定义•轴对称图形的性质•轴对称图形的应用•轴对称图形的证明方法•轴对称图形的运动变换•轴对称图形的实例分析目录轴对称的定义图形中任意一点到对称轴的距离相等。

图形中任意两点连线与对称轴的夹角为直角。

图形自身具有稳定性,因为对称轴两边的形状完全相同,所以无论从哪个角度看,它都是完整的。

定义性质轴对称图形的对称性定义性质轴对称图形的稳定性定义轴对称图形的运动特性是指在其运动过程中保持对称性的能力。

性质轴对称图形在旋转或平移等运动过程中,只要不破坏其对称性,它就能保持其原有的形状和大小。

轴对称图形的运动特性建筑学中的应用建筑结构的稳定性建筑空间的使用效率建筑设计的艺术性降低机械噪音轴对称图形的设计可以降低机械工作时的噪音和振动,使机械更加安静、稳定地运行。

机械部件的平衡性轴对称图形在机械工程中常被用于设计机械部件,通过轴对称的设计,可以增加机械部件的平衡性和稳定性,提高机械的工作效率和使用寿命。

提高机械性能轴对称图形的设计还可以提高机械的性能和精度,使机械更加高效、准确地完成工作任务。

机械工程中的应用自然界中的应用生物形态的对称性许多自然界的生物形态具有轴对称的特点,如蝴蝶、花朵等,这种对称性不仅美观,还可以提高生物的适应性和生存能力。

自然界中的结构稳定性自然界中的一些结构也利用了轴对称的设计,如行星和卫星的轨道等,这种设计可以增加结构的稳定性和平衡性。

定义法垂直平分线法对于函数$f(x)$,如果存在一个整数$k$,使得$f(-x)=kf(x)$,则称$f(x)$为奇函数。

如果一个图形是由奇函数定义的,那么这个图形必定是轴对称的。

对称变换法通过图形的对称变换,将图形转化为其镜像,然后证明镜像与原图形的对应点关于某条直线对称,从而证明图形是轴对称的。

奇函数法VS极坐标法向量法平移变换030201旋转变换对称变换定义对称不改变图形的形状和大小,只改变图形的方向和位置。

性质例子蝴蝶翅膀上的轴对称图形蝴蝶翅膀的轴对称性翅膀的振动与飞行人脸的轴对称性人体结构的轴对称性自然景观的轴对称性人脸、人体和自然的轴对称性月亮的轴对称性月亮表面也具有天然的轴对称性,这种对称性是由于月球的自转和公转引起的。

平面直角坐标系

平面直角坐标系

02
点在平面直角坐标系中的表示
点在平面直角坐标系中的表示方法
直角坐标法
在平面内选定一个原点O和x、y轴,对于平面内的任意一点P ,通过原点O作一直角与x轴正方向夹角为α,再作一直角与y 轴正方向夹角为β,两直角的交点即为点P的坐标。
极坐标法
以原点O为极点,x轴正方向为极轴,建立极坐标系。对于平 面内的任意一点P,通过原点O作一直线与极轴夹角为θ,再 作一直线与极轴夹角为α,两直线的交点即为点P的极坐标。
点的坐标与位置关系
点的横坐标
表示点在x轴上的投影距离 。
点的纵坐标
表示点在y轴上的投影距离 。
点的位置关系
通过比较点的坐标值,可 以确定点在平面直角坐标 系中的位置关系,如平行 、垂直、相交等。
点在平面直角坐标系中的变换
平移变换
将点沿着x轴或y轴方向移动一定的距离,点的坐 标值会相应地增加或减少。
几何图形的性质研究
利用平面直角坐标系,可以研究几何图形的性质和特点,例如对称性、中心对 称等。
04
平面直角坐标系与极坐标系的 关系
极坐标系的基本概念
1 2
极坐标系
在平面内,以一个固定点为极点,一个固定射线 为极轴,用来研究点的位置的一种坐标系。
极坐标表示
在极坐标系中,一个点的位置由一个实数r和一 个角度θ来确定,记作(r, θ)。
旋转变换
将点绕原点旋转一定的角度,点的坐标值会发生 变化。
缩放变换
将点在x轴或y轴方向上放大或缩小一定的倍数, 点的坐标值会相应地增加或减少。
03
平面直角坐标系的应用
解析几何问题
直线方程的求解
通过平面直角坐标系,可以确定 直线上任意两点的坐标,从而求 出直线的方程。

