分数指数幂基本运算练习题

合集下载

指数与对数运算练习题

指数与对数运算练习题

指数与对数运算练习题指数与对数运算练题1.用根式的形式表示下列各式(a>0):1) a^(1/2)2) a^(1/3)3) a^(1/4)4) a^22.用分数指数幂的形式表示下列各式:1) x^(y/3)2) (1/5)^(-3/4)3) (3ab^2)^24) 3a^45) a^33.求下列各式的值:1) 8^(1/3) = 22) 100^(1/2) = 103) (8/14)^(-3/4) = 98/274) (27/64)^(1/3) = 3/45) [(-2)^2] = 46) [(1-3/2)^2] = 1/47) 64^(1/2) = 8选择题:1.以下四式中正确的是(B)log2^1=12.下列各式值为的是(D)-53.log2^1/5^11/24的值是(A)-114.若m=lg5-lg2,则10m的值是(A)55.设N=11+log2^1/5^3,则(A)N=26.在b=loga-2(5-a)中,实数a的范围是(C)2<a<3或3<a<57.若log4[log3(log2x)]=1/2,则x^(1/2)等于(B)1/2填空题:10.用对数形式表示下列各式中的x:10x=25:x=log10(25)/log10(10)=2/1=22x=12:x=log2(12)/log2(2)=4/1=44x=16:x=log4(16)/log4(4)=2/1=211.lg1++=lg(1+1)=lg212.Log15(5)=1/m。

则log15(3)=log3(15)/log3(5)=1/(m*log3(5))13.lg2^2-lg4+1+|lg5-1|=2-2+1+|1-1|=114.(1) log3(2)=log6(3)/log6(2)2) (log6(3))^2+1-a=log6(12/a)log12(3)=log6(3)/log6(12)=log6(3)/[log6(2)+log6(6)]=log3(2 )/(1+1/2)=2log3(2)/3=2log12(3)/(log12(2)+log12(6))6、计算题1.2lg6-2lg5+lg2=lg(6^2/5)+lg2=lg(72/5)2.2lg5+lg2·lg50=2lg5+lg(2·5^2)=2lg5+lg50=lg(5^2·50)=lg12 503.2log3(2)-log3(32)+log3(8)-3log5(5)=2log3(2)-(log3(2^5)-log3(2^2))+log3(2^3)-(log5(5^3))=2log3(2)-log3(2^3)+log3(2^3)-3=2log3(2)-34.lg5·lg20-lg2·lg50-lg25=lg(5·20/2)-XXX(50)-XXX(25)=lg(50/2)-XXX(50)-XXX(25)=lg(1/2)-2lg(5)=log2-2log515.根据换底公式,log5(12)=log2(12)/log2(5)=log2(2^2·3)/log2(5)=2log2(2/5)+log2(3/5)19.根据3a=2,可得a=log2(8/9),代入log3(8)-2log3(6)中,得log3(8)-2log3(6)=log3(2^3)-2log3(2^2·3)=3log3(2)-2log3(2)-2log3(3)=log3(2)-2log3(3)16.根据对数的定义,可得a^m=2,a^n=3,代入a^(2m+n)中,得a^(2m+n)=a^(2loga(2)+loga(3))=a^loga(2^2·3)=621.lg25+lg2lg50+(lg2)^2=2+2lg5+4=6+2lg517.⑴2log2(8)=log2(8^2)=log2(64)=6⑵3log3(9)=log3(9^3)=log3(729)=6⑶2^18=18.⑴lg10-5=1-5=-4⑵⑶log2(8)=3提升题4.化简1)a·a·a/3= a^3/32)a·a/a= a3)3a·(-a)/9= -a^2/34) ba·a^2/a^21= b/a^195)log1(81)/log1(8/27)= log8/27(81)= log3(3^4)= 4log3(3)= 45.计算⑴ 325-125/45= 200/45= 40/9⑵ 23·31.5·612= 23·63·12=⑶ (-1)-4·(-2)^-3+(-9)·2-2·2^-2= -1-1/8-18+1/2= -1453/8⑷ 7/10+0.1-2+π= 37/10+π-1.9⑸ 41/24-32/27= 41/24-32/27·8/8= (41·27-32·24)/648= 5/726.解方程1)x-1/2=1/3,x=5/62)2x^4-1=15,2x^4=16,x^4=8,x=23) (0.5)1-3x=4,(0.5)^1=0.5,0.5·2^-6x=4,2^-7x=8,-7x=log2(8)=-3,x=3/77.解题1)a+a^-1=3,已知a+a^-1=3,两边平方得a^2+a^-2+2=9,所以a^2+a^-2=72)a+a^2=3,已知a+a^-1=3,两边平方得a^2+a^-2+2=9,所以a^2+a^-2=7,两边加1得a^2+a^-2+1=8,即(a+a^-1)^2=8,所以a+a^-1=±2√2,因为a+a^-1=3,所以a+a^-1=2√23)1-2x>0,所以x<1/24)33a-2b=3^3a^3·2^-2b=27/48.lg25+lg2·lg25+lg22=2+2lg5+1=3+2lg51.化简计算:log2 111 ·log3 ·log5 2589 - 3/42.化简:(log2 5+log4 0.2)(log5 2+log25 0.5)3.若XXX(x-y)+XXX(x+2y)=lg2+lgx+lgy,求的值.4.已知log2 3 =a,log3 7 =b,用a,b表示log42 56.5.计算,(1)51-log0.2 3xy;(2)log4 3·log9 2-log1 432;(3)(log2 5+log4 125)2·log3 21.化简计算:log2 111 ·log3 ·log5 2589 - 3/4.将log2 111分解为log2 3和log3 37的和,将log5 2589分解为log5 3和log5 863的和,然后应用对数乘法和对数减法规则,得出结果为log2 3+log3 37+log3-log5-log5 3-log5 863-3/4.2.化简:(log2 5+log4 0.2)(log5 2+log25 0.5)。

