青霉素

合集下载

生产青霉素的原理

生产青霉素的原理

生产青霉素的原理
生产青霉素的原理涉及以下几个方面:
1. 菌种选择:首先需要选择适合生产青霉素的青霉菌菌株。

通常使用Penicillium chrysogenum(黄色青霉菌)或Penicillium notatum(鸡冠青霉菌)等菌株作为生产菌株。

2. 发酵培养基准备:为了提供菌株生长所需的营养物质,需要准备适宜的发酵培养基。

常用的发酵培养基包括碳源(例如葡萄糖)、氮源(例如酵母粉)、矿物质盐和适当的pH缓冲剂。

3. 发酵过程:将选定的菌株接种到发酵培养基中,并提供适宜的环境条件促进菌株生长和代谢。

这些条件包括适宜的温度、搅拌速度、通气量和pH值。

菌株在此过程中产生青霉素酶(penicillinase),它能有效抵御细菌的侵袭。

同时,菌株也合成青霉素。

4. 青霉素提取和纯化:在发酵过程结束后,需要采取方法将青霉素从培养物中提取出来。

通常的方法是通过筛选、沉淀、浓缩和纯化等步骤,获得含有高浓度青霉素的溶液。

总的来说,生产青霉素的原理就是利用适宜的菌株和培养条件,通过发酵和代谢过程合成青霉素,然后将其从培养物中提取纯化,最终得到高纯度的青霉素。

青霉素的工艺流程

青霉素的工艺流程

青霉素的工艺流程
青霉素是一种抗菌药物,是由真菌青霉(Penicillium)制作而成的。

青霉素的工艺流程可以分为以下几个步骤:
1. 材料准备:准备培养基,培养霉菌和提取青霉素所需的其他原料。

2. 角化:将培养基倒入培养皿中,使其凝固,形成可以供霉菌生长的基质。

3. 培养霉菌:在适宜温度和湿度下,接种霉菌于培养皿中,培养霉菌使其生长并产生青霉素。

4. 提取:将培养得到的发霉的培养皿进行打碎,然后用有机溶剂(如甲醇或乙酸乙酯)进行浸提。

浸提过程可以将青霉素从霉菌体内提取出来。

5. 分离纯化:通过过滤等操作,将有机溶剂中的悬浮物和杂质分离出来。

然后通过蒸发和结晶等步骤,使青霉素得到进一步纯化。

6. 干燥:将纯化后的青霉素进行干燥,以获得最终的产品。

需要注意的是,青霉素的生产过程还需要注意以下几个方面:
1. 培养环境:青霉素的生产需要在适宜的温度、湿度和pH值条件下进行。


时,在培养过程中还需要注意防止其他细菌和真菌的污染。

2. 溶剂选择:在提取过程中选择适宜的有机溶剂,以确保溶剂能够有效地提取青霉素,并尽可能减少对青霉素的破坏。

3. 分离纯化:在分离纯化过程中需要根据青霉素的物化性质来选择适当的纯化方法,以确保青霉素的纯度和产量。

4. 质量控制:在整个生产过程中,需要进行严格的质量控制,包括对原料、中间产物和最终产品的检测和分析,以确保产品的质量和安全性。

总结起来,青霉素的工艺流程包括材料准备、角化、培养霉菌、提取、分离纯化和干燥等步骤。

通过合理选择培养条件、提取和纯化方法等,可以实现对青霉素的高效生产和优质产品的制备。

青霉素的工艺过程

青霉素的工艺过程

青霉素的工艺过程
青霉素(Penicillin)是一种广谱抗生素,其工艺过程如下:
1. 青霉菌培养:选择适宜的青霉菌菌株,如金黄色葡萄球菌、链球菌等,并将其转入培养基中进行培养。