第1章 1 平面直角坐标系

第1章  1  平面直角坐标系

§1平面直角坐标系1.坐标系(1)坐标法:根据几何对象的特征,选择适当的坐标系,建立它的方程,通过方程研究它的性质及与其他几何图形的关系.(2)坐标法解决几何问题的“三步曲”:第一步,建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化成代数问题;第二步,通过代数运算,解决代数问题;第三步,把代数运算结果“翻译”成几何结论. 2.平面直角坐标系的作用平面直角坐标系的作用:使平面上的点与坐标(有序实数对),曲线与方程建立联系,从而实现数与形的结合. 3.平面直角坐标系中的伸缩变换(1)平面直角坐标系中方程表示图形,那么平面图形的伸缩变换就可归结为坐标伸缩变换,这就是用代数方法研究几何变换.(2)平面直角坐标系中的坐标伸缩变换:设点P (x ,y )是平面直角坐标系中任意一点,在变换φ:⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 【思维导图】【知能要点】1.回顾坐标系有关概念,体会坐标系的作用.2.了解建立坐标系的方法和原则.3.坐标伸缩变换φ:⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0.题型一平面直角坐标系坐标系是现代数学中的重要内容,它在数学发展的历史上起过划时代的作用.坐标系的创建,在代数和几何之间架起了一座桥梁.利用坐标系,我们可以方便地用代数的方法确定平面内一个点的位置,也可以方便地确定空间内一个点的位置.它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将抽象的代数方程用形象的几何图形表示出来,又可将先进的代数方法应用于几何学的研究.建立直角坐标系,数形结合,我们可以解决许多数学问题,如函数问题就常常需要借助直角坐标系来解决.【例1】如图所示,圆O1与圆O2的半径都是1,|O1O2|=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得|PM|=2|PN|,试建立适当的坐标系,求动点P的轨迹方程.分析本题是解析几何中求轨迹方程问题,由题意建立坐标系,写出相关点的坐标,由几何关系式:|PM|=2|PN|,即|PM|2=2|PN|2,结合图形由勾股定理转化为|PO1|2-12=2(|PO2|2-12).设P(x,y),由距离公式写出代数关系式,化简整理可得. 解以O1O2的中点O为原点,O1O2所在的直线为x轴,建立如图所示的平面直角坐标系,则O1(-2,0),O2(2,0).由已知|PM|=2|PN|,得|PM|2=2|PN|2.因为两圆的半径均为1,所以|PO1|2-1=2(|PO2|2-1).设P(x,y),则(x+2)2+y2-1=2[(x-2)2+y2-1],即(x-6)2+y2=33,所以所求轨迹方程为(x-6)2+y2=33(或x2+y2-12x+3=0).【反思感悟】本题求点的轨迹,考查建坐标系和数形结合思想,利用勾股定理、两点间距离公式等知识,巧妙探求动点P满足的条件.1.一种作图工具如图①所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN =ON =1,MN =3.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图②所示的平面直角坐标系. 试求曲线C 的方程.解 设点D (t ,0)(|t |≤2),N (x 0,y 0),M (x ,y ),依题意,MD →=2DN →,且|DN →|=|ON →|=1,所以(t -x ,-y )=2(x 0-t ,y 0),且⎩⎨⎧(x 0-t )2+y 20=1,x 20+y 20=1.即⎩⎨⎧t -x =2x 0-2t ,y =-2y 0,且t (t -2x 0)=0. 由于当点D 不动时,点N 也不动,所以t 不恒等于0, 于是t =2x 0,故x 0=x 4,y 0=-y 2.代入x 20+y 20=1, 可得x 216+y 24=1,即所求的曲线C 的方程为x 216+y 24=1.【例2】 如图所示,四边形ABCD 的四个顶点坐标分别为 A (-1,3),B (-3,-2),C (4,-2),D (3,4),求四边形ABCD 的面积.分析 本例是帮助同学们进一步了解点的坐标.点的坐标还可以表示点到坐标轴的距离(点A (a ,b )到x 轴的距离为|b |,到y 轴的距离为|a |),从而得出某些我们需要的线段的长度.将四边形ABCD 分割成两个三角形和一个梯形,其中BE 的长度等于B 到y 轴的距离减去A 到y 轴的距离,AE 的长度为A 到x 轴的距离加上B 到x 轴的距离,依此类推可以求出DF ,CF ,EF 的长度,从而求出四边形ABCD 的面积.解 作AE ⊥BC ,DF ⊥BC .