指数运算

指数运算
一、复习:
1、整数指数幂:an=a· a· a· · · a (n∈N*)
a0=1(a≠0); a-n=1/an(a≠0, n∈N*) 2、整数指数幂有下面运算性质: (1)am· an=am+n (m,n ∈Z); (2)(am)n=amn (m,n ∈Z);
(3)(ab)n=anbn (n ∈Z).
(4) am÷an=am-n(同上)
n a a n (5) b b n
返回
(同上)
二、根式
x 4,
2
x 4 2
x 8,
3 5
x 82
3
x 32, x 5 32 2 1、定义:如果一个数的n次方等于a(n>1,且 n∈N*),那么这个数叫做a的n次方根。
就是说:如果xn=a,那么x叫做a的n次方根, 其中n>1,且n∈N*。
a 2、n次方根的表示符号: a 或- ①当n为奇数时, 正数的n次方根为正数, 负数的n次方根为负数;
n
n
例: 27 3, 32 2, a a
3 5 3 6
2
, ( a 0) a的n次方根有两个 ②当n为偶数时, , ( a 0) a的n次方根有一个 a的n次方根不存在 , (a 0)
4 4
(×); ( ∨); ( ∨);
3
4

4
2 b
(∨); 4 (×); 6
13
5
8
13
5
2
2n
2n n
4
b
b
n n 总有意义( ∨) 总有意义 (×); 8 a 7 ( a ) n
四、例题讲解: 课本51页例2、例3、例4

分数指数幂与指数函数(答案)

分数指数幂与指数函数(答案)