培养基通常包含适量的碳源、氮源、矿物盐和其他必需营养物质。

2. 发酵:将培养基加入发酵罐中,并控制适当的温度、pH值和氧气供应,以提供最佳的生长环境。

青霉菌在发酵过程中会产生青霉素。

3. 静置培养:在发酵结束后,将发酵液进行离心分离,得到菌体和混合物。

菌体可以用于下一批的青霉素发酵,而混合物则需要经过后续处理。

4. 提取青霉素:混合物通常含有青霉素、其他杂质和溶剂,需要经过提取工艺进行分离。

常用的提取方法包括酸化、溶剂萃取和离子交换等。

通过这些方法可以将青霉素从混合物中纯化并得到高纯度的青霉素溶液。

5. 结晶:通过调节青霉素溶液的温度、浓度和pH值等条件,使其逐渐结晶。

结晶通常采用冷却结晶或浓缩结晶等方法。

6. 干燥:将青霉素结晶体进行过滤和干燥,以去除残留的溶剂和水分,得到纯净的青霉素晶体。

7. 包装和贮存:将干燥的青霉素晶体进行包装,并在适当的环境条件下进行贮存,以保证其质量和稳定性。

需要注意的是,以上是青霉素的一般工艺过程,不同的青霉素类别和生产厂家可能会有一些差异。

同时,生产过程中也要遵循相关的质量管理和安全规定,以确保产品的质量和安全性。

青霉素

青霉素

青霉素的分离纯化
一、发酵液的预处理和过滤
青霉菌丝粗大,可以用鼓式过滤机过滤。滤液 棕黄色或棕绿色,pH6.2-6.7,蛋白质含量在50-200 mg%,可先用硫酸调至pH4.5-5.0,加入0.07% W/V的PPB(溴代十五烷基吡啶),并加入硅藻土 0.7% W/V助滤。在板框过滤机二次过滤。发酵液 和滤液冷至10℃以下。
醋酸戊酯 45/1
醋酸丁酯 47/1
醋酸乙酯 39/1
1/186
1/260
三氯乙烯 21/1
乙醚 12/1
1/260
1/190
• 选 择 pH 原 则 : 一 般 使 pH < PKp ( PKp 作 为 基 准),但不能无限小,同进应考虑杂质的分离程 度,乳化现象,化合物的稳定性。 • 如:青霉素萃取, pKp=2.75, V丁:V水=1:1 • 已知:K0=4.7,pH=4.4 求K
生理(变量):菌丝浓度、菌丝生长速度、菌丝形态 等。 六个生长期: Ⅰ分生孢子发芽,原生质未分化,具有小空泡; Ⅱ菌丝增殖,原生质嗜碱性很强,末期有类脂肪小颗 粒; Ⅲ形成脂肪粒,积累贮存物,没有空胞,原生质嗜碱 性仍很强; Ⅳ脂肪粒减少,形成中小空胞,原生质嗜碱性减弱; Ⅴ形成大的空胞,其中一个或数个中性红染色的大颗 粒,脂肪粒消失; Ⅵ细胞内看不到颗粒,并出现个别自溶细胞。
K

K0 1 10
pH pK p
4.7 1 4.4 2.75 1 10
∴ pH>pKp(2.75)时,不利于萃取
若pH=2.5,求K
K
K0 1 10
pH pK p
4.7 35)时,有利于萃取
三、结晶
青霉素在二次丁酯萃取液中纯度只有50-70%, 但在结晶后可提高至90%。

青霉素

青霉素
青霉素
青霉素的发现
英国人,弗莱明,1922年发 现溶菌酶。1928年发现青霉素, 他发现此物质即使稀释 800倍, 仍具有抑制金黄色葡萄球菌作用。 由于青霉素的发现,开创了研究、 生产及临床应用抗生素的新时代。 1945年他获得诺贝尔生理学医学 奖金。
青霉素在我国的发展
ቤተ መጻሕፍቲ ባይዱ
1953年5月,中国第一批国产青霉素诞生, 揭开了中国生产抗生素的历史。自2001年 年底,我国的青霉素年产量就已占世界青 霉素年总产量的60%,居世界首位。
谢谢!
青霉素的特点
青霉素类抗生素的毒性很小,是化疗指数最 大的抗生素。但其青霉素类抗生素常见的 过敏反应在各种药物中居首位,发生率最 高可达5%~10% ,为皮肤反应 ,表现皮 疹、血管性水肿,最严重者为过敏性休克。 所以在注射青霉素时要事先做皮试,但需要 强调的是皮试本身也伴随着危险!事前应 做好准备措施!
青霉素简介