垂足分别为E 、F .S △ABE =12·BE ·AE =2×52=5;S △CDF =CF ·DF 2=1×62=3; S 梯形AEFD =(AE +DF )·EF 2=(5+6)×42=22, 所以四边形ABCD 的面积为5+22+3=30.【反思感悟】 本例是坐标系在几何图形中的应用,在求面积时要尽量利用图形中的垂直关系,将原图形分割求得面积.2.一直角梯形的上、下底边分别为12和15,两腰分别为33和6,选择适当的坐标系,表示各顶点坐标及较短对角线的长.解 如图所示,以D 为原点,CD 边所在直线为x 轴,建立平面直角坐标系,则A (0,33),B (12,33),C (15,0),D (0,0), |BD |=319.题型二 坐标伸缩变换平面几何图形的伸缩变换可以归结为坐标的伸缩变换,学习中可结合坐标间的对应关系理解.在伸缩变换下,平面直角坐标系保持不变,在同一坐标系下对坐标进行伸缩变换,展示了坐标法思想.在伸缩变换下,直线仍然变为直线,抛物线变为抛物线,双曲线变为双曲线,而椭圆可以变为圆,圆可以变为椭圆.【例3】 在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y 后的图形.(1)5x +2y =0;(2)x 2+y 2=1.分析 根据变换公式,分清新旧坐标即可.解 (1)由伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y ,得⎩⎨⎧x =2x ′,y =3y ′.将其代入5x +2y =0,得到经过伸缩变换后的图形的方程是5x ′+3y ′=0. 经过伸缩变换后,直线仍然是直线. (2)将⎩⎨⎧x =2x ′,y =3y ′代入x 2+y 2=1,得到经过伸缩变换后的图形的方程是x ′214+y ′219=1.经过伸缩变换后,圆变成了椭圆.【反思感悟】 伸缩变换要分清新旧坐标,直接利用公式即可,变换后的新坐标用x ′,y ′表示.3.伸缩变换的坐标表达式为⎩⎨⎧x ′=x ,y ′=4y .曲线C 在此变换下变为椭圆x ′2+y ′216=1.求曲线C 的方程.解 设P (x ,y )为曲线C 上任意一点.把⎩⎨⎧x ′=x ,y ′=4y 代入x ′2+y ′216=1,得x 2+y 2=1.故曲线C 的方程为x 2+y 2=1. 【例4】 求满足下列图形变换的伸缩变换:由曲线4x 2+9y 2=36变成曲线x ′2+y ′2=1.分析 求满足图形变换的伸缩变换,实际上是求出其变换公式,将新旧坐标分清,代入对应的曲线方程,然后比较系数就可得了,椭圆伸缩变换之后可得圆或椭圆.解 设变换为⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0,可将其代入第二个方程,得λ2x 2+μ2y 2=1.与4x 2+9y 2=36比较,将其变为436x 2+936y 2=1,即19x 2+14y 2=1,比较系数得⎩⎪⎨⎪⎧λ=13,μ=12.∴⎩⎪⎨⎪⎧x ′=13x ,y ′=12y ,即将椭圆4x 2+9y 2=36上的所有点横坐标变为原来的13,纵坐标变为原来的12,可得到圆x ′2+y ′2=1.【反思感悟】 对于图形的伸缩变换问题,只要搞清新旧坐标,区别x ,y 和x ′,y ′,比较公式中的系数即可.4.在同一平面直角坐标系中,将曲线x 2-36y 2-8x +12=0变成曲线x ′2-y ′2-4x ′+3=0,求满足图像变化的伸缩变换. 解 x 2-36y 2-8x +12=0可化为 ⎝ ⎛⎭⎪⎫x -422-9y 2=1.① x ′2-y ′2-4x ′+3=0可化为 (x ′-2)2-y ′2=1.②比较①②两式得x ′-2=x -42,y ′=3y .故所求伸缩变换为:⎩⎪⎨⎪⎧x ′=12x ,y ′=3y .1.已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且AM ∶MB =1∶2,求动点M 的轨迹方程. 解 (代入法)设A (a ,0),B (0,b ),M (x ,y ), ∵|AB |=6,∴a 2+b 2=36.①M 分AB -的比为12.∴⎩⎪⎨⎪⎧x =a +12×01+12=23a ,y =0+12b1+12=13b .⇒⎩⎪⎨⎪⎧a =32x ,b =3y .②将②式代入①式,化简为x 216+y 24=1.2.已知B 村位于A 村的正西方向1公里处,原计划经过B 村沿着北偏东60°的方向埋设一条地下管线m .但在A 村的西北方向400米处,发现一古代文物遗址W .根据初步勘察的结果,文物管理部门将遗址W 周围100米范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?解 解决这一问题的关键,在于确定遗址W 与地下管线m 的相对位置,如图所示,以A 为原点,正东方向和正北方向分别为x 轴和y 轴的正方向,建立平面直角坐标系,则A (0,0),B (-1 000,0).