分数指数幂与指数函数本节主要学习分数指数幂与指数函数.1.理解有理数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算性质. 在初中我们学习了正整数指数幂的意义:一个数a 的n 次幂表示n 个a 相乘的积.正整数指数幂有五条运算性质:(1)a m a n =a m +n ;(2)a m ÷a n =a m -n (a ≠0,m >n );(3)(a m )n =a mn ;(4)(ab )n=a n b n;(5)(ba )n =n nb a 若(b ≠0).注意:a 0=1(a ≠0)、a -n =na 1(n 为正整数,a ≠0). 2.分数指数幂的引进是受根式的性质的启发.从根式的基本性质mp np a =m n a (a ≥0,m 、n 、p ∈N*), 我们知道a ≥0时,6a =a 3=26a ,123a =a 4=312a .于是我们规定:(1)nma =n m a (a ≥0,m 、n ∈N*); (2)nma-=nm a1(a >0,m 、n ∈N*,n >1);(3)零的正分数次幂是零,零的负分数次幂没有意义.这样一来,我们就将指数幂的概念扩大到有理数指数幂了,有理数幂的运算性质归纳为: (1)a r a s =a r +s ;(2)(a r )s =a rs ;(3)(ab )r =a r b r ,式中a >0,b >0,r 、s 为有理数.3.理解指数函数的概念和意义.在指数函数的定义中限定了底数a >0且a ≠1,这主要是使函数的定义域为实数集,且具有单调性.(1)若a =0,当x >0时,a x =0;当x ≤0时,a x 没有意义; (2)若a <0,如y =(-2)x 对于x =21、43等都是没有意义的; (3)若a =1,则函数为y =1x =1是一个常数函数,它的性质没有研究的必要,且不具有单调性.4.能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点,体会指数函数是一类重要的函数模型.5.在方法上,要体现“形”与“数”的结合,要重视指数函数的实际背景,会利用指数函数的有界性解题. 合作讨论【问题1】下列各式中正确的是( )A .n n a =a (n ∈N*)B .(n a )n =a (n ∈N*)C .npmpa=n ma(n ,m ,p ∈N*) D .nma-=mna1(m ,n ∈N*,a >0)思考:对于根式n m a 在什么条件下有意义?【问题2】在同一个坐标系中画出下列各函数的图象:①y =2x ;②y =5x ;③y =(51)x ;④y =(21)x.观察四个函数图象,看它们有何特点?你能从中总结出一般性结论吗?例题精析【例1】化简下列各式: (1)41)0081.0(--[3×(87)0]-1·[81-0.25+31)833(-]21--10×31027.0;(2)323323134248aab b b a a ++-÷(1-23ab)×3ab .【例2】设y l =a 3x -1,y 2=42-+x x a(a >0,a ≠1),确定x 为何值时有(1)y 1=y 2;(2)y 1>y 2.【例3】比较下列各数的大小:①52)2(-;②21)23(-;③52)23(--;④3)31(-;⑤54)32(-.【例4】对于函数y =122)31(--x x ,(1)求函数的定义域,值域;(2)确定函数的单调区间.【例5】求下列函数的定义域,值域: (1)y =112-x ; (2)y =125-x ; (3)y =22)21(x x -;(4)y =x9+2×x3-1.【例6】若函数y =1212·---x x aa 为奇函数,(1)确定a 的值;(2)求函数的定义域;(3)求函数的值域;(4)讨论函数的单调性.【例7】已知函数y =x (131-x+21).(1)求定义域;(2)讨论奇偶性; (3)证明它在定义域上恒大于0.【例8】如果函数y =122-+xx a a (a >0且a ≠1)在[-1,1]上有最大值14,试求a 的值.【例9】牛顿冷却定律描述一个物体在常温环境下的温度变化:如果物体的初始温度是T 0,则经过一定时间h 后的温度T 将满足T -T a =21(T 0-T a ),其中T a 是环境温度,使上式成立所需要的时间h 称为半衰期.在这样的情况下,t 时间后的温度T 将满足T -T a =ht)21((T 0-T a ).现有一杯ο195F 用热水冲的速溶咖啡,放置在ο75F 的房间中,如果咖啡降温到ο105F 需20分钟,问欲降到ο95F 需多少时间?变式训练: 1.等式224+-x x =2244+-x x 成立的充要条件是( )A .x ≠-2B .x ≥2或x <-2C .x ≥2D .x <-2 2.若x2=7,y2=6,则yx -4等于( )A .4936 B .67 C .1214 D .3649 3.若41a >32a ,则a 的范围是( ) A .a >1 B .0<a <1 C .41<a <32 D .a >324.若x)53(>x)75(,则x 的范围是( )A .0<x <1B .x >1C .x <-1D .x <0 5.下列函数是指数函数的是( )A .y =x)3(- B .y =x3- C .y =123+x D .y =x-26.下列函数值域是(0,+ )的是( ) A .y =x 2 B .y =122+x C .y =121+xD .y =122-x 7.若a =1)32(-+,b =1)32(--,则(a +1)-2+(b +1)-2的值是( )A .1B .41 C .22; D .328.若函数y =xa +m -1的图象在第一,三,四象限,则( )A .a >1且m >1B .a >l 且m <0C .0<a <1且m >0D .0<a <1且m <1 9.一种细胞在分裂时由一个分裂成两个,两个分裂成四个,四个分裂成八个……每天分裂一次.现在将一个该细胞放入一个容器,发现经过10天就可充满整个容器,则当细胞分裂到充满容器一半时需要的天数是( )A .5B .9C .6D .810.若0<a <1,b <-2,则函数y =xa +b 的图象一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 11.函数y =xa 与y =ax -a 的图象大致是下图中的( )12.在下列等式中,函数f (x )=x2不满足的是( ) A .f (x +1)=2f (x ) B .f (xy )=f (x )+f (y ) C .f (x +y )=f (x )·f (y ) D .f (-x )=)(1x f13.若a 2x=8,则xx xx aa a a --++33___________. 14.化简215658)·(b a ÷(354a )÷53b =___________.15.若函数y =(a 2-3a +3)a x 是指数函数,则a 的值是___________. 16.函数f (x )的定义域为[1,4],则函数f (x-2)的定义域为___________.17.若f (x )=x x 2121+-,f -1(53)则___________.18.若函数y =xa +b 的图象经过点(1,3),它的反函数的图象经过点(2,0),则函数y =xa +b 的值域是___________.19.(1)函数y =332+-xx a (以a >0且a ≠1),当x ∈[1,3]时有最小值为8,则a 的值为___________; (2)函数y =xx a 22-(a >1)的定义域___________,单调增区间___________,值域___________.20.(1)已知0<a <1,则方程a |x |=|x |的实根个数为___________. (2)关于x 的方程x)21(=a-11有正根,则a 的取值范围是___________. 21.解下列关于x 的方程: (1)81×x23=2)91(+x ;(2)222+x +3×x2-1=0.22.设f (x )是定义域为x ∈R 且x ≠0上的奇函数,则当x >0时,f (x )=xx21-.(1)写出x <0时f (x )的解析式;(2)解不等式f (x )<-3x .23.已知函数f (x )=11+-x x a a (a >1)。