青霉素又被称为 盘尼西林、配尼西林、青 霉素钾、苄青霉素钾。青霉素是抗菌素的 一种 化学名为1-乙氧甲酰乙氧6-〔D(-)-2-氨基-2乙酰氨基〕青霉烷酸盐酸盐
青霉素结构

分子式:C16H18N2O4S· HCl
分子量:384.5
一、天然存在的青霉素



青霉素G 青霉素X 青霉素F 青霉素K 双氢青霉素F 青霉素V

青霉素的作用原理

青霉素的作用原理

青霉素的作用原理
青霉素的作用原理是通过抑制细菌细胞壁的合成,从而杀灭细菌或抑制其生长。

具体来说,青霉素可以与细菌细胞壁合成的横切酶结合,阻止新的细胞壁的形成,导致细菌细胞壁的弱化和破裂。

细菌细胞壁对其生存至关重要,因此青霉素的作用可导致细菌死亡或失去其致病性。

青霉素主要对革兰氏阳性菌和一些革兰氏阴性菌具有较强的抗菌活性,对一些耐药菌株的抗菌作用较弱。

由于其毒副作用较小,广谱抗菌能力较强,并且易于合成和使用,因此被广泛应用于临床治疗。

另外,由于一些人对青霉素过敏,因此在使用青霉素治疗时需要注意患者的过敏史和过敏反应。

第35章 抗生素 青霉素类

第35章  抗生素 青霉素类

特点:不耐酸、不耐酶、窄谱
【体内过程】 1、吸收:不耐酸 2、分布:主要分布于细胞外液 不易透过血脑屏障,但脑膜发炎时 脑脊液可达有效浓度;
3、消除:不被代谢,几乎全部以原形从肾脏排
泄,90%经肾小管分泌;
延长青霉素作用
• 合用丙磺舒
• 采用难溶制剂:普鲁卡因青霉素和 苄星青霉素
轻症/预防
【抗菌作用】
美洛西林、哌拉西林、呋苄西林、阿洛西林 特点
(1)呋苄西林抗铜绿假单胞菌作用比羧苄西林强6~10倍。 (2)阿洛西林对多数肠杆菌科细菌及肠球菌作用。 (3)美洛西林对肠杆菌作用则比阿洛西林更强。 (4)美洛西林、哌拉西林对各种厌氧菌有效。

用途
G-菌引起的严重感染。 耐青霉素和氨苄西林的耐药菌引起的尿路感染(尤其是铜 绿假单胞菌、变形杆菌、肠杆菌属)。
合成细胞壁的细菌作用强,对已合成的细胞壁, 处于静止期者作用弱,故称为繁殖期杀菌剂。
(2)对G+菌的作用强:细胞壁结构特点(粘
肽和肽聚糖)。
(3)对人体毒性小:哺乳动物和真菌无细胞
壁结构,故对人类毒性小,对真菌感染无效。
5. 细菌产生耐药性的机制 (一)产生水解酶 : -内酰胺酶, G+菌能产生大量
2、作用机制
粘肽
粘肽合成酶 (青霉素结合蛋白)
三维网状结 构
细胞壁
-内酰胺 类抗生素
抗菌作用机制
β内酰胺类+PBPs→ 转肽酶→交叉联接→胞壁缺损 ⊕ 自溶酶
死亡
3、影响抗菌作用的主要因素
(1)第一道穿透屏障
(2)第二道酶水解屏障
(3)与PBPs结合的亲和力
4.作用特点 (1)为繁殖期杀菌剂:对处于繁殖期正大量