由W 位于A 的西北方向及|AW |=400,得W (-2002,2002),由直线m 过B 点且倾斜角为90°-60°=30°,得直线m 的方程是x -3y +1 000=0.于是,点W 到直线m 的距离为|-2002-3·2002+1 000|2=100(5-2-6)≈113.6>100,所以,埋设地下管线m 的计划可以不修改.3.阐述由曲线y =tan x 得到曲线y =3tan 2x 的变化过程,并求出坐标伸缩变换. 解 y =tan x 的图像上点的纵坐标不变,横坐标缩短为原来的12,得到y =tan 2x ,再将其纵坐标伸长为原来的3倍,横坐标不变,得到曲线y =3tan 2x . 设y ′=3tan 2x ′,变换公式为⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0.将其代入y ′=3tan 2x ′得⎩⎪⎨⎪⎧λ=12,μ=3,∴⎩⎪⎨⎪⎧x ′=12x ,y ′=3y .[P 2思考交流]1.在平面直角坐标系中,圆心坐标为(2,3),5为半径的圆的方程是什么? 答 (x -2)2+(y -3)2=25.2.在平面直角坐标系中,以(a ,b )为圆心,r 为半径的圆的方程是什么? 答 (x -a )2+(y -b )2=r 2. [P 5思考交流]我国1990年至2000年的国内生产总值如表1-2(单位:亿元)表1—2特点. 答 统计图从表中统计数据可看到,我国的生产总值年年增长,1994~1997年增长较快,1997~2001年放慢了增长速度,2001年之后又以较快的速度增长. [P 6思考交流]1.观察例3(2)中y =sin x 的图像与(1)中y =2sin 3x 的图像,讨论它们的关系?答 y =sin x 的图像和y =2sin 3x 的图像可以通过伸缩变换相互得到: y =sin x 的图像――————————————→纵坐标不变横坐标缩短为原来的13得y =sin 3x 的图像―——————————―→横坐标不变纵坐标伸长为原来的2倍得y =2sin 3x 的图像. y =2sin 3x 的图像横坐标不变纵坐标缩短为原来的12得y =sin 3x 的图像.纵坐标不变横坐标伸长为原来的3倍得y =sin x 的图像 2.试将上述讨论引申为坐标轴单位长度任意伸缩的情况.答 设函数y =f (x )与函数y =μf (ωx )(其中ω>0,μ>0)图像之间的关系为:y =μf (ωx )的图像.它们的图像可以通过伸缩变换相互得到. 【规律方法总结】1.建立平面直角坐标系,可以利用未知点满足条件的坐标形式,求点的轨迹方程.2.利用平面直角坐标系,可以将平面图形坐标化,进行证明或计算.3.在伸缩变换中,要分清新旧坐标,然后代入公式比较系数即可.4.在伸缩变换⎩⎨⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,抛物线变为抛物线,双曲线变为双曲线,圆可以变为椭圆,椭圆可以变成圆,我们可以把圆作为椭圆的特例.一、选择题1.▱ABCD 中三个顶点A 、B 、C 的坐标分别是(-1,2)、(3,0)、(5,1),则点D 的坐标是( ) A.(9,-1) B.(-3,1) C.(1,3)D.(2,2)解析 由平行四边形对边互相平行,即斜率相等,可求出D 点坐标.设D (x ,y ),则⎩⎪⎨⎪⎧k AB =k DC ,k AD =k BC ,即⎩⎪⎨⎪⎧2-0-1-3=y -1x -5,2-y -1-x =0-13-5. ∴⎩⎪⎨⎪⎧x =1,y =3.,故D (1,3). 答案 C2.要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图像,只需将函数y =sin 4x 的图像( )A.向左平移π12个单位 B.向右平移π12个单位 C.向左平移π3个单位D.向右平移π3个单位解析 由y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin 4⎝ ⎛⎭⎪⎫x -π12得,只需将y =sin 4x 的图像向右平移π12个单位即可,故选B. 答案 B3.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=5x ,y ′=3y 后,曲线C 变为曲线x ′2+4y ′2=1,则曲线C 的方程为( ) A.25x 2+36y 2=1 B.9x 2+100y 2=1 C.10x +24y =1D.225x 2+89y 2=1解析 将⎩⎪⎨⎪⎧x ′=5x ,y ′=3y代入x ′2+4y ′2=1, 得25x 2+36y 2=1,为所求曲线C 的方程.答案 A4.将一个圆作伸缩变换后所得到的图形不可能是( )A.椭圆B.比原来大的圆C.比原来小的圆D.