2.1.1指数与指数运算(分式)

2.1.1指数与指数运算(分式)
分式指数幂0的正分数指数幂等于00的负分数指数幂没有意义分母不为0
回顾:运算性质
am an amn(m,n Z) (a m )n a mn (m, n Z ) (ab)n an bn(n Z )
推广:正数指数幂推广到有理数指数幂。原有整 数指数幂的运算性质对有理数指数幂仍然适用。
2 1 11 1 5
2 (6) (3)(a3 a2 a6 )(b2 b3 b6 )

2
(m
1 4
3
n8
)8

(m
1 4
)8
3
(n 8
)8
211 115
2 (6) (3) a3 2 6b2 3 6
4ab0 方法:将系数和同底
4a
(23)3 2 3

22 4
1
25 2

(52
1
)2Βιβλιοθήκη 2*(1 )5 2 51

1
5
( 1 )5 (21)5 25 32
2
3
3
4
(16) (2)
4( )
4 ( 2)3 ( 3)3 27
81 3
3
2
8
P82A1
例3、用分数指数幂的形式表示下列根式:
例: 当a 0, n N*, n 1时,n an a,
10
5 a10 5 (a2 )5 a2 a 5
12
(1)3 a12 _3_(a_4_)3 __a_4 _ _a__3_
被开方数的 指数/ 根指数
2 3
a2