青霉素

青霉素

(一)青霉素类包括天然青霉素和半合成青霉素两种,均含6-氨基青霉烷酸(6-APA)母核,作用机理均是抑制细菌细胞壁的合成,为繁殖期杀菌剂。

天然青霉素优点:杀菌力强,毒性低,价廉物美;缺点:抗菌谱窄、易被胃酸和 -内酰胺酶(青霉素酶)水解,金葡菌易产生耐药等缺点。

半合成青霉素:耐酸、耐酶、广谱1、天然青霉素1928年,Fleming首次报道了对青霉素的发现。

1940年,Chain、Flory 从青霉菌的培养液中获得大量的青霉素而成功地作为第一个抗生素应用于临床。

系从青霉菌的培养液中提取,主要有F、G、X、K和双氢F五种组分,他们的基本化学结构是由母核6-氨基青霉烷酸(6-APA)和侧链(R-CO)组成。

其中以G最常用(作用最强、性质稳定、产量高)。

青霉素G青霉素:又名苄青霉素、青霉素G【理化性质】是从青霉素培养液中提取的一种有机酸,难溶于水,可与碱金属盐离子结合成盐。

其钾盐、钠盐为白色结晶粉末,无臭或微有特异性臭,有吸湿性。

在水中极易溶解,遇酸、碱和氧化剂等迅速失效,水溶液在室温放置易失效,20万IU/ml青霉素于30℃放置24h,效价下降56%,而青霉烯酸含量增加200倍,临床应用时要新鲜配制,pH6~ 6.5时相对最稳定,当pH<5或>8时,迅速破坏,随着温度的升高,破坏迅速,时间越长,破坏越彻底。

【药动学】1)不耐酸,内服易被胃酸、β-内酰胺酶破坏,仅少量被吸收,肌肉或皮下注射,吸收较快,一般15~30min达到血药峰浓度,故一般静注、肌注或皮下注射,常用剂量有效血药浓度维持6~ 7h。

但在新生仔猪、鸡大剂量内服可达到有效浓度。

2)吸收后在体内分布广泛,能分布到全身各组织,以肾、肝、肺、肌肉、小肠和脾脏等的浓度较高;骨骼、唾液和乳汁含量较低。

青霉素脂溶性低,进入细胞内的量少,主要分布在细胞外液,但在组织炎症时可达到有效浓度,如脑膜炎时,可通过血脑屏障。

3)青霉素在体内的消除半衰期较短,种属间差异小,青霉素吸收进入血液循环后,在体内不易被破坏,主要以原形从尿中排出,肌肉注射治疗量的青霉素钠或青霉素钾的水溶液后通常在尿中可回收剂量的60%-90%,给药后1h内尿中排出绝大部分药物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青霉素历史发展 20世纪40年代以前,人类一直未能掌握一种能高效治疗细菌性感染且副作用小的药物。当时若某人患了肺结核,那么就意味着此人不久就会离开人世。为了改变这种局面,科研人员进行了长期探索,然而在这方面所取得的突破性进展却源自一个意外发现。 亚历山大·弗莱明由于一次幸运的过失而发现了青霉素。 在1928年夏弗莱明外出度假时,把实验室里在培养皿中正生长着细菌这件事给忘了。3周后当他回实验室时,注意到 一个与空气意外接触过的金黄色葡萄球菌培养皿中长出了一团青绿色霉菌。在用显微镜观察这只培养皿时弗莱明发现,霉菌周围的葡萄球菌菌落已被溶解。这意味着霉菌的某种分泌物能抑制葡萄球菌。此后的鉴定表明,上述霉菌为点青霉菌,因此弗莱明将其分泌的抑菌物质称为青霉素。然而遗憾的是弗莱明一直未能找到提取高纯度青霉素的方法,于是他将点青霉菌菌株一代代地培养,并于1939年将菌种提供给准备系统研究青霉素的英国病理学家弗洛里(Howard Walter Florey)和生物化学家钱恩。