双曲线 解析 设圆的方程为(x -a )2+(y -b )2=r 2,变换为⎩⎪⎨⎪⎧x ′=λx ,y ′=μy ,化为⎩⎪⎨⎪⎧x =1λx ′,y =1μy ′,(λ,μ不为零). ⎝ ⎛⎭⎪⎫1λx ′-a 2+⎝ ⎛⎭⎪⎫1μy ′-b 2=r 2, 1λ2(x ′-λa )2+1μ2(y ′-μb )2=r 2, ∴(x ′-λa )2(λr )2+(y ′-μb )2(μr )2=1.此方程不可能是双曲线.答案 D二、填空题5.△ABC 中,B (-2,0),C (2,0),△ABC 的周长为10,则A 点的轨迹方程为__________.解析 ∵△ABC 的周长为10,∴|AB |+|AC |+|BC |=10.其中|BC |=4,即有|AB |+|AC |=6>4.∴A 点轨迹为椭圆除去长轴两端点,且2a =6,2c =4.∴a =3,c =2,b 2=5.∴A 点的轨迹方程为x 29+y 25=1 (y ≠0).答案 x 29+y 25=1 (y ≠0)6.在平面直角坐标系中,方程x 2+y 2=1所对应的图形经过伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后的图形所对应的方程是____________.解析 代入公式,比较可得x ′24+y ′29=1.答案 x ′24+y ′29=17.y =cos x 经过伸缩变换⎩⎨⎧x ′=2x ,y ′=3y后曲线方程变为________. 解析由⎩⎪⎨⎪⎧x ′=2x ,y ′=3y ,化为⎩⎪⎨⎪⎧x =12x ′,y =13y ′, 代入y =cos x 中得:13y ′=cos 12x ′,即:y ′=3cos 12x ′.答案 y ′=3cos 12x ′8.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 地正东40 km 处,则城市B 处于危险区内的时间为________h.解析 以A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系,则B (40,0),以点B 为圆心,30为半径的圆的方程为(x-40)2+y 2=302,台风中心移动到圆B 内时,城市B 处于危险区,台风中心移动的轨迹为直线y =x ,与圆B 相交于点M ,N ,点B 到直线y =x 的距离d =402=20 2. 求得|MN |=2302-d 2=20(km), 故|MN |20=1,所以城市B 处于危险区的时间为1 h. 答案 1三、解答题9.已知▱ABCD ,求证:|AC |2+|BD |2=2(|AB |2+|AD |2).证明 法一 坐标法 以A 为坐标原点O ,AB 所在的直线为x 轴,建立平面直角坐标系xOy ,则A (0,0),设B (a ,0),C (b ,c ),则AC 的中点E ⎝ ⎛⎭⎪⎫b 2,c 2,由对称性知D (b -a ,c ),所以|AB |2=a 2,|AD |2=(b -a )2+c 2,|AC |2=b 2+c 2,|BD |2=(b -2a )2+c 2,|AC |2+|BD |2=4a 2+2b 2+2c 2-4ab=2(2a 2+b 2+c 2-2ab ),|AB |2+|AD |2=2a 2+b 2+c 2-2ab ,∴|AC |2+|BD |2=2(|AB |2+|AD |2).法二 向量法 在▱ABCD 中,AC→=AB →+AD →, 两边平方得AC →2=|AC →|2=AB →2+AD →2+2AB →·AD→, 同理得BD →2=|BD →|2=BA →2+BC →2+2BA →·BC→, 以上两式相加,得|AC →|2+|BD →|2=2(|AB →|2+|AD →|2)+2BC →·(AB→+BA →) =2(|AB→|2+|AD →|2), 即|AC |2+|BD |2=2(|AB |2+|AD |2).10.通过平面直角坐标系中的平移变换与伸缩变换,可以把椭圆(x -1)29+(y +2)24=1变为中心在原点的单位圆,求上述平移变换与伸缩变换,以及这两种变换的合成变换.解 先通过平移变换⎩⎨⎧x ′=x -1,y ′=x +2把椭圆(x -1)29+(y +2)24=1变为椭圆x ′29+y ′24=1.再通过伸缩变换⎩⎪⎨⎪⎧x ″=x ′3,y ″=y ′2把椭圆x ′29+y ′24=1变为单位圆x ″2+y ″2=1.由上述两种变换合成的变换是⎩⎪⎨⎪⎧x ″=13(x -1),y ″=12(y +2).习题1-1 (第7页)A 组1.由两点式写直线的方程为35x +36y -41=0.2.直线x 6+y 4=-2与x 轴、y 轴的交点坐标以及直线的斜率分别为(-12,0)、(0,-8)、-23.3.解 △ABC 是以∠A 为直角的直角三角形,且AB 平行于x 轴,AC 平行于y 轴. ∴∠A 的平分线的斜率为1,所在直线方程为x -y +1=0.BC 所在直线的方程为4x +3y -29=0,解⎩⎨⎧x -y +1=0,4x +3y -29=0,得⎩⎪⎨⎪⎧x =267,y =337.∠A 的平分线的长为1227.4.解 法一 由两点式写出直线AB 的方程为3x +y -6=0.