3
2
(a 3 )3

对数、指数的运算练习及答案

对数、指数的运算练习及答案

高一对数的运算公式,幂的运算公式.1.幂的有关概念:(1)正整数指数幂:na = (*n N ∈). (2)零指数幂: 01(a a =≠ ). (3)负整数指数幂:p a -= *(0,)a p N ≠∈.(4)正分数指数幂:m n a = *(0,,n 1)a m N n >∈>且 (5)负分数指数幂:m na-= *(0,,n 1)a m N n >∈>且(6)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.根式:(1)如果一个数的n 次方等于a ()*1n n N >∈且,那么这个数叫做a 的n 次方根.(2)0的任何次方根都是0,0=.(3),n 叫做根指数,a 叫做被开方数.(4)n= .(5)当n 为奇数时= . (6)当n 为偶数时, = = .3.指数幂的运算法则:(1)rsa a ⋅= (0,,)a r s R >∈. (2)rs a a= (0,,)a r s R >∈.(3)()rab = (0,0,)a b r R >>∈. (4)()sra= (0,,)a r s R >∈.二.对数1.对数的定义:如果(0ba N a =>≠且a 1),那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做 , 叫做真数.2.对数的运算法则:若0a >≠且a 1,0,0M N >>,那么(1)MN a log = . (2)MNa log = . (3)nM a log = . 3.特殊对数:(1)1a log = ; (2)a a log = . (其中0a >≠且a 1) 4.对数的换底公式及对数恒等式(1)Naa log = (对数恒等式). (2)NN a=b a b log log log (换底公式);(3)1b a=a b log log ; m N =n a log (换底公式的推论)【基础练习】1.对于0,1a a >≠,下列说法中,正确的是( ) C (1)若M=N,则log log a a M N =; (2)若log log a a M N =,则M=N; (3)若22log log a a M N =,则M=N; (4)若M=N,则22log log a a M N =.A.(1)(3)B.(2)(4)C.(2)D. (1)(2)(3)(4) 2.若0,1a a >≠,且x>0,y>0,x>y,则下列式子中正确的个数有( ) A (1)()log log log a a a x y x y ⋅=+;(2)()log log log a a a x y x y -=+; (3)log log log a a a x x y y ⎛⎫=÷⎪⎝⎭;(4)()log log log a a a xy x y =⋅ A.0个 B.1个 C.2个 D.3个3.下列各式中成立的一项是( ) DA.7177n n m m ⎛⎫= ⎪⎝⎭B.()34x y =+=4.= . 21a 【典例分析】题型一:指数幂的运算例1. 化简下列各式:(1) 1.5230.027-⎛⎫ ⎪⎝⎭100027(2)12133113344x y z x y z ---⎛⎫⎛⎫⋅⋅⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭ 2xz-12a-变式训练1⎛⎝251212a-例2 . 化简132111333311111x x x xx x x x-+-+-+++-13x-变式训练2:化简(1)()()()()33334411a a a a a a a a----⎡⎤+-÷++-⎣⎦1a a-+ (2)()111221x x x x--⎛⎫++-⎪⎝⎭3322x x--题型二:对数式的运算例3.计算(log3123)2-3log23-+log0.2514+9log23l o g92变式训练3: 化简或求值:(1)()266661log3log2log18log4⎡⎤-+⋅÷⎣⎦ 1(2) 4例4.已知18log 9,185b a ==,求36log 25(用a,b 表示).22ba-.变式训练4:设603,605,a b ==试求12(1)12a b b ---的值. 2题型三:综合应用例5.若正整数m 满足-151210210m m <<,则 m= ()lg20.3010≈. 155变式训练5:(1)已知35abc ==,且112a b+=,则c 的值为( ) B(2)方程的111122log (95)log 32x x ---=-解是 . 3log 15【当堂检测】1. 求值:()222lg 5lg8lg 5lg 20lg 23++⋅+ 32.111133420,0)a b a b a b ->>⎛⎫ ⎪⎝⎭1ab -3.已知11225x x-+=,求21x x+的值. 234. 求值:((2log 2 -1【自我检测】(C 级) 1.设137x=则( ) AA.-2<x<-1B. -3<x<-2C. -1<x<0D. 0<x<1(C 级) 2. 已知2log 3,37b a ==,求log (用a,b 表示)()22a aba b +++(B 级) 3.已知0<x<1,且235log log log x y z ==,则将111352,,x y z 按从小到大的顺序排列为 15z ,12x ,13y(C 级) 4. 求值:()2lg 5lg 50lg 2+⋅ 1(C 级) 5. 求值:()()3948log 2log 2log 3log 3+⋅+ 54(B 级)6.已知函数()xxf x a a -=+(0,1a a >≠),且f(1)=3,则f(0)+f(1)+f(2)的值是 .12(B 级)7.设函数()log a f x x = (0,1a a >≠)且,若122007()8f x x x ⋅⋅= ,则222122007()()()f x f x f x +++ 的值等于( )A.4B.8C.16D.2log 8a c(A 级)8.若1928,93x y y x +-==则x+y= ( )A.18B.24C.27D.21 c9. (2011·重庆高考文科)设11332124a log ,b log ,c log ,233===则c b a ,,的大小关系是( )(A) c b a << (B) a b c << (C) c a b << (D) a c b <<10.(2011·四川高考理科)计算121(lg lg 25)1004--÷= .。