通过一段时间的紧张实验,弗洛里、钱恩终于用冷冻干燥法提取了青霉素晶体。之后,弗洛里在一种甜瓜上发现了可供大量提取青霉素的霉菌,并用玉米粉调制出了相应的培养液。弗洛里和钱恩在1940年用青霉素重新做了实验。他们给8只小鼠注射了致死剂量的链球菌,然后给其中的4只用青霉素治疗。几个小时内,只有那4只用青霉素治疗过的小鼠还健康活着。“这真像一个奇迹!”弗洛里说道。此后一系列临床实验证实了青霉素对链球菌、白喉杆菌等多种细菌感染的疗效。青霉素之所以能既杀死病菌,又不损害人体细胞,原因在于青霉素所含的青霉烷能使病菌细胞壁的合成发生障碍,导致病菌溶解死亡,而人和动物的细胞则没有细胞壁。但是青霉素会使个别人发生过敏反应,所以在应用前必须做皮试。在这些研究成果的推动下,美国制药企业于1942年开始对青霉素进行大批量生产。到了1943年,制药公司已经发现了批量生产青霉素的方法。当时英国和美国正在和纳粹德国交战。这种新的药物对控制伤口感染非常有效。到1944年,药物的供应已经足够治疗第二次世界大战期间所有参战的盟军士兵。1945年,弗莱明、弗洛里和钱恩因“发现青霉素及其临床效用”而共同荣获了诺贝尔生理学或医学奖。

青霉素是一种高效、低毒、临床应用广泛的重要抗生素。它的研制成功大大增强了人类抵抗细菌性感染的能力,带动了抗生素家族的诞生。它的出现开创了用抗生素治疗疾病的新纪元。通过数十年的完善,青霉素针剂和口服青霉素已能分别治疗肺炎、肺结核、脑膜炎、心内膜炎、白喉、炭疽等病。继青霉素之后,链霉素、氯霉素、土霉素、四环素等抗生素不断产生,增强了人类治疗传染性疾病的能力。但与此同时,部分病菌的抗药性也在逐渐增强。为了解决这一问题,科研人员目前正在开发药效更强的抗生素,探索如何阻止病菌获得抵抗基因,并以植物为原料开发抗菌类药物。

青霉素在我国的发展 1953年5月,中国第一批国产青霉素诞生,揭开了中国生产抗生素的历史。截至2001年年底,我国的青霉素年产量已占世界青霉素年总产量的60%,居世界首位。

今天是2月13日,1928年的2月13日是世界科技史上的一个重要日子,这一天,英国医学家弗莱明发现的青霉素经过实验被确认成功了,从此人类有了对付病魔的一个有力武器。一些史学家认为,青霉素的发明至少使人类的平均寿命提高了10岁以上,1900年的时候世界上最发达的国家美国的人均寿命也不过46岁,而到了2000年的时候美国和西部国家的人均寿命差不多都达到了70岁以上,中国的人均寿命也由解放前的35岁超过了70岁,人类的平均寿命在20世纪能有这么大的提高当然有着医疗保健和社会安宁等多方面的原因,但是青霉素的问世毫无疑问也是其中的重要原因之一。

弗莱明生于英格兰,他经过多年的潜心研究发现了青霉素,当年传到中国被称为盘尼西林,价格与黄金是相等的,在第二次世界大战中间,青霉素的大量投入使用挽救了数以千万计伤兵的生命。在过去人类多数战争中间,生病和负伤死亡的人要比直接战死的人多,例如为时四年的第一次世界大战中间病死和因为负伤致死的军人就超过直接阵亡的数字,再如苏俄的国内战争中间,红军战斗死亡不到40万人,可是因为生病而死的多达138万人,中国人熟悉的《钢铁是怎样炼成》的一书中间就记载过,伤寒病对于红军的威胁比白军的机枪要大得多,书中的主人翁保尔柯察金也差点死于伤寒。在中国近代的战争中军人同样是病死的比直接打死的多,可是在第二次世界大战中间除了中国战场上医疗条件差,因此病死的数字仍然很大之外,其他主要交战国的伤病员死亡额都降到了10%以下,许多军事史研究者都评论说,第二次世界大战是世界历史第一次战死者超过病死者的大战,这主要是青霉素的功劳。从这个意义上讲,科学技术是人类的第一生产力,也是改变人类社会状态的最强有力的因素。 曾有一部电影叫《盘尼西林·1944》,讲述抗日战争期间,为争夺2箱青霉素,中共地下党人与汪伪军展开的一场殊死较量。现在一定有很多人会发出这样的疑问:普普通通的青霉素,有那么重要吗?在抗生素泛滥的今天,人们难以想象青霉素刚刚能批量生产时的价值。从某种意义上说青霉素是具有划时代意义的发明,也并不为过。因为正是青霉素的出现,才使得众多病菌感染者特别是战场上的无数伤兵,摆脱了之前“听天由命”的凄惨处境。