将点C (4,-6)代入方程3×4+(-6)-6=0,点C 在直线AB 上,∴A 、B 、C 在同一条直线上.法二 ∵k AB =-3,k BC =-3∴A 、B 、C 三点在同一条直线上.5.解 与x 轴交点 令y =0,2x -10=0,x =5,与y 轴交 点令x =0,-5y -10=0,y =-2,S △=12×5×2=5.6.证明 如图:矩形OABC .设OA =a ,OC =b ,以O 为原点建立如图所示的直角坐标系.则O 、A 、B 、C 的坐标分别为(0,0),(a ,0),(a ,b ),(0,b )|OB |=a 2+b 2, |AC |=b 2+(-a )2=a 2+b 2,∴|OB |=|AC |.结论得证.7.解 (1)设圆的方程为(x -a )2+y 2=r 2代入C 、D 两点得⎩⎨⎧(-1-a )2+1=r 2,(1-a )2+9=r 2,解得a =2,r =10,∴方程为(x -2)2+y 2=10(2)设圆心为(0,b )m则5=|b -6|,b =1或11,∴方程为x 2+(y -1)2=25或x 2+(y -11)2=25.(3)设方程为(x -a )2+(y -b )2=r 2,∵过A 、B 两点,圆心在2x -y =3上,∴⎩⎨⎧(5-a )2+(2-b )2=r 2,(3-a )2+(-2-b )2=r 2,2a -b =3,解得a =2,b =1,r =10.∴方程为(x -2)2+(y -1)2=10.(4)设圆方程为(x -a )2+(y -b )2=r 2, 由题意可得⎩⎨⎧(3-a )2+(2-b )2=r 2,b =2a ,r =|2a -b +5|1+4,解得:⎩⎨⎧a =2,b =4或⎩⎪⎨⎪⎧a =45,b =85,r =5, ∴圆的方程为(x -2)2+(y -4)2=5或⎝ ⎛⎭⎪⎫x -452+⎝ ⎛⎭⎪⎫y -852=5, 图略.8.解 以底边中点为原点,底边所在直线为x 轴建立平面直角坐标系.设△ABC ,底边BC =8,高为AD =5,则B (-4,0),C (4,0),D (0,0),A (0,5),设圆的方程为(x -a )2+(y -b )2=r 2则⎩⎨⎧(-4-a )2+b 2=r 2,(4-a )2+b 2=r 2,a 2+(5-b )2=r 2,得a =0,b =910,r 2=412100,∴圆方程为x 2+⎝ ⎛⎭⎪⎫y -9102=1 681100. 9.解 |A 1F 1|+|A 2F 1|=2+14=16=2a ,a =8,F 1(-6,0),F 2(6,0),c =6,∴b 2=28.∴椭圆标准方程为x 264+y 228=1.10.解 (1)由题意知a 2=8,b 2=5,椭圆方程为x 28+y 25=1.(2)由题意知a =3b当焦点在x 轴上时a =3,b =1,椭圆方程:x 29+y 21=1;当焦点在y 轴上时b =3,a =9,椭圆方程:x 29+y 281=1.(3)由题意知c =23,设椭圆方程为x 2a 2+y 2b 2=1,P (5,-6)在椭圆上.∴⎩⎪⎨⎪⎧5a 2+6b 2=1,a 2-b 2=12,解得a 2=20,b 2=8, ∴椭圆方程为x 220+y 28=1.11.略B 组1.证明 ∵圆直径的端点是A (x 1,y 1),B (x 2,y 2)∴圆心坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22, 半径为(x 1-x 2)2+(y 1-y 2)22∴圆的方程为⎝ ⎛⎭⎪⎫x -x 1+x 222+⎝⎛⎭⎪⎫y -y 1+y 222 =(x 1-x 2)2+(y 1-y 2)24, x 2-x (x 1+x 2)+(x 1+x 2)24+y 2-y (y 1+y 2)+(y 1+y 2)42=(x 1-x 2)2+(y 1-y 2)24, x 2-x (x 1+x 2)+(x 1+x 2)24-(x 1-x 2)24+y 2-y (y 1+y 2)+(y 1+y 2)24-(y 1-y 2)24=0, x 2-x (x 1+x 2)+x 1x 2+y 2-y (y 1+y 2)+y 1y 2=0,(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0,∴圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.2.解 由⎩⎨⎧(x -3)2+(y -5)2=4,⎝ ⎛⎭⎪⎫x -322+(y -5)2=1得x -54=0,∴直线方程为x -54=0.3.解 以地球球心与距地最近点所在直线为x 轴,以最近点与最远点的中点为原点建立平面直角坐标系.则2a =6 636+8 196=14 832,a =7 416,a 2=54 997 056,c =8 196-7 416=780,∴b 2=54 388 656.∴椭圆方程为x 254 997 056+y 254 388 656=1.。