高一数学指数函数知识点及练习题(含答案)

高一数学指数函数知识点及练习题(含答案)

+⎩ + 指数函数2.1.1 指数与指数幂的运算〔1〕根式的概念 ①如果 xn= a , a ∈ R , x ∈ R , n > 1,且 n ∈ N ,那么 x 叫做 a 的 n 次方根.当 n 是奇数时,a 的 n 次 方根用符号 n a 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号 n a 表示,负的 n 次方根用符号 - na表示;0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当 n 为奇数时, a 为任意实数;当 n 为偶数时, a ≥ 0 .nnn n⎧a (a ≥ 0)③根式的性质:( a ) = a ;当 n 为奇数时, a = a ;当 n 为偶数时,=| a |= ⎨-a .(a < 0)〔2〕分数指数幂的概念m①正数的正分数指数幂的意义是: a n= n a m(a > 0, m , n ∈ N , 且 n > 1) .0 的正分数指数幂等于 0.②- m1 m1正数的负分数指数幂的意义是: an= ( ) n = n ( )m (a > 0, m , n ∈ N + , 且 n > 1) .0 的负分数指a a数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 〔3〕分数指数幂的运算性质①a r ⋅ a s = a r +s (a > 0,r , s ∈ R )②(a r )s = a rs (a > 0, r , s ∈ R )③(ab )r = a r b r (a > 0, b > 0, r ∈ R )2.1.2 指数函数及其性质〔4〕指数函数 函数名称 指数函数定义函数 y = a(a > 0 且 a ≠ 1)叫做指数函数图象a > 10 < a < 1y = 1 yOy = ax(0, 1)xy = a xy = 1Oy( 0 , 1 )x定义域 R值域 〔0,+∞〕过定点 图象过定点〔0,1〕,即当 x=0 时,y=1.奇偶性 非奇非偶单调性在 R 上是增函数在 R 上是减函数函数值的变化情况y >1(x >0), y=1(x=0), 0<y <1(x <0)y >1(x <0), y=1(x=0), 0<y <1(x >0)a 变化对图象影响在第一象限内, a 越大图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴.在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越小图象越低,越靠近 x 轴.n a n39 1 + 5 1 ± 5 12.1 指数函数练习1.以下各式中成立的一项〔〕A . ( n )7 = n 7m 7mB . 12(-3)4 =C . 4x 3+ y 33(x + y )4D .=2 11 1 1 1 52.化简(a 3 b 2)(-3a 2 b 3) ÷ ( 3a 6b 6 )的结果〔〕A . 6aB . - aC . - 9aD . 9a23.设指数函数 f (x ) = a x(a > 0, a ≠ 1) ,那么以下等式中不正确的选项是〔 〕A .f (x +y )=f(x )·f (y )B . f 〔x - y 〕=f (x )f ( y )C . f (nx ) = [ f (x )]n(n ∈ Q )- 1D . f (xy )n= [ f (x )]n·[ f ( y )]n(n ∈ N + )4.函数 y = (x - 5)0+ (x - 2)2A .{x | x ≠ 5, x ≠ 2} C .{x | x > 5}〔〕B .{x | x > 2}D .{x | 2 < x < 5或x > 5}5.假设指数函数 y = a x在[-1,1]上的最大值与最小值的差是1,那么底数a 等于 〔〕A .B . 2 2C .D .2 26.当 a ≠ 0 时,函数 y = ax + b 和 y = b ax的图象只可能是〔〕7.函数 f (x ) = 2-|x |的值域是〔 〕A . (0,1]B . (0,1)⎧⎪2- x- 1, x ≤ 0 C . (0,+∞)D .R8.函数 f (x ) = ⎨ 1 ,满足 f (x ) > 1的 x 的取值范围⎪⎩x 2 , x > 0〔 〕A . (-1,1)B . (-1,+∞)C .{x | x > 0或x < -2}D .{x | x > 1或x < -1}9.函数 y = ( 1 ) 2- x 2 + x +2 得单调递增区间是〔 〕11A . [-1, ]2B . (-∞,-1]C . [2,+∞)D . [ 2,2]3 - 33 3- 1 + 5 5 ± 1⎩ x e x - e - x10. f (x ) =,那么以下正确的选项是 〔 〕2A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.函数 f (x )的定义域是〔1,2〕,那么函数 f (2 x) 的定义域是 .12.当 a >0 且 a ≠1 时,函数 f (x )=a x -2-3 必过定点 .三、解答题:13.求函数 y = 1的定义域.5 x -1 - 114.假设a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.函数 f (x ) =a x - 1 a x + 1(a >1).〔1〕判断函数f (x )的奇偶性;〔2〕证明f (x )在(-∞,+∞)上是增函数.16.函数 f(x)=a x (a>0,且 a ≠1)在区间[1,2]上的最大值比最小值大 a,求 a 的值. 2参考答案一、DCDDDAAD D A二、11.(0,1);12.(2,-2);三、13. 解:要使函数有意义必须:⎧x - 1 ≠ 0⎧x ≠ 1⎪x ⇒⎨ ≠ 0 ⎩ x - 1⎨x ≠ 0∴定义域为: {x x ∈ R 且x ≠ 0, x ≠ 1}⎪1 a +1 a +12 14. 解: a r + br⎛ a ⎫r⎛ b ⎫r,其中 0 < a < 1,0 < b < 1.= ⎪ c rc + ⎪c ⎝ ⎭ ⎝ ⎭ 当r >1时,⎛ a ⎫ r ⎛ b ⎫r a b ,所以a r+b r <c r ;⎪ + ⎪ < + = 1⎝ c ⎭ ⎝ c ⎭ c c当 r <1 时,⎛ a ⎫r⎛ b ⎫ra b,所以 a r +b r >c r . ⎪ + ⎪ > + = 1 ⎝ c ⎭ ⎝ c ⎭ c c15.解:(1)是奇函数.(2) x <x ,a x 1 -1 a x2 -1 。