细菌“凶手” 在青霉素诞生以前,人们在外科医学上已经有了许多重大的发明:麻醉剂,让伤者不需要再忍着剧痛接受手术;消毒绷带,让医生们不必再用烧红的烙铁为伤兵处理伤口„„但在对付细菌的入侵方面,当时的医疗手段接近于“无计可施”,伤寒、痢疾、伤口的普通感染甚至是咽喉肿痛,都有可能因为无法及时杀菌而成为置人于死地的“凶手”。

在战争期间,这些“凶手”往往比对面之敌更有杀伤力。美国南北战争期间,南军有18.6万人死于疾病,是战死人员的2倍,仅痢疾一项,就夺走了4.5万条人命;一战初期的6个月内,伤寒就从塞尔维亚夺走15万名士兵的生命,到战争结束时,俄国有300万人死于该疾病。当然,这些“凶手”对平民的“杀戮”也毫不手软,在1918至1919年肆虐的流感病毒中,有2200万人丧命。面对细菌的侵害,当时仅有的防护手段是喷洒化学药剂,在碳酸溶液里浸泡绷带,很显然,这些都无法起到切实有效的抵御作用。 1935年,德国科学家多马克宣布,他找到了战胜细菌的方法。通过实验,他发明了一种被称为“百浪多息”的磺胺类药物,这种药物提取自衣物染料,经过人体试验,对链球菌感染所致的猩红热、肺炎、中耳炎和脑膜炎等都有显著疗效。而在这以前,这些疾病几乎都是可以置人于死地的。 这一发明震惊了全世界,更多的科学家投入到对磺胺类药物的研究。与之相对的是,更多种类的磺胺类药物被发明生产出来。

然而,磺胺类抗菌药物所存在的不足很快就被人们发现,这类药物并不能杀死所有的细菌,而那些它可以杀死的细菌在用药后会较易产生耐药性。更重要的是,即使是最好的磺胺类药物,也会产生各类副作用,病人可能会出现皮疹、剧烈呕吐等不良反应,而在极端的病例中,磺胺类药物甚至可以杀死病人体内的白细胞,反而加速病人的死亡。 是否存在一种接近于完美的抗菌药,它能有效杀死细菌,同时不会对人体产生危害?这样的药物的确存在,并且它被人发现的时间还要早于磺胺类药物。