平面直角坐标系规律题技巧

平面直角坐标系规律题技巧

平面直角坐标系规律题技巧什么是平面直角坐标系规律题平面直角坐标系规律题是指通过分析平面直角坐标系中的数学问题,探究其中的规律和特点,解决相关的问题。

在这样的题目中,我们需要借助坐标系中的点、线、曲线等图形,运用数学知识和规律进行推导和演算。

为什么要学习平面直角坐标系规律题技巧学习平面直角坐标系规律题技巧有以下几个重要的原因: 1. 平面直角坐标系在解决实际问题中具有广泛的应用,如物理、经济等领域。

学习规律题技巧有助于我们在实际问题中准确地利用坐标系进行分析和计算。

2. 解决平面直角坐标系规律题需要通过观察、分析、推导等思维方式,培养了我们的逻辑思维和问题解决能力。

3. 掌握平面直角坐标系规律题技巧可以帮助我们更好地理解数学知识,提高数学学习的效果。

平面直角坐标系的基本概念和性质在学习平面直角坐标系规律题技巧之前,我们先来回顾一下平面直角坐标系的基本概念和性质。

1. 基本概念平面直角坐标系由两条相互垂直的数轴组成,通常称为x轴和y轴,它们的交点被称为原点O。

我们可以用一个有序数对(x, y)来表示平面上的一个点,其中x表示点在x轴上的位置,y表示点在y轴上的位置。

2. 坐标在平面直角坐标系中,每个点都有唯一的坐标(x, y)来表示。

x坐标表示点在x轴上的位置,y坐标表示点在y轴上的位置。

我们可以通过坐标的正负来确定点在相应轴的方向。

3. 距离公式在平面直角坐标系中,我们可以通过距离公式计算两点之间的距离。

对于坐标为(x₁, y₁)和(x₂, y₂)的两个点,它们之间的距离D可以通过以下公式求得: D =√((x₂ - x₁)² + (y₂ - y₁)²)4. 正方向和负方向在平面直角坐标系中,x轴的正方向是从左到右,y轴的正方向是从下到上。

坐标系中的点按照左右和上下的方向来确定正负。

在平面直角坐标系中寻找规律的一般步骤为了解决平面直角坐标系规律题,我们可以遵循以下一般步骤:1. 绘制图像首先,我们需要将给定的问题转化为图形,在平面直角坐标系中绘制出来。

轴对称知识点

轴对称知识点

轴对称知识点轴对称知识点汇总在平平淡淡的学习中,大家最熟悉的就是知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。

掌握知识点是我们提高成绩的关键!下面是本店铺为大家整理的轴对称知识点汇总,供大家参考借鉴,希望可以帮助到有需要的朋友。

轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一、等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。

平面直角坐标系及伸缩变换

平面直角坐标系及伸缩变换

=4.动圆 M 与圆 O1 内切,又与圆 O2 外切,建立适当的坐标系,
求动圆圆心 M 的轨迹方程,并说明轨迹是何种曲线.
解: 如图所示,以 O1O2 的中点 O 为原点,O1O2 所在直线为
x 轴建立平面直角坐标系.
y
由由|O|O1O1O2|=2|=4,4,得得OO11((- -22, ,00)),、OO2(22(,20,0))..
A1(- a,0),A2(a,0)
ec (e1) a
y b x a
A1(0,-a),A2(0,a)
ec (e1) a
y a x b
图形 ly
OF x
标准方程
y2=2px (p>0)
焦点坐标 准线方程
( p ,0 ) x p
2
2
二 抛

yl
FO
y2=-2px x (p>0)
( p ,0) 2
lll和和和lll的的的距距距离离离的的的最最最小小小值值值为为为|1|122||1±5±52441|±5.2|.45|.4 | .
O
x
∴∴∴点点点QQQ与与与ll的l的的最最最小小小值值值为为为88558555..5.
题 型 三 定义法求轨迹方程
【例 3】已知两个定圆 O1和 O2,它们的半径分别是 1 和 2,且|O1O2|
所以有 x02
4
把①代入②,
y02