指数函数知识点及其习题附答案

指数函数知识点及其习题附答案

〖〗指数函数2.1.1指数与指数幂的运算(1)根式的概念 ①若是,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n当n 是偶数时,正数a 的正的n次方根用符号n次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,mm nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没成心义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈2.1.2指数函数及其性质(4指数函数练习1.以下各式中成立的一项( )A .7177)(m n mn =B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,那么以劣等式中不正确的选项是( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.假设指数函数xa y =在[-1,1]上的最大值与最小值的差是1,那么底数a 等于 ( )A .251+ B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ( )7.函数||2)(x x f -=的值域是( ) A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,知足1)(>x f 的x 的取值范围( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或 9.函数22)21(++-=x x y 得单调递增区间是( ) A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[ 10.已知2)(xx e e x f --=,那么以下正确的选项是( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数11.已知函数f (x )的概念域是(1,2),那么函数)2(x f 的概念域是 . 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 . 三、解答题: 13.求函数y x x =--1511的概念域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判定函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大a 2,求a 的值.指数函数练习参考答案一、DCDDD AAD D A二、11.(0,1); 12.(2,-2); 三、13. 解:要使函数成心义必需:x x x x x -≠-≠⎧⎨⎪⎩⎪⇒≠≠⎧⎨⎩101010∴概念域为:{}x x R x x ∈≠≠且01,14. 解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,因此a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,因此a r +b r >c r .15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。