青霉素的发明历程 英国药理学家亚历山大·弗莱明在一次度假归来后,发现他的培养皿中,用于观测的葡萄球菌长了一大团霉,霉团周围的葡萄球菌被杀死了,只有在离霉团较远的地方才有葡萄球菌生长。这位曾在一战中担任过军医,与细菌进行过多年抗争的科学家立刻想到,会不会是霉菌将周围的葡萄球菌杀死了? 弗莱明随即开始对此设想进行求证。大量的实验让他确信,这一霉团所产生的一种化学物质,可对包括链球菌、肺炎球菌、脑膜炎球菌等多种细菌具有致命的杀伤力,同时,它不会伤害正常细胞,也不会对白细胞的抵抗力造成影响。换言之,这就是人们一直所寻找的接近完美的抗菌药物,由于这种物质产生于被人们称为青霉菌的霉团,因此,弗莱明将它命名为“青霉素”。 在许多励志书籍和名人故事中,青霉素的发明到此便告一段落,故事告诉人们,如果细致地对待身边出现的不起眼的小事,甚至有可能做出影响历史进程的事情。这是一个大团圆结局。然而在现实中,这仅仅是青霉素曲折命运的开始。 弗莱明深知发现青霉素的重大意义,但在提纯青霉素的过程中,弗莱明发现,无论是想大量提取青霉素或是长期保持青霉素的杀菌性,都几乎是不可能完成的任务。因此,弗莱明放弃了对青霉素的研究,仅仅将他的研究结果写成论文。但在当时,他的论文无人问津。 在弗莱明的论文沉睡了10年后,澳大利亚人弗洛里看到了弗莱明的心血之作。他迅速意识到:这是一份可能拯救无数人生命的伟大发明。 弗洛里立刻着手弗莱明未能完成的任务,他与钱恩、希特利等科学家组成一个研究团队,集体研究将青霉素大批量提纯并生产的方法。但他们遇到了与弗莱明同样的困难:仅能从霉中提取到二百万分之一的有效物质。尽管几经周折,他们提取到的青霉素也仅够在几只人为感染链球菌的老鼠身上完成实验。 弗洛里等科学家给人为感染链球菌的4只老鼠注射了青霉素,而另外4只则没有采取任何措施。一天后,注射过青霉素的4只老鼠全部存活下来,而未注射的4只全部死亡。研究团队成员为这次实验结果振奋不已,接下来几个月中,他们拼尽全力生产青霉素,并得到了一次在人体上试验青霉素的机会。 病人是一名伦敦警察,在修建花枝时被刺伤了手指,伤口受到葡萄球菌和链球菌感染,发展为败血症。尽管服用了大量磺胺类药物,却不见任何起色,在注射青霉素之前,他高烧40.6度,已经无限接近死亡。在注射青霉素后,这名病人的状况显著好转,为他注射青霉素3天后,病人已经恢复了意识。但就在这时,弗洛里等人所提取的青霉素全部用完了,病人在24小时内重新陷入昏迷,并很快死去。

这一悲剧告诉弗洛里,如果没有办法大批量生产青霉素,那么他无法帮助任何人。治疗一个成年人所需要的青霉素数量约为一只小鼠的3000倍,如果光靠弗洛里等人的生产,几个月的时间也凑不齐治疗一个病人所需的药物。此时,正是二战在西欧战场上激战正酣之时,弗洛里等人正身处英国,每日在头顶上响起的战机轰鸣声就像对他的催促,哪怕能提早1分钟实现青霉素的大批量生产,对数以万计的伤员来说,都有着重要意义。

让伤兵安然返家 弗洛里向英国政府寻求帮助。但是,此时的英国正处于德国“海狮计划”的地毯式轰炸中,物质极度匮乏,无力对弗洛里提供任何帮助。 弗洛里转而向美国寻求帮助。美国政府敏锐地发现了青霉素的潜在价值,召集数百位生化学家和数千位工程师联合攻关,并将青霉素列入战时国家重点开发项目名录上,位于最优先项目的行列。 青霉素的发展开始进入“快车道”,这一庞大的研究团队在实验了数万种形态的霉后,终于找到一种被称为“产黄青霉素”的霉,它的提取物超过原来200多倍。1942年,随着美国的参战,对青霉素的需求量急剧增多,研究团队决心对霉进行放射,以这种极端方式来增加产量。没想到的是,这一方式产生了意料之外的效果,几周时间,提取青霉素的产量提高了几万倍之多。 1944年,青霉素的快速和大批量生产已经成为现实,此时,二战进入最后的攻坚阶段,战事一如既往的残酷。但不同的是,此时盟军所有参战的野战医院和医疗分队都得到了充足的青霉素供应,也就是在这时,青霉素被盟军士兵亲切地称为“救命药”,并因此名满天下。有一幅盟军的宣传画在当时流传甚广,画上印有如下标语:感谢盘尼西林(青霉素),它让伤兵安然返家。 这种在战争中诞生的“救命药”,守护着人类的生命。英国首相丘吉尔曾经说道:“青

相关文档
最新文档