4
1.
(2x)2

(2y)2 1,
4
整理, 得 x24y21.
MP
O
x
所以点M的轨迹方程是 x24y21.
课堂小结
平面直角坐标系建系时,根据几何特点选 择适当的直角坐标系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系与形的对称性在数学中,平面直角坐标系是一种常用的工具,用来描述平面上的
各种几何对象和数学函数。

同时,对称性是几何学中一个重要的概念,它揭示了形状与位置之间的一些有趣的关系。

本文将探讨平面直角坐
标系与形的对称性之间的关联以及如何利用对称性来进行形状的分析
和问题解决。

一、平面直角坐标系的基本概念及表示方法
平面直角坐标系由两个相互垂直的坐标轴组成,通常用x轴和y轴
表示。

我们可以将任意一点P在平面上的位置用(x,y)表示,其中x是
该点在x轴上的坐标值,y是该点在y轴上的坐标值。

利用平面直角坐
标系,我们可以准确描述出平面上的各种点、线、多边形等几何对象。

二、对称性的基本概念和分类
对称性是指一个对象具有某种不变性,即在某种变换下,该对象的
形态保持不变。

在几何学中,常见的对称性包括关于直线、点、轴或
中心的对称等。

根据对称中心的位置和对称形态的类型,对称性可以
分为以下几种分类:
1. 点对称:如果一个对象关于某个点对称,那么我们称该对象具有
点对称性。

在平面直角坐标系中,点对称即以某个点为中心的对称,
该点称为对称中心。

2. 关于直线的对称:如果一个对象关于某条直线对称,那么我们称
该对象具有关于直线的对称性。

在平面直角坐标系中,关于y轴对称
和关于x轴对称是常见的情况。

3. 关于轴的对称:如果一个对象关于某个轴对称,那么我们称该对
象具有关于轴的对称性。

在平面直角坐标系中,关于x轴或y轴对称
是最常见的情况。

三、对称性在形状分析中的应用
对称性在形状分析中发挥着重要的作用。

通过分析一个形状的对称性,我们可以得出一些关于该形状的性质或结论,从而更好地理解和
解决相关问题。

以下是对称性在形状分析中的几个常见应用:
1. 判定图形的对称性:通过观察一个图形是否具有某种对称性,我
们可以判断出该图形是否是对称图形,例如矩形、正方形、圆等。

2. 寻找图形的对称中心:对于一些复杂的图形,我们需要找到其对
称中心来进行进一步分析。

通过利用图形的对称性质,我们可以准确
地找到对称中心,并利用对称中心进行问题的解决。

3. 探索图形的性质:对称性提供了一种研究图形性质的方法。

比如,我们可以通过观察一个图形的对称性,得出该图形的对角线是否相等、角度是否相等等结论。

四、实例分析:平面图形的对称性
为了更好地说明平面直角坐标系与形的对称性之间的关系,我们以
一些常见的平面图形为例进行分析。

1. 镜像对称图形:对于一些具有镜像对称性的图形,我们可以利用
平面直角坐标系方便地进行分析。

比如矩形,它关于其两条对称轴
(对于一个矩形来说,是关于对角线及其中心点)具有镜像对称性。

在平面直角坐标系中,我们可以确定矩形的四个顶点坐标,并通过对
称性分析得出矩形的性质,如面积、对角线长度等。

2. 旋转对称图形:对于一些具有旋转对称性的图形,平面直角坐标
系同样可以派上用场。

例如正多边形,在角度相等的情况下,我们可
以通过旋转图形到特定位置,来观察图形的对称性以及相关性质。

3. 辅助分析工具:在平面直角坐标系中,我们还可以利用方程和坐
标点的分析方法来研究图形的对称性。

通过构造方程或计算坐标点,
我们可以推导出图形的对称中心、对称轴等关键信息。

结论:
平面直角坐标系是一种强大的工具,用于描述和分析平面上的各种
几何对象。

形状的对称性与平面直角坐标系的概念和表示方法密切相关。

通过利用对称性,我们可以更好地理解和解决与形状相关的问题。

在实际的数学和几何学问题中,我们常常运用平面直角坐标系和对称
性的知识,帮助我们更好地理解和解决问题。

相关文档
最新文档