指数与指数幂的运算习题

指数与指数幂的运算习题

课外作业:课本P60B组第2题,《名师一号》 P43例4,变式4,P44第9,10题
指数式的计算与化简
2.1.1 指数与指数幂的运算
指数式的计算与化简,除了掌握定义、法则外,还 要掌握一些变形技巧.根据题目的不同结构特征,灵 活运用不同的技巧,才能做到运算合理准确快捷.
一、巧用乘法公式 回顾 (1)(a b)2 a2 2ab b2
基本 (2)a2 b2 (a b)(a b)
由于引入 负指数及分数 指数幂后,初 中的平方差、 立方差、完全 平方公式等, 有了新特征:
公式 (3)a3 b3 (a b)(a2 ab b2 )
如 : (a a1 )2 a2 2 a2;
1
11
1
a b (a 2 b 2 )(a 2 b 2 );
“整体代入”的办法
小结
2.1.1 指数与指数幂的运算
ห้องสมุดไป่ตู้
1、本节的化简、求值问题,要注意整体代 换,注意平方差、立方差、立方和等公式 的运用。 2、将指数合理拆分,进而因式分解是指数 运算中的常用技巧。 3、单项式乘以单项式、多项式乘以多项式 以及多项式除以单项式、多项式除以多项 式的运算都没有改变。
1
12
11
2
a b (a 3 b 3 )(a 3 a 3b 3 b 3 )等.
二、能力训练
2.1.1 指数与指数幂的运算
例1
1
已知 a 2
1
a 2
3,求下列各式的值
(1)a a1;
答案:
(2)a2 a2;
3
3
a2 a 2
(3) 1 1 .
a2 a 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数指数幂基本运算练习题分数指数幂的计算
一、填空题
1.根式a的分数指数幂形式为a的1/2次方。

2.若a=2,b=3,c=-2,则(ac)b=2的3次方。

3.(-1/2)的2次方=1/
4.
4.(-25)的2次方=62
5.
5.化简(a-b)的3次方+(a-2b)的2次方(a<2b)的结果是a 的6次方-6a的4次方b的2次方+9a的2次方b的4次方。

6.2(2k+1)-2(2k+1)+2的2次方的化简结果是8k的2次方+8k+2.
7.若a=(2+3)的1次方,b=(2-3)的1次方,则(a+1)的2次方+(b+1)的-2次方的值是2.
8.(1)设α,β是方程2x的2次方+3x+1=0的两个根,则αβ=1/2.(2)若10x=3,10y=4,则10(x-y)的2次方=-13/9.
9.以下各式,化简正确的个数是2个。

①a的4次方-15(a 的2次方b)=a的4次方b的6次方。

②-6/9+1/3=1/3.③(-xy的1/4-3)(x-2y)(-xy)=y。

④-15abc/225abc=-1/15.
10.求下列各式的值:①27=27.②(6)的1/2=3.③491=7.
11.解方程:①x=3/2.②x=94/8.
12.求下列各式的值:(1)(.027)的3次方+(125/27)的3次方-(2/9)的5次方=0..(2)(1/2 17/4 3/4 -1/3)+3(1/3-2)-1(-1/64)(-3)=5/12.
13.易错题计算:(1)(25)+2-2(21/4)-(0.01)的
0.5=24.99.(2)(279)的0.5+0.1-2+(2(10-37/27)的3次方)-
3π+48=50.06.(3)(.0081)的-1/4-[3(7)]的-1×[81-0.25(3/8)+(3/8)的3次方]的2-10×0.0273=3.68.
14.已知a的2次方+a-1/2=4,求下列表达式的值(1)a+a 的-1次方=2+√5.(2)a的2次方+a的-2次方=22.
15.已知x+x的-1/2=3/2-3/2,求x+x的2次方/x的2次方+x-2的值。

答案为3/2.。

相关文